1
|
de Rojas J, Atkinson D, Adeyeye AO. Tailoring magnon modes by extending square, kagome, and trigonal spin ice lattices vertically via interlayer coupling of trilayer nanomagnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:415805. [PMID: 38942012 DOI: 10.1088/1361-648x/ad5d3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
In this work high-frequency magnetization dynamics and statics of artificial spin-ice lattices with different geometric nanostructure array configurations are studied where the individual nanostructures are composed of ferromagnetic/non-magnetic/ferromagnetic trilayers with different non-magnetic thicknesses. These thickness variations enable additional control over the magnetic interactions within the spin-ice lattice that directly impacts the resulting magnetization dynamics and the associated magnonic modes. Specifically the geometric arrangements studied are square, kagome and trigonal spin ice configurations, where the individual lithographically patterned nanomagnets (NMs) are trilayers, made up of two magnetic layers ofNi81Fe19of 30 nm and 70 nm thickness respectively, separated by a non-magnetic copper layer of either 2 nm or 40 nm. We show that coupling via the magnetostatic interactions between the ferromagnetic layers of the NMs within square, kagome and trigonal spin-ice lattices offers fine-control over magnetization states and magnetic resonant modes. In particular, the kagome and trigonal lattices allow tuning of an additional mode and the spacing between multiple resonance modes, increasing functionality beyond square lattices. These results demonstrate the ability to move beyond quasi-2D single magnetic layer nanomagnetics via control of the vertical interlayer interactions in spin ice arrays. This additional control enables multi-mode magnonic programmability of the resonance spectra, which has potential for magnetic metamaterials for microwave or information processing applications.
Collapse
Affiliation(s)
- Julius de Rojas
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
- Department of Physics, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Del Atkinson
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Adekunle O Adeyeye
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Slöetjes SD, Grassi MP, Kapaklis V. Modelling nanomagnet vertex dynamics through Coulomb charges. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:405804. [PMID: 38906128 DOI: 10.1088/1361-648x/ad5acc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/21/2024] [Indexed: 06/23/2024]
Abstract
We investigate the magnetization dynamics in nanomagnet vertices often found in artificial spin ices. Our analysis involves creating a simplified model that depicts edge magnetization using magnetic charges. We utilize the model to explore the energy landscape, its associated curvatures, and the fundamental modes. Our study uncovers specific magnonic regimes and transitions between magnetization states, marked by zero-modes, which can be understood within the framework of Landau theory. To verify our model, we compare it with micromagnetic simulations, demonstrating a noteworthy agreement.
Collapse
Affiliation(s)
- Samuel D Slöetjes
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Matías P Grassi
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Vassilios Kapaklis
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| |
Collapse
|
3
|
Dion T, Stenning KD, Vanstone A, Holder HH, Sultana R, Alatteili G, Martinez V, Kaffash MT, Kimura T, Oulton RF, Branford WR, Kurebayashi H, Iacocca E, Jungfleisch MB, Gartside JC. Ultrastrong magnon-magnon coupling and chiral spin-texture control in a dipolar 3D multilayered artificial spin-vortex ice. Nat Commun 2024; 15:4077. [PMID: 38744816 PMCID: PMC11094080 DOI: 10.1038/s41467-024-48080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Strongly-interacting nanomagnetic arrays are ideal systems for exploring reconfigurable magnonics. They provide huge microstate spaces and integrated solutions for storage and neuromorphic computing alongside GHz functionality. These systems may be broadly assessed by their range of reliably accessible states and the strength of magnon coupling phenomena and nonlinearities. Increasingly, nanomagnetic systems are expanding into three-dimensional architectures. This has enhanced the range of available magnetic microstates and functional behaviours, but engineering control over 3D states and dynamics remains challenging. Here, we introduce a 3D magnonic metamaterial composed from multilayered artificial spin ice nanoarrays. Comprising two magnetic layers separated by a non-magnetic spacer, each nanoisland may assume four macrospin or vortex states per magnetic layer. This creates a system with a rich 16N microstate space and intense static and dynamic dipolar magnetic coupling. The system exhibits a broad range of emergent phenomena driven by the strong inter-layer dipolar interaction, including ultrastrong magnon-magnon coupling with normalised coupling rates ofΔ f ν = 0.57 , GHz mode shifts in zero applied field and chirality-control of magnetic vortex microstates with corresponding magnonic spectra.
Collapse
Affiliation(s)
- Troy Dion
- Solid State Physics Laboratory, Kyushu University, Fukuoka, Japan.
| | - Kilian D Stenning
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, University College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| | - Alex Vanstone
- Blackett Laboratory, Imperial College London, London, UK
| | - Holly H Holder
- Blackett Laboratory, Imperial College London, London, UK
| | - Rawnak Sultana
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Ghanem Alatteili
- Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Victoria Martinez
- Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | | | - Takashi Kimura
- Solid State Physics Laboratory, Kyushu University, Fukuoka, Japan
| | | | - Will R Branford
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| | - Hidekazu Kurebayashi
- London Centre for Nanotechnology, University College London, London, UK
- Department of Electronic and Electrical Engineering, University College London, London, UK
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Ezio Iacocca
- Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | | | - Jack C Gartside
- Blackett Laboratory, Imperial College London, London, UK.
- London Centre for Nanotechnology, Imperial College London, London, UK.
| |
Collapse
|
4
|
Bhat VS, Watanabe S, Kronast F, Baumgaertl K, Grundler D. Spin dynamics, loop formation and cooperative reversal in artificial quasicrystals with tailored exchange coupling. COMMUNICATIONS PHYSICS 2023; 6:193. [PMID: 38665397 PMCID: PMC11041715 DOI: 10.1038/s42005-023-01310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 07/19/2023] [Indexed: 04/28/2024]
Abstract
Aperiodicity and un-conventional rotational symmetries allow quasicrystalline structures to exhibit unusual physical and functional properties. In magnetism, artificial ferromagnetic quasicrystals exhibited knee anomalies suggesting reprogrammable magnetic properties via non-stochastic switching. However, the decisive roles of short-range exchange and long-range dipolar interactions have not yet been clarified for optimized reconfigurable functionality. We report broadband spin-wave spectroscopy and X-ray photoemission electron microscopy on different quasicrystal lattices consisting of ferromagnetic Ni81Fe19 nanobars arranged on aperiodic Penrose and Ammann tilings with different exchange and dipolar interactions. We imaged the magnetic states of partially reversed quasicrystals and analyzed their configurations in terms of the charge model, geometrical frustration and the formation of flux-closure loops. Only the exchange-coupled lattices are found to show aperiodicity-specific collective phenomena and non-stochastic switching. Both, exchange and dipolarly coupled quasicrystals show magnonic excitations with narrow linewidths in minor loop measurements. Thereby reconfigurable functionalities in spintronics and magnonics become realistic.
Collapse
Affiliation(s)
- Vinayak Shantaram Bhat
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, 02668 Warsaw, Poland
| | - Sho Watanabe
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Florian Kronast
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Korbinian Baumgaertl
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Dirk Grundler
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Electrical and Micro Engineering (IEM), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Lendinez S, Kaffash MT, Heinonen OG, Gliga S, Iacocca E, Jungfleisch MB. Nonlinear multi-magnon scattering in artificial spin ice. Nat Commun 2023; 14:3419. [PMID: 37296142 DOI: 10.1038/s41467-023-38992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Magnons, the quantum-mechanical fundamental excitations of magnetic solids, are bosons whose number does not need to be conserved in scattering processes. Microwave-induced parametric magnon processes, often called Suhl instabilities, have been believed to occur in magnetic thin films only, where quasi-continuous magnon bands exist. Here, we reveal the existence of such nonlinear magnon-magnon scattering processes and their coherence in ensembles of magnetic nanostructures known as artificial spin ice. We find that these systems exhibit effective scattering processes akin to those observed in continuous magnetic thin films. We utilize a combined microwave and microfocused Brillouin light scattering measurement approach to investigate the evolution of their modes. Scattering events occur between resonance frequencies that are determined by each nanomagnet's mode volume and profile. Comparison with numerical simulations reveals that frequency doubling is enabled by exciting a subset of nanomagnets that, in turn, act as nanosized antennas, an effect that is akin to scattering in continuous films. Moreover, our results suggest that tunable directional scattering is possible in these structures.
Collapse
Affiliation(s)
- Sergi Lendinez
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
- Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA, 70806, USA
| | - Mojtaba T Kaffash
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Olle G Heinonen
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Seagate Technology, 7801 Computer Ave., Bloomington, MN, 55435, USA
| | - Sebastian Gliga
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Ezio Iacocca
- Department of Mathematics, Physics, and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom.
- Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
| | | |
Collapse
|
6
|
Bingham NS, Zhang X, Ramberger J, Heinonen O, Leighton C, Schiffer P. Collective Ferromagnetism of Artificial Square Spin Ice. PHYSICAL REVIEW LETTERS 2022; 129:067201. [PMID: 36018663 DOI: 10.1103/physrevlett.129.067201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/04/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
We study the temperature and magnetic field dependence of the total magnetic moment of large-area permalloy artificial square spin ice arrays. The temperature dependence and hysteresis behavior are consistent with the coherent magnetization reversal expected in the Stoner-Wohlfarth model, with clear deviations due to interisland interactions at small lattice spacing. Through micromagnetic simulations, we explore this behavior and demonstrate that the deviations result from increasingly complex magnetization reversal at small lattice spacing, induced by interisland interactions, and depending critically on details of the island shapes. These results establish new means to tune the physical properties of artificial spin ice structures and other interacting nanomagnet systems, such as patterned magnetic media.
Collapse
Affiliation(s)
- N S Bingham
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - X Zhang
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - J Ramberger
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - O Heinonen
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - C Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - P Schiffer
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
7
|
Affiliation(s)
- Laura J Heyderman
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, Zurich, Switzerland.
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, Villigen PSI, Switzerland.
| |
Collapse
|
8
|
Wysin GM. Metastability and dynamic modes in magnetic island chains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:065803. [PMID: 34731853 DOI: 10.1088/1361-648x/ac3609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
The uniform states of a model for one-dimensional chains of thin magnetic islands on a nonmagnetic substrate coupled via dipolar interactions are described here. Magnetic islands oriented with their long axes perpendicular to the chain direction are assumed, whose shape anisotropy imposes a preference for the dipoles to point perpendicular to the chain. The competition between anisotropy and dipolar interactions leads to three types of uniform states of distinctly different symmetries, including metastable transverse or remanent states, transverse antiferromagnetic states, and longitudinal states where all dipoles align with the chain direction. The stability limits and normal modes of oscillation are found for all three types of states, even including infinite range dipole interactions. The normal mode frequencies are shown to be determined from the eigenvalues of the stability problem.
Collapse
Affiliation(s)
- G M Wysin
- Department of Physics, Kansas State University, Manhattan, KS 66506-2601, United States of America
| |
Collapse
|
9
|
Caravelli F, Saccone M, Nisoli C. On the degeneracy of spin ice graphs, and its estimate via the Bethe permanent. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2021.0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The concept of spin ice can be extended to a general graph. We study the degeneracy of spin ice graph on arbitrary interaction structures via graph theory. We map spin ice graphs to the Ising model on a graph and clarify whether the inverse mapping is possible via a modified Krausz construction. From the gauge freedom of frustrated Ising systems, we derive exact, general results about frustration and degeneracy. We demonstrate for the first time that every spin ice graph, with the exception of the one-dimensional Ising model, is degenerate. We then study how degeneracy scales in size, using the mapping between Eulerian trails and spin ice manifolds, and a permanental identity for the number of Eulerian orientations. We show that the Bethe permanent technique provides both an estimate and a lower bound to the frustration of spin ices on arbitrary graphs of even degree. While such a technique can also be used to obtain an upper bound, we find that in all finite degree examples we studied, another upper bound based on Schrijver inequality is tighter.
Collapse
Affiliation(s)
- Francesco Caravelli
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Michael Saccone
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cristiano Nisoli
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
10
|
Chaurasiya AK, Mondal AK, Gartside JC, Stenning KD, Vanstone A, Barman S, Branford WR, Barman A. Comparison of Spin-Wave Modes in Connected and Disconnected Artificial Spin Ice Nanostructures Using Brillouin Light Scattering Spectroscopy. ACS NANO 2021; 15:11734-11742. [PMID: 34132521 DOI: 10.1021/acsnano.1c02537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Artificial spin ice systems have seen burgeoning interest due to their intriguing physics and potential applications in reprogrammable memory, logic, and magnonics. Integration of artificial spin ice with functional magnonics is a relatively recent research direction, with a host of promising results. As the field progresses, direct in-depth comparisons of distinct artificial spin systems are crucial to advancing the field. While studies have investigated the effects of different lattice geometries, little comparison exists between systems comprising continuously connected nanostructures, where spin-waves propagate via dipole-exchange interaction, and systems with nanobars disconnected at vertices, where spin-wave propagation occurs via stray dipolar field. Gaining understanding of how these very different coupling methods affect both spin-wave dynamics and magnetic reversal is key for the field to progress and provides crucial system-design information including for future systems containing combinations of connected and disconnected elements. Here, we study the magnonic response of two kagome spin ices via Brillouin light scattering, a continuously connected system and a disconnected system with vertex gaps. We observe distinct high-frequency dynamics and magnetization reversal regimes between the systems, with key distinctions in spin-wave localization and mode quantization, microstate trajectory during reversal and internal field profiles. These observations are pertinent for the fundamental understanding of artificial spin systems and broader design and engineering of reconfigurable functional magnonic crystals.
Collapse
Affiliation(s)
- Avinash Kumar Chaurasiya
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata 700 106, India
| | - Amrit Kumar Mondal
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata 700 106, India
| | - Jack C Gartside
- Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kilian D Stenning
- Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alex Vanstone
- Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Saswati Barman
- Institute of Engineering and Management, Sector-V, Salt Lake, Kolkata 700 091, India
| | - Will R Branford
- Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anjan Barman
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata 700 106, India
| |
Collapse
|
11
|
Gartside JC, Vanstone A, Dion T, Stenning KD, Arroo DM, Kurebayashi H, Branford WR. Reconfigurable magnonic mode-hybridisation and spectral control in a bicomponent artificial spin ice. Nat Commun 2021; 12:2488. [PMID: 33941786 PMCID: PMC8093262 DOI: 10.1038/s41467-021-22723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
Strongly-interacting nanomagnetic arrays are finding increasing use as model host systems for reconfigurable magnonics. The strong inter-element coupling allows for stark spectral differences across a broad microstate space due to shifts in the dipolar field landscape. While these systems have yielded impressive initial results, developing rapid, scaleable means to access a broad range of spectrally-distinct microstates is an open research problem. We present a scheme whereby square artificial spin ice is modified by widening a 'staircase' subset of bars relative to the rest of the array, allowing preparation of any ordered vertex state via simple global-field protocols. Available microstates range from the system ground-state to high-energy 'monopole' states, with rich and distinct microstate-specific magnon spectra observed. Microstate-dependent mode-hybridisation and anticrossings are observed at both remanence and in-field with dynamic coupling strength tunable via microstate-selection. Experimental coupling strengths are found up to g/2π = 0.16 GHz. Microstate control allows fine mode-frequency shifting, gap creation and closing, and active mode number selection.
Collapse
Affiliation(s)
| | - Alex Vanstone
- Blackett Laboratory, Imperial College London, London, UK
| | - Troy Dion
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, University College London, London, UK
| | | | - Daan M Arroo
- London Centre for Nanotechnology, University College London, London, UK
- Department of Materials, Imperial College London, London, UK
| | | | - Will R Branford
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| |
Collapse
|
12
|
Saha S, Zhou J, Hofhuis K, Kákay A, Scagnoli V, Heyderman LJ, Gliga S. Spin-Wave Dynamics and Symmetry Breaking in an Artificial Spin Ice. NANO LETTERS 2021; 21:2382-2389. [PMID: 33689358 DOI: 10.1021/acs.nanolett.0c04294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Artificial spin ices are periodic arrangements of interacting nanomagnets which allow investigating emergent phenomena in the presence of geometric frustration. Recently, it has been shown that artificial spin ices can be used as building blocks for creating functional materials, such as magnonic crystals. We investigate the magnetization dynamics in a system exhibiting anisotropic magnetostatic interactions owing to locally broken structural inversion symmetry. We find a rich spin-wave spectrum and investigate its evolution in an external magnetic field. We determine the evolution of individual modes, from building blocks up to larger arrays, highlighting the role of symmetry breaking in defining the mode profiles. Moreover, we demonstrate that the mode spectra exhibit signatures of long-range interactions in the system. These results contribute to the understanding of magnetization dynamics in spin ices beyond the kagome and square ice geometries and are relevant for the realization of reconfigurable magnonic crystals based on spin ices.
Collapse
Affiliation(s)
- Susmita Saha
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Jingyuan Zhou
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Kevin Hofhuis
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Attila Kákay
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Valerio Scagnoli
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Laura J Heyderman
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Sebastian Gliga
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
13
|
Lendinez S, Kaffash MT, Jungfleisch MB. Emergent Spin Dynamics Enabled by Lattice Interactions in a Bicomponent Artificial Spin Ice. NANO LETTERS 2021; 21:1921-1927. [PMID: 33600721 DOI: 10.1021/acs.nanolett.0c03729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Artificial spin ice (ASI) networks are arrays of nanoscaled magnets that can serve both as models for frustration in atomic spin ice as well as for exploring new spin-wave-based strategies to transmit, process, and store information. Here, we exploit the intricate interplay of the magnetization dynamics of two dissimilar ferromagnetic metals arranged on complementary lattice sites in a square ASI to modulate the spin-wave properties effectively. We show that the interaction between the two sublattices results in unique spectra attributed to each sublattice, and we observe inter- and intralattice dynamics facilitated by the distinct magnetization properties of the two materials. The dynamic properties are systematically studied by angular-dependent broadband ferromagnetic resonance and confirmed by micromagnetic simulations. We show that combining materials with dissimilar magnetic properties enables the realization of a wide range of two-dimensional structures, potentially opening the door to new concepts in nanomagnonics.
Collapse
Affiliation(s)
- Sergi Lendinez
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Mojtaba T Kaffash
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - M Benjamin Jungfleisch
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
14
|
Farhan A, Saccone M, Petersen CF, Dhuey S, Hofhuis K, Mansell R, Chopdekar RV, Scholl A, Lippert T, van Dijken S. Geometrical Frustration and Planar Triangular Antiferromagnetism in Quasi-Three-Dimensional Artificial Spin Architecture. PHYSICAL REVIEW LETTERS 2020; 125:267203. [PMID: 33449705 DOI: 10.1103/physrevlett.125.267203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
We present a realization of highly frustrated planar triangular antiferromagnetism achieved in a quasi-three-dimensional artificial spin system consisting of monodomain Ising-type nanomagnets lithographically arranged onto a deep-etched silicon substrate. We demonstrate how the three-dimensional spin architecture results in the first direct observation of long-range ordered planar triangular antiferromagnetism, in addition to a highly disordered phase with short-range correlations, once competing interactions are perfectly tuned. Our work demonstrates how escaping two-dimensional restrictions can lead to new types of magnetically frustrated metamaterials.
Collapse
Affiliation(s)
- Alan Farhan
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Michael Saccone
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
- Physics Department, University of California, 1156 High Street, Santa Cruz, California 95064, USA
| | - Charlotte F Petersen
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Scott Dhuey
- Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Kevin Hofhuis
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Rhodri Mansell
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Thomas Lippert
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Sebastiaan van Dijken
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| |
Collapse
|
15
|
Puttock R, Manzin A, Neu V, Garcia-Sanchez F, Fernandez Scarioni A, Schumacher HW, Kazakova O. Modal Frustration and Periodicity Breaking in Artificial Spin Ice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003141. [PMID: 32985104 DOI: 10.1002/smll.202003141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Here, an artificial spin ice lattice is introduced that exhibits unique Ising and non-Ising behavior under specific field switching protocols because of the inclusion of coupled nanomagnets into the unit cell. In the Ising regime, a magnetic switching mechanism that generates a uni- or bimodal distribution of states dependent on the alignment of the field is demonstrated with respect to the lattice unit cell. In addition, a method for generating a plethora of randomly distributed energy states across the lattice, consisting of Ising and Landau states, is investigated through magnetic force microscopy and micromagnetic modeling. It is demonstrated that the dispersed energy distribution across the lattice is a result of the intrinsic design and can be finely tuned through control of the incident angle of a critical field. The present manuscript explores a complex frustrated environment beyond the 16-vertex Ising model for the development of novel logic-based technologies.
Collapse
Affiliation(s)
- Robert Puttock
- National Physical Laboratory, Teddington, TW11 0LW, UK
- Department of Physics, Royal Holloway University of London, Egham Hill, Egham, TW20 0EX, UK
| | | | - Volker Neu
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden, 01069, Germany
| | - Felipe Garcia-Sanchez
- Istituto Nazionale di Ricerca Metrologica, Torino, 10135, Italy
- Departamento de Física Aplicada, University of Salamanca, Pza de la Merced s/n, Salamanca, 37008, Spain
| | | | | | - Olga Kazakova
- National Physical Laboratory, Teddington, TW11 0LW, UK
| |
Collapse
|
16
|
Bhat VS, Watanabe S, Baumgaertl K, Kleibert A, Schoen MAW, Vaz CAF, Grundler D. Magnon Modes of Microstates and Microwave-Induced Avalanche in Kagome Artificial Spin Ice with Topological Defects. PHYSICAL REVIEW LETTERS 2020; 125:117208. [PMID: 32975965 DOI: 10.1103/physrevlett.125.117208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 05/12/2023]
Abstract
We investigate spin dynamics of microstates in artificial spin ice (ASI) in Ni_{81}Fe_{19} nanomagnets arranged in an interconnected kagome lattice using microfocus Brillouin light scattering, broadband ferromagnetic resonance, magnetic force microscopy, x-ray photoemission electron microscopy, and simulations. We experimentally reconfigure microstates in ASI using a 2D vector field protocol and apply microwave-assisted switching to intentionally trigger reversal. Our work is key for the creation of avalanches inside the kagome ASI and reprogrammable magnonics based on ASIs.
Collapse
Affiliation(s)
- V S Bhat
- Institute of Materials, Laboratory of Nanoscale Magnetic Materials and Magnonics, School of Engineering, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
- International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, PL-02668 Warsaw, Poland
| | - S Watanabe
- Institute of Materials, Laboratory of Nanoscale Magnetic Materials and Magnonics, School of Engineering, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
| | - K Baumgaertl
- Institute of Materials, Laboratory of Nanoscale Magnetic Materials and Magnonics, School of Engineering, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
| | - A Kleibert
- Swiss Light Source, Paul Scherrer Institute, 5232 PSI Villigen, Switzerland
| | - M A W Schoen
- Swiss Light Source, Paul Scherrer Institute, 5232 PSI Villigen, Switzerland
| | - C A F Vaz
- Swiss Light Source, Paul Scherrer Institute, 5232 PSI Villigen, Switzerland
| | - D Grundler
- Institute of Materials, Laboratory of Nanoscale Magnetic Materials and Magnonics, School of Engineering, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
- Institute of Microengineering, Laboratory of Nanoscale Magnetic Materials and Magnonics, School of Engineering, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Fernández-Pacheco A, Skoric L, De Teresa JM, Pablo-Navarro J, Huth M, Dobrovolskiy OV. Writing 3D Nanomagnets Using Focused Electron Beams. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3774. [PMID: 32859076 PMCID: PMC7503546 DOI: 10.3390/ma13173774] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures.
Collapse
Affiliation(s)
- Amalio Fernández-Pacheco
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - Luka Skoric
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Javier Pablo-Navarro
- Laboratorio de Microscopías Avanzadas (LMA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Michael Huth
- Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Oleksandr V. Dobrovolskiy
- Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
18
|
Schánilec V, Canals B, Uhlíř V, Flajšman L, Sadílek J, Šikola T, Rougemaille N. Bypassing Dynamical Freezing in Artificial Kagome Ice. PHYSICAL REVIEW LETTERS 2020; 125:057203. [PMID: 32794868 DOI: 10.1103/physrevlett.125.057203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Spin liquids are correlated, disordered states of matter that fluctuate even at low temperatures. Experimentally, the extensive degeneracy characterizing their low-energy manifold is expected to be lifted, for example, because of dipolar interactions, leading to an ordered ground state at absolute zero. However, this is not what is usually observed, and many systems, whether they are chemically synthesized or nanofabricated, dynamically freeze before magnetic ordering sets in. In artificial realizations of highly frustrated magnets, ground state configurations, and even low-energy manifolds, thus remain out of reach for practical reasons. Here, we show how dynamical freezing can be bypassed in an artificial kagome ice. We illustrate the efficiency of our method by demonstrating that the a priori dynamically inaccessible ordered ground state and fragmented spin liquid configurations can be obtained reproducibly, imaged in real space at room temperature, and studied conveniently. We then identify the mechanism by which dynamical freezing occurs in the dipolar kagome ice.
Collapse
Affiliation(s)
- V Schánilec
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - B Canals
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
| | - V Uhlíř
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - L Flajšman
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - J Sadílek
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - T Šikola
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, Brno, 616 69, Czech Republic
| | - N Rougemaille
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
| |
Collapse
|
19
|
Ghosh A, Ma F, Lourembam J, Jin X, Maddu R, Yap QJ, Ter Lim S. Emergent Dynamics of Artificial Spin-Ice Lattice Based on an Ultrathin Ferromagnet. NANO LETTERS 2020; 20:109-115. [PMID: 31692358 DOI: 10.1021/acs.nanolett.9b03352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present high-frequency dynamics of magnetic nanostructure lattices, fabricated in the form of "artificial spin-ice", that possess magnetically frustrated states. Dynamics of such structures feature multiple resonance excitation that reveals rich and intriguing microwave characteristics, which are highly dependent on field-cycle history. Geometrical parameters such as dimensions and ferromagnetic layer thickness, which control the interplay of different demagnetizing factors, are found to play a pivotal role in governing the dynamics. Our findings are highlighted by the evolution of unique excitations pertaining to magnetic frustration, which are well supported by static magnetometry studies and micromagnetic simulations.
Collapse
Affiliation(s)
- Abhijit Ghosh
- Data Storage Institute, Agency for Science Technology and Research (A*STAR) , 2 Fusionopolis Way, #08-01 Innovis , Singapore 138634
- Institute of Materials Research and Engineering , Agency for Science Technology and Research (A*STAR) , 2 Fusionopolis Way, #08-03 Innovis , Singapore 138634
| | - Fusheng Ma
- Jangsu Key Laboratory of Optoelectronic Technology, Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology , Nanjing Normal University , Nanjing 210023 , China
| | - James Lourembam
- Data Storage Institute, Agency for Science Technology and Research (A*STAR) , 2 Fusionopolis Way, #08-01 Innovis , Singapore 138634
- Institute of Materials Research and Engineering , Agency for Science Technology and Research (A*STAR) , 2 Fusionopolis Way, #08-03 Innovis , Singapore 138634
| | - Xiangjun Jin
- Jangsu Key Laboratory of Optoelectronic Technology, Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology , Nanjing Normal University , Nanjing 210023 , China
| | - Ramu Maddu
- Data Storage Institute, Agency for Science Technology and Research (A*STAR) , 2 Fusionopolis Way, #08-01 Innovis , Singapore 138634
- Institute of Materials Research and Engineering , Agency for Science Technology and Research (A*STAR) , 2 Fusionopolis Way, #08-03 Innovis , Singapore 138634
| | - Qi Jia Yap
- Data Storage Institute, Agency for Science Technology and Research (A*STAR) , 2 Fusionopolis Way, #08-01 Innovis , Singapore 138634
- Institute of Materials Research and Engineering , Agency for Science Technology and Research (A*STAR) , 2 Fusionopolis Way, #08-03 Innovis , Singapore 138634
| | - Sze Ter Lim
- Data Storage Institute, Agency for Science Technology and Research (A*STAR) , 2 Fusionopolis Way, #08-01 Innovis , Singapore 138634
- Institute of Materials Research and Engineering , Agency for Science Technology and Research (A*STAR) , 2 Fusionopolis Way, #08-03 Innovis , Singapore 138634
| |
Collapse
|
20
|
Boust F, Vukadinovic N. Magnetic excitations in assemblies of dipolar coupled nanoparticles. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202024401015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The equilibrium magnetization configurations and the associated microwave susceptibility spectra of dipolar coupled nanoplatelets are explored using three-dimensional (3D) micromagnetic simulations. First, the case of periodic arrangements of nanoplatelets on square arrays is considered. As a result, a macro-vortex state defined as a flux closure pattern spreading over the whole array with or without a vortex core can be stabilized starting from an initial orthoradial magnetization configuration. For macro-vortex states with a vortex core, the linear excitation spectrum exhibits a sub-GHz resonance line ascribed to the vortex core dynamics at the array center. The features of this line (spectral position and amplitude) depend on the array size and the strength of the dipolar coupling through the interplatelet spacing. This resonance is also observed for macro-vortex states without a vortex core but only in the regime of a strong dipolar coupling. The effect of disorder is then investigated by numerically generating assemblies of nanoplatelets with a position disorder and, shape and size distributions. The micromagnetic simulations reveal flux closure magnetization configurations as well but without a vortex core. A low-frequency resonance appears in the susceptibility spectra for quite high surface contents of nanoplatelets but its amplitude is weaker compared to the case of periodic arrays. This line arises from a collective mode extended over a few nanoplatelets.
A large variety of static and dynamical behaviors is thus evidenced resulting in a great complexity even in such model systems.
Collapse
|
21
|
Lendinez S, Jungfleisch MB. Magnetization dynamics in artificial spin ice. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:013001. [PMID: 31600143 DOI: 10.1088/1361-648x/ab3e78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this topical review, we present key results of studies on magnetization dynamics in artificial spin ice (ASI), which are arrays of magnetically interacting nanostructures. Recent experimental and theoretical progress in this emerging area, which is at the boundary between research on frustrated magnetism and high-frequency studies of artificially created nanomagnets, is reviewed. The exploration of ASI structures has revealed fascinating discoveries in correlated spin systems. Artificially created spin ice lattices offer unique advantages as they allow for a control of the interactions between the elements by their geometric properties and arrangement. Magnonics, on the other hand, is a field that explores spin dynamics in the gigahertz frequency range in magnetic micro- and nanostructures. In this context, magnonic crystals are particularly important as they allow the modification of spin-wave properties and the observation of band gaps in the resonance spectra. Very recently, there has been considerable progress, experimentally and theoretically, in combining aspects of both fields-artificial spin ice and magnonics-enabling new functionalities in magnonic and spintronic applications using ASI, as well as providing a deeper understanding of geometrical frustration in the gigahertz range. Different approaches for the realization of ASI structures and their experimental characterization in the high-frequency range are described and the appropriate theoretical models and simulations are reviewed. Special attention is devoted to linking these findings to the quasi-static behavior of ASI and dynamic investigations in magnonics in an effort to bridge the gap between both areas further and to stimulate new research endeavors.
Collapse
Affiliation(s)
- S Lendinez
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, United States of America
| | | |
Collapse
|
22
|
Wyss M, Gliga S, Vasyukov D, Ceccarelli L, Romagnoli G, Cui J, Kleibert A, Stamps RL, Poggio M. Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal. ACS NANO 2019; 13:13910-13916. [PMID: 31820931 DOI: 10.1021/acsnano.9b05428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Artificial spin ices are a class of metamaterials consisting of magnetostatically coupled nanomagnets. Their interactions give rise to emergent behavior, which has the potential to be harnessed for the creation of functional materials. Consequently, the ability to map the stray field of such systems can be decisive for gaining an understanding of their properties. Here, we use a scanning nanometer-scale superconducting quantum interference device (SQUID) to image the magnetic stray field distribution of an artificial spin ice system exhibiting structural chirality as a function of applied magnetic fields at 4.2 K. The images reveal that the magnetostatic interaction gives rise to a measurable bending of the magnetization at the edges of the nanomagnets. Micromagnetic simulations predict that, owing to the structural chirality of the system, this edge bending is asymmetric in the presence of an external field and gives rise to a preferred direction for the reversal of the magnetization. This effect is not captured by models assuming a uniform magnetization. Our technique thus provides a promising means for understanding the collective response of artificial spin ices and their interactions.
Collapse
Affiliation(s)
- Marcus Wyss
- Department of Physics , University of Basel , 4056 Basel , Switzerland
| | - Sebastian Gliga
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow , G12 8QQ , United Kingdom
- Paul Scherrer Institute , Villigen 5232 , Switzerland
| | - Denis Vasyukov
- Department of Physics , University of Basel , 4056 Basel , Switzerland
| | | | - Giulio Romagnoli
- Department of Physics , University of Basel , 4056 Basel , Switzerland
| | - Jizhai Cui
- Paul Scherrer Institute , Villigen 5232 , Switzerland
- Laboratory for Mesoscopic Systems, Department of Materials , ETH Zürich , 8093 Zürich , Switzerland
| | | | - Robert L Stamps
- Department of Physics and Astronomy , University of Manitoba , Winnipeg , R3T 2N2 , Canada
| | - Martino Poggio
- Department of Physics , University of Basel , 4056 Basel , Switzerland
| |
Collapse
|
23
|
Li Y, Paterson GW, Macauley GM, Nascimento FS, Ferguson C, Morley SA, Rosamond MC, Linfield EH, MacLaren DA, Macêdo R, Marrows CH, McVitie S, Stamps RL. Superferromagnetism and Domain-Wall Topologies in Artificial "Pinwheel" Spin Ice. ACS NANO 2019; 13:2213-2222. [PMID: 30588800 DOI: 10.1021/acsnano.8b08884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For over ten years, arrays of interacting single-domain nanomagnets, referred to as artificial spin ices, have been engineered with the aim to study frustration in model spin systems. Here, we use Fresnel imaging to study the reversal process in "pinwheel" artificial spin ice, a modified square ASI structure obtained by rotating each island by some angle about its midpoint. Our results demonstrate that a simple 45° rotation changes the magnetic ordering from antiferromagnetic to ferromagnetic, creating a superferromagnet which exhibits mesoscopic domain growth mediated by domain wall nucleation and coherent domain propagation. We observe several domain-wall configurations, most of which are direct analogues to those seen in continuous ferromagnetic films. However, charged walls also appear due to the geometric constraints of the system. Changing the orientation of the external magnetic field allows control of the nature of the spin reversal with the emergence of either one- or two-dimensional avalanches. This property of pinwheel ASI could be employed to tune devices based on magnetotransport phenomena such as Hall circuits.
Collapse
Affiliation(s)
- Yue Li
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Gary W Paterson
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Gavin M Macauley
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Fabio S Nascimento
- Departamento de Física , Universidade Federal de Viçosa , Viçosa 36570-900 , Minas Gerais , Brazil
| | - Ciaran Ferguson
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Sophie A Morley
- School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
- Department of Physics , University of California , Santa Cruz , California 95064 , United States
| | - Mark C Rosamond
- School of Electronic and Electrical Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Edmund H Linfield
- School of Electronic and Electrical Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Donald A MacLaren
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Rair Macêdo
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Christopher H Marrows
- School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Stephen McVitie
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Robert L Stamps
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
- Department of Physics and Astronomy , University of Manitoba , Manitoba R3T 2N2 , Canada
| |
Collapse
|
24
|
Gliga S, Hrkac G, Donnelly C, Büchi J, Kleibert A, Cui J, Farhan A, Kirk E, Chopdekar RV, Masaki Y, Bingham NS, Scholl A, Stamps RL, Heyderman LJ. Emergent dynamic chirality in a thermally driven artificial spin ratchet. NATURE MATERIALS 2017; 16:1106-1111. [PMID: 29058727 DOI: 10.1038/nmat5007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/12/2017] [Indexed: 05/22/2023]
Abstract
Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice can lead to specific collective behaviour, including emergent magnetic monopoles, charge screening and transport, as well as magnonic response. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells.
Collapse
Affiliation(s)
- Sebastian Gliga
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Gino Hrkac
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Claire Donnelly
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jonathan Büchi
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Jizhai Cui
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Alan Farhan
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Eugenie Kirk
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Rajesh V Chopdekar
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, USA
| | - Yusuke Masaki
- Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
| | - Nicholas S Bingham
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- National Research Council Research Associate at the US Naval Research Laboratory, 4555 Overlook Avenue, SW Washington DC 20375, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Robert L Stamps
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Laura J Heyderman
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
25
|
Thermally induced magnetic relaxation in square artificial spin ice. Sci Rep 2016; 6:37097. [PMID: 27883013 PMCID: PMC5121627 DOI: 10.1038/srep37097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/21/2016] [Indexed: 11/17/2022] Open
Abstract
The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice – we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.
Collapse
|
26
|
Gilbert DA, Liao JW, Kirby BJ, Winklhofer M, Lai CH, Liu K. Magnetic Yoking and Tunable Interactions in FePt-Based Hard/Soft Bilayers. Sci Rep 2016; 6:32842. [PMID: 27604428 PMCID: PMC5015099 DOI: 10.1038/srep32842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/16/2016] [Indexed: 11/16/2022] Open
Abstract
Magnetic interactions in magnetic nanostructures are critical to nanomagnetic and spintronic explorations. Here we demonstrate an extremely sensitive magnetic yoking effect and tunable interactions in FePt based hard/soft bilayers mediated by the soft layer. Below the exchange length, a thin soft layer strongly exchange couples to the perpendicular moments of the hard layer; above the exchange length, just a few nanometers thicker, the soft layer moments turn in-plane and act to yoke the dipolar fields from the adjacent hard layer perpendicular domains. The evolution from exchange to dipolar-dominated interactions is experimentally captured by first-order reversal curves, the ΔM method, and polarized neutron reflectometry, and confirmed by micromagnetic simulations. These findings demonstrate an effective yoking approach to design and control magnetic interactions in wide varieties of magnetic nanostructures and devices.
Collapse
Affiliation(s)
- Dustin A. Gilbert
- Dept. of Physics, University of California, Davis, California 95616, USA
- NIST Center for Neutron Research, Gaithersburg, Maryland 20899, USA
| | - Jung-Wei Liao
- Dept. of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Brian J. Kirby
- NIST Center for Neutron Research, Gaithersburg, Maryland 20899, USA
| | - Michael Winklhofer
- Dept. of Earth and Environmental Sciences, Geophysics, Munich University, 80333 Germany
- Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
- IBU, School of Mathematics and Science, Carl von Ossietzky University, 26129, Oldenburg, Germany
| | - Chih-Huang Lai
- Dept. of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kai Liu
- Dept. of Physics, University of California, Davis, California 95616, USA
| |
Collapse
|
27
|
Thermodynamics of emergent magnetic charge screening in artificial spin ice. Nat Commun 2016; 7:12635. [PMID: 27581972 PMCID: PMC5040513 DOI: 10.1038/ncomms12635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/19/2016] [Indexed: 11/09/2022] Open
Abstract
Electric charge screening is a fundamental principle governing the behaviour in a variety of systems in nature. Through reconfiguration of the local environment, the Coulomb attraction between electric charges is decreased, leading, for example, to the creation of polaron states in solids or hydration shells around proteins in water. Here, we directly visualize the real-time creation and decay of screened magnetic charge configurations in a two-dimensional artificial spin ice system, the dipolar dice lattice. By comparing the temperature dependent occurrence of screened and unscreened emergent magnetic charge defects, we determine that screened magnetic charges are indeed a result of local energy reduction and appear as a transient minimum energy state before the system relaxes towards the predicted ground state. These results highlight the important role of emergent magnetic charges in artificial spin ice, giving rise to screened charge excitations and the emergence of exotic low-temperature configurations. Inspired by the physics of bulk frustrated materials, arrays of coupled nanomagnets have been widely explored for the study of collective ordering and emergent behaviour. Here, the authors demonstrate interaction-driven charge screening in a thermally active artificial spin ice lattice.
Collapse
|
28
|
Magnetic-charge ordering and phase transitions in monopole-conserved square spin ice. Sci Rep 2015; 5:15875. [PMID: 26511870 PMCID: PMC4625371 DOI: 10.1038/srep15875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022] Open
Abstract
Magnetic-charge ordering and corresponding magnetic/monopole phase transitions in spin ices are the emergent topics of condensed matter physics. In this work, we investigate a series of magnetic-charge (monopole) phase transitions in artificial square spin ice model using the conserved monopole density algorithm. It is revealed that the dynamics of low monopole density lattices is controlled by the effective Coulomb interaction and the Dirac string tension, leading to the monopole dimerization which is quite different from the dynamics of three-dimensional pyrochlore spin ice. The condensation of the monopole dimers into monopole crystals with staggered magnetic-charge order can be predicted clearly. For the high monopole density cases, the lattice undergoes two consecutive phase transitions from high-temperature paramagnetic/charge-disordered phase into staggered charge-ordered phase before eventually toward the long-range magnetically-ordered phase as the ground state which is of staggered charge order too. A phase diagram over the whole temperature-monopole density space, which exhibits a series of emergent spin and monopole ordered states, is presented.
Collapse
|
29
|
Thonig D, Reißaus S, Mertig I, Henk J. Thermal string excitations in artificial spin-ice square dipolar array. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:266006. [PMID: 24912993 DOI: 10.1088/0953-8984/26/26/266006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report on a theoretical investigation of artificial spin-ice dipolar arrays using a nanoisland shape adopted from recent experiments (Farhan et al 2013 Nature Phys. 9 375). The number of thermal magnetic string excitations in the square lattice is drastically increased by a vertical displacement of rows and columns. We find large increments especially for low temperatures and for string excitations with quasi-monopoles of charges ± 4. By kinetic Monte Carlo simulations we address the thermal stability of such excitations, thereby providing time scales for their experimental observation.
Collapse
|
30
|
Krawczyk M, Grundler D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:123202. [PMID: 24599025 DOI: 10.1088/0953-8984/26/12/123202] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Research efforts addressing spin waves (magnons) in microand nanostructured ferromagnetic materials have increased tremendously in recent years. Corresponding experimental and theoretical work in magnonics faces significant challenges in that spinwave dispersion relations are highly anisotropic and different magnetic states might be realized via, for example, the magnetic field history. At the same time, these features offer novel opportunities for wave control in solids going beyond photonics and plasmonics. In this topical review we address materials with a periodic modulation of magnetic parameters that give rise to artificially tailored band structures and allow unprecedented control of spin waves. In particular, we discuss recent achievements and perspectives of reconfigurable magnonic devices for which band structures can be reprogrammed during operation. Such characteristics might be useful for multifunctional microwave and logic devices operating over a broad frequency regime on either the macroor nanoscale.
Collapse
|
31
|
Gilbert DA, Zimanyi GT, Dumas RK, Winklhofer M, Gomez A, Eibagi N, Vicent JL, Liu K. Quantitative decoding of interactions in tunable nanomagnet arrays using first order reversal curves. Sci Rep 2014; 4:4204. [PMID: 24569632 PMCID: PMC3935205 DOI: 10.1038/srep04204] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/10/2014] [Indexed: 11/18/2022] Open
Abstract
To develop a full understanding of interactions in nanomagnet arrays is a persistent challenge, critically impacting their technological acceptance. This paper reports the experimental, numerical and analytical investigation of interactions in arrays of Co nanoellipses using the first-order reversal curve (FORC) technique. A mean-field analysis has revealed the physical mechanisms giving rise to all of the observed features: a shift of the non-interacting FORC-ridge at the low-HC end off the local coercivity HC axis; a stretch of the FORC-ridge at the high-HC end without shifting it off the HC axis; and a formation of a tilted edge connected to the ridge at the low-HC end. Changing from flat to Gaussian coercivity distribution produces a negative feature, bends the ridge, and broadens the edge. Finally, nearest neighbor interactions segment the FORC-ridge. These results demonstrate that the FORC approach provides a comprehensive framework to qualitatively and quantitatively decode interactions in nanomagnet arrays.
Collapse
Affiliation(s)
- Dustin A Gilbert
- Dept. of Physics, University of California, Davis, California, 95616, USA
| | - Gergely T Zimanyi
- Dept. of Physics, University of California, Davis, California, 95616, USA
| | - Randy K Dumas
- Dept. of Physics, University of California, Davis, California, 95616, USA
| | - Michael Winklhofer
- Dept. of Earth & Environmental Sciences, Ludwig-Maximilians-Universität München, Germany
| | - Alicia Gomez
- Dept. Fisica Materiales, Universidad Complutense, 28040 Madrid, Spain
| | - Nasim Eibagi
- Dept. of Physics, University of California, Davis, California, 95616, USA
| | - J L Vicent
- 1] Dept. Fisica Materiales, Universidad Complutense, 28040 Madrid, Spain [2] IMDEA-Nanociencia, Cantoblanco 28049, Madrid, Spain
| | - Kai Liu
- Dept. of Physics, University of California, Davis, California, 95616, USA
| |
Collapse
|
32
|
Heyderman LJ, Stamps RL. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:363201. [PMID: 23948652 DOI: 10.1088/0953-8984/25/36/363201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lithographic processing and film growth technologies are continuing to advance, so that it is now possible to create patterned ferroic materials consisting of arrays of sub-1 μm elements with high definition. Some of the most fascinating behaviour of these arrays can be realised by exploiting interactions between the individual elements to create new functionality. The properties of these artificial ferroic systems differ strikingly from those of their constituent components, with novel emergent behaviour arising from the collective dynamics of the interacting elements, which are arranged in specific designs and can be activated by applying magnetic or electric fields. We first focus on artificial spin systems consisting of arrays of dipolar-coupled nanomagnets and, in particular, review the field of artificial spin ice, which demonstrates a wide range of fascinating phenomena arising from the frustration inherent in particular arrangements of nanomagnets, including emergent magnetic monopoles, domains of ordered macrospins, and novel avalanche behaviour. We outline how demagnetisation protocols have been employed as an effective thermal anneal in an attempt to reach the ground state, comment on phenomena that arise in thermally activated systems and discuss strategies for selectively generating specific configurations using applied magnetic fields. We then move on from slow field and temperature driven dynamics to high frequency phenomena, discussing spinwave excitations in the context of magnonic crystals constructed from arrays of patterned magnetic elements. At high frequencies, these arrays are studied in terms of potential applications including magnetic logic, linear and non-linear microwave optics, and fast, efficient switching, and we consider the possibility to create tunable magnonic crystals with artificial spin ice. Finally, we discuss how functional ferroic composites can be incorporated to realise magnetoelectric effects. Specifically, we discuss artificial multiferroics (or multiferroic composites), which hold promise for new applications that involve electric field control of magnetism, or electric and magnetic field responsive devices for high frequency integrated circuit design in microwave and terahertz signal processing. We close with comments on how enhanced functionality can be realised through engineering of nanostructures with interacting ferroic components, creating opportunities for novel spin electronic devices that, for example, make use of the transport of magnetic charges, thermally activated elements, and reprogrammable nanomagnet systems.
Collapse
Affiliation(s)
- L J Heyderman
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
| | | |
Collapse
|
33
|
Bhat VS, Sklenar J, Farmer B, Woods J, Hastings JT, Lee SJ, Ketterson JB, De Long LE. Controlled magnetic reversal in Permalloy films patterned into artificial quasicrystals. PHYSICAL REVIEW LETTERS 2013; 111:077201. [PMID: 23992078 DOI: 10.1103/physrevlett.111.077201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/12/2013] [Indexed: 06/02/2023]
Abstract
We have patterned novel Permalloy thin films with quasicrystalline Penrose P2 tilings and measured their dc magnetization and ferromagnetic resonance absorption. Reproducible anomalies in the hysteretic, low-field data signal a series of abrupt transitions between ordered magnetization textures, culminating in a smooth evolution into a saturated state. Micromagnetic simulations compare well to experimental dc hysteresis loops and ferromagnetic resonance spectra and indicate that systematic control of magnetic reversal and domain wall motion can be achieved via tiling design, offering a new paradigm of magnonic quasicrystals.
Collapse
Affiliation(s)
- V S Bhat
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | | | | | | | | | | | | |
Collapse
|