1
|
Krempaský J, Nicolaï L, Gmitra M, Chen H, Fanciulli M, Guedes EB, Caputo M, Radović M, Volobuev VV, Caha O, Springholz G, Minár J, Dil JH. Triple-Point Fermions in Ferroelectric GeTe. PHYSICAL REVIEW LETTERS 2021; 126:206403. [PMID: 34110214 DOI: 10.1103/physrevlett.126.206403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/16/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Ferroelectric α-GeTe is unveiled to exhibit an intriguing multiple nontrivial topology of the electronic band structure due to the existence of triple-point and type-II Weyl fermions, which goes well beyond the giant Rashba spin splitting controlled by external fields as previously reported. Using spin- and angle-resolved photoemission spectroscopy combined with ab initio density functional theory, the unique spin texture around the triple point caused by the crossing of one spin-degenerate and two spin-split bands along the ferroelectric crystal axis is derived. This consistently reveals spin winding numbers that are coupled with time-reversal symmetry and Lorentz invariance, which are found to be equal for both triple-point pairs in the Brillouin zone. The rich manifold of effects opens up promising perspectives for studying nontrivial phenomena and multicomponent fermions in condensed matter systems.
Collapse
Affiliation(s)
- Juraj Krempaský
- Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Laurent Nicolaï
- New Technologies-Research Center, University of West Bohemia, 301 00 Plzeň 3, Czech Republic
| | - Martin Gmitra
- Institute of Physics, P. J. Šafárik University in Košice, Park Angelinum 9, 040 01 Košice, Slovakia
| | - Houke Chen
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Mauro Fanciulli
- Laboratoire de Physique des Matériaux et Surfaces, CY Cergy Paris Université, 95031 Cergy-Pontoise, France
| | - Eduardo B Guedes
- Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Marco Caputo
- Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Milan Radović
- Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Valentine V Volobuev
- International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
- National Technical University "KhPI", Kyrpychova Street 2, 61002 Kharkiv, Ukraine
| | - Ondřej Caha
- Department of Condensed Matter Physics, Masaryk University, Kotlářská 267/2, 61137 Brno, Czech Republic
| | - Gunther Springholz
- Institut für Halbleiter-und Festkörperphysik, Johannes Kepler Universität, A-4040 Linz, Austria
| | - Jan Minár
- New Technologies-Research Center, University of West Bohemia, 301 00 Plzeň 3, Czech Republic
| | - J Hugo Dil
- Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Institut de Physique, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Park H, Jeong K, Maeng I, Sim KI, Pathak S, Kim J, Hong SB, Jung TS, Kang C, Kim JH, Hong J, Cho MH. Enhanced Spin-to-Charge Conversion Efficiency in Ultrathin Bi 2Se 3 Observed by Spintronic Terahertz Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23153-23160. [PMID: 33945256 DOI: 10.1021/acsami.1c03168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to their remarkable spin-charge conversion (SCC) efficiency, topological insulators (TIs) are the most attractive candidates for spin-orbit torque generators. The simple method of enhancing SCC efficiency is to reduce the thickness of TI films to minimize the trivial bulk contribution. However, when the thickness reaches the ultrathin regime, the SCC efficiency decreases owing to intersurface hybridization. To overcome these contrary effects, we induced dehybridization of the ultrathin TI film by breaking the inversion symmetry between surfaces. For the TI film grown on an oxygen-deficient transition-metal oxide, the unbonded transition-metal d-orbitals affected only the bottom surface, resulting in asymmetric surface band structures. Spintronic terahertz emission spectroscopy, an emerging tool for investigating the SCC characteristics, revealed that the resulting SCC efficiency in symmetry-broken ultrathin Bi2Se3 was enhanced by up to ∼2.4 times.
Collapse
Affiliation(s)
- Hanbum Park
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwangsik Jeong
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - InHee Maeng
- YUHS-KRIBB, Medical Convergence Research Institute, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyung Ik Sim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Sachin Pathak
- Department of Physics, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jonghoon Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Seok-Bo Hong
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Taek Sun Jung
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Chul Kang
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae Hoon Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Jongill Hong
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Mann-Ho Cho
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Shikin AM, Estyunin DA, Klimovskikh II, Filnov SO, Schwier EF, Kumar S, Miyamoto K, Okuda T, Kimura A, Kuroda K, Yaji K, Shin S, Takeda Y, Saitoh Y, Aliev ZS, Mamedov NT, Amiraslanov IR, Babanly MB, Otrokov MM, Eremeev SV, Chulkov EV. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator [Formula: see text]. Sci Rep 2020; 10:13226. [PMID: 32764583 PMCID: PMC7413556 DOI: 10.1038/s41598-020-70089-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/22/2020] [Indexed: 11/09/2022] Open
Abstract
Modification of the gap at the Dirac point (DP) in axion antiferromagnetic topological insulator [Formula: see text] and its electronic and spin structure have been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation at various temperatures (9-35 K), light polarizations and photon energies. We have distinguished both large (60-70 meV) and reduced ([Formula: see text]) gaps at the DP in the ARPES dispersions, which remain open above the Neél temperature ([Formula: see text]). We propose that the gap above [Formula: see text] remains open due to a short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for the "large gap" sample and apparently significantly reduced effective magnetic moment for the "reduced gap" sample. These observations can be explained by a shift of the Dirac cone (DC) state localization towards the second Mn layer due to structural disturbance and surface relaxation effects, where DC state is influenced by compensated opposite magnetic moments. As we have shown by means of ab-initio calculations surface structural modification can result in a significant modulation of the DP gap.
Collapse
Affiliation(s)
- A. M. Shikin
- Saint Petersburg State University, 198504 Saint Petersburg, Russia
| | - D. A. Estyunin
- Saint Petersburg State University, 198504 Saint Petersburg, Russia
| | | | - S. O. Filnov
- Saint Petersburg State University, 198504 Saint Petersburg, Russia
| | - E. F. Schwier
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| | - S. Kumar
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| | - K. Miyamoto
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| | - T. Okuda
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| | - A. Kimura
- Department of Physical Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - K. Kuroda
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581 Japan
| | - K. Yaji
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581 Japan
| | - S. Shin
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581 Japan
| | - Y. Takeda
- Materials Sciences Research Center, Japan Atomic Energy Agency, Sayo, Hyogo 679-5148 Japan
| | - Y. Saitoh
- Materials Sciences Research Center, Japan Atomic Energy Agency, Sayo, Hyogo 679-5148 Japan
| | - Z. S. Aliev
- Azerbaijan State Oil and Industry University, AZ1010 Baku, Azerbaijan
- Institute of Physics, ANAS, AZ1143 Baku, Azerbaijan
| | | | - I. R. Amiraslanov
- Institute of Physics, ANAS, AZ1143 Baku, Azerbaijan
- Baku State University, AZ1148 Baku, Azerbaijan
| | - M. B. Babanly
- Baku State University, AZ1148 Baku, Azerbaijan
- Institute of Catalysis and Inorganic Chemistry, ANAS, AZ1143 Baku, Azerbaijan
| | - M. M. Otrokov
- Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Basque Country Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
| | - S. V. Eremeev
- Saint Petersburg State University, 198504 Saint Petersburg, Russia
- Institute of Strength Physics and Materials Science, 634055 Tomsk, Russia
- Tomsk State University, 634050 Tomsk, Russia
| | - E. V. Chulkov
- Saint Petersburg State University, 198504 Saint Petersburg, Russia
- Tomsk State University, 634050 Tomsk, Russia
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country Spain
- Departamento de Física de Materiales, Facultad de Ciencias Químicas, UPV/EHU, Apdo. 1072, 20080 San Sebastián, Spain
| |
Collapse
|
4
|
Hricovini K, Richter MC, Heckmann O, Nicolaï L, Mariot JM, Minár J. Topological electronic structure and Rashba effect in Bi thin layers: theoretical predictions and experiments. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:283001. [PMID: 30933942 DOI: 10.1088/1361-648x/ab1529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The goal of the present review is to cross-compare theoretical predictions with selected experimental results on bismuth thin films exhibiting topological properties and a strong Rashba effect. The theoretical prediction that a single free-standing Bi(1 1 1) bilayer is a topological insulator has triggered a large series of studies of ultrathin Bi(1 1 1) films grown on various substrates. Using selected examples we review theoretical predictions of atomic and electronic structure of Bi thin films exhibiting topological properties due to interaction with a substrate. We also survey experimental signatures of topological surface states and Rashba effect, as obtained mostly by angle- and spin-resolved photoelectron spectroscopy.
Collapse
Affiliation(s)
- K Hricovini
- Laboratoire de Physique des Matériaux et des Surfaces, Université de Cergy-Pontoise, 5 mail Gay-Lussac, 95031 Cergy-Pontoise, France. DRF, IRAMIS, SPEC-CNRS/UMR 3680, Bât. 772, L'Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
5
|
Chae J, Kang SH, Park SH, Park H, Jeong K, Kim TH, Hong SB, Kim KS, Kwon YK, Kim JW, Cho MH. Closing the Surface Bandgap in Thin Bi 2Se 3/Graphene Heterostructures. ACS NANO 2019; 13:3931-3939. [PMID: 30951288 DOI: 10.1021/acsnano.8b07012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Topological insulator (TI), a band insulator with topologically protected edge states, is one of the most interesting materials in the field of condensed matter. Bismuth selenide (Bi2Se3) is the most spotlighted three-dimensional TI material; it has a Dirac cone at each top and bottom surface and a relatively wide bandgap. For application, suppression of the bulk effect is crucial, but in ultrathin TI materials, with thicknesses less than 3 QL, the finite size effect works on the linear dispersion of the surface states, so that the surface band has a finite bandgap because of the hybridization between the top and bottom surface states and Rashba splitting, resulting from the structure inversion asymmetry. Here, we studied the gapless top surface Dirac state of strained 3 QL Bi2Se3/graphene heterostructures. A strain caused by the graphene layer reduces the bandgap of surface states, and the band bending resulting from the charge transfer at the Bi2Se3-graphene interface induces localization of surface states to each top and bottom layer to suppress the overlap of the two surface states. In addition, we verified the independent transport channel of the top surface Dirac state in Bi2Se3/graphene heterostructures by measuring the magneto-conductance. Our findings suggest that the strain and the proximity effect in TI/non-TI heterostructures may be feasible ways to engineer the topological surface states beyond the physical and topological thickness limit.
Collapse
Affiliation(s)
- Jimin Chae
- Department of Physics , Yonsei University , Seoul 03722 , Korea
| | - Seoung-Hun Kang
- Korea Institute for Advanced Study , Hoegiro 85 , Seoul 02455 , Korea
| | - Sang Han Park
- Department of Physics , Yonsei University , Seoul 03722 , Korea
- Pohang Accelerator Laboratory , POSTECH , Pohang 790-784 , Korea
| | - Hanbum Park
- Department of Physics , Yonsei University , Seoul 03722 , Korea
| | - Kwangsik Jeong
- Department of Physics , Yonsei University , Seoul 03722 , Korea
| | - Tae Hyeon Kim
- Department of Physics , Yonsei University , Seoul 03722 , Korea
| | - Seok-Bo Hong
- Department of Physics , Yonsei University , Seoul 03722 , Korea
| | - Keun Su Kim
- Department of Physics , Yonsei University , Seoul 03722 , Korea
| | - Young-Kyun Kwon
- Korea Institute for Advanced Study , Hoegiro 85 , Seoul 02455 , Korea
- Department of Physics and Research Institute for Basic Sciences , Kyung-Hee University , Seoul 02447 , Korea
| | - Jeong Won Kim
- Division of Industrial Metrology , Korea Research Institute of Standards and Science , Daejeon 34113 , Korea
| | - Mann-Ho Cho
- Department of Physics , Yonsei University , Seoul 03722 , Korea
| |
Collapse
|
6
|
Hou Y, Wu R. Axion Insulator State in a Ferromagnet/Topological Insulator/Antiferromagnet Heterostructure. NANO LETTERS 2019; 19:2472-2477. [PMID: 30868887 DOI: 10.1021/acs.nanolett.9b00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We propose the use of ferromagnetic insulator MnBi2Se4/Bi2Se3/antiferromagnetic insulator Mn2Bi2Se5 heterostructures for the realization of the axion insulator state. Importantly, the axion insulator state in such heterostructures only depends on the magnetization of the ferromagnetic insulator and, hence, can be observed in a wide range of external magnetic fields. Using density functional calculations and model Hamiltonian simulations, we find that the top and bottom surfaces have opposite half-quantum Hall conductances, [Formula: see text] and [Formula: see text], with a sizable global spin gap of 5.1 meV opened for the topological surface states of Bi2Se3. Our work provides a new strategy for the search of axion insulators by using van der Waals antiferromagnetic insulators along with three-dimensional topological insulators.
Collapse
Affiliation(s)
- Yusheng Hou
- Department of Physics and Astronomy , University of California , Irvine , California 92697-4575 , United States
| | - Ruqian Wu
- Department of Physics and Astronomy , University of California , Irvine , California 92697-4575 , United States
| |
Collapse
|
7
|
Fanchiang YT, Chen KHM, Tseng CC, Chen CC, Cheng CK, Yang SR, Wu CN, Lee SF, Hong M, Kwo J. Strongly exchange-coupled and surface-state-modulated magnetization dynamics in Bi 2Se 3/yttrium iron garnet heterostructures. Nat Commun 2018; 9:223. [PMID: 29335558 PMCID: PMC5768741 DOI: 10.1038/s41467-017-02743-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/20/2017] [Indexed: 12/03/2022] Open
Abstract
Harnessing the spin–momentum locking of topological surface states in conjunction with magnetic materials is the first step to realize novel topological insulator-based devices. Here, we report strong interfacial coupling in Bi2Se3/yttrium iron garnet (YIG) bilayers manifested as large interfacial in-plane magnetic anisotropy (IMA) and enhancement of damping probed by ferromagnetic resonance. The interfacial IMA and damping enhancement reaches a maximum when the Bi2Se3 film approaches its two-dimensional limit, indicating that topological surface states play an important role in the magnetization dynamics of YIG. Temperature-dependent ferromagnetic resonance of Bi2Se3/YIG reveals signatures of the magnetic proximity effect of TC as high as 180 K, an emerging low-temperature perpendicular magnetic anisotropy competing the high-temperature IMA, and an increasing exchange effective field of YIG steadily increasing toward low temperature. Our study sheds light on the effects of topological insulators on magnetization dynamics, essential for the development of topological insulator-based spintronic devices. Understanding the effects of topological insulators on magnetization dynamics of adjacent magnetic materials is essential for novel spintronic devices. Here, Fanchiang et al. report thickness dependence of interfacial in-plane magnetic anisotropy and damping enhancement in Bi2Se3/yttrium iron garnet (YIG) bilayers, indicating an important role of topological surface states in the magnetization dynamics of YIG.
Collapse
Affiliation(s)
- Y T Fanchiang
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - K H M Chen
- Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - C C Tseng
- Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - C C Chen
- Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - C K Cheng
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - S R Yang
- Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - C N Wu
- Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - S F Lee
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan.
| | - M Hong
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan.
| | - J Kwo
- Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
8
|
Grauer S, Fijalkowski KM, Schreyeck S, Winnerlein M, Brunner K, Thomale R, Gould C, Molenkamp LW. Scaling of the Quantum Anomalous Hall Effect as an Indicator of Axion Electrodynamics. PHYSICAL REVIEW LETTERS 2017; 118:246801. [PMID: 28665643 DOI: 10.1103/physrevlett.118.246801] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 06/07/2023]
Abstract
We report on the scaling behavior of V-doped (Bi,Sb)_{2}Te_{3} samples in the quantum anomalous Hall regime for samples of various thickness. While previous quantum anomalous Hall measurements showed the same scaling as expected from a two-dimensional integer quantum Hall state, we observe a dimensional crossover to three spatial dimensions as a function of layer thickness. In the limit of a sufficiently thick layer, we find scaling behavior matching the flow diagram of two parallel conducting topological surface states of a three-dimensional topological insulator each featuring a fractional shift of 1/2e^{2}/h in the flow diagram Hall conductivity, while we recover the expected integer quantum Hall behavior for thinner layers. This constitutes the observation of a distinct type of quantum anomalous Hall effect, resulting from 1/2e^{2}/h Hall conductance quantization of three-dimensional topological insulator surface states, in an experiment which does not require decomposition of the signal to separate the contribution of two surfaces. This provides a possible experimental link between quantum Hall physics and axion electrodynamics.
Collapse
Affiliation(s)
- S Grauer
- Faculty for Physics and Astronomy (EP3 and TP1), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - K M Fijalkowski
- Faculty for Physics and Astronomy (EP3 and TP1), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - S Schreyeck
- Faculty for Physics and Astronomy (EP3 and TP1), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - M Winnerlein
- Faculty for Physics and Astronomy (EP3 and TP1), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - K Brunner
- Faculty for Physics and Astronomy (EP3 and TP1), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - R Thomale
- Faculty for Physics and Astronomy (EP3 and TP1), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - C Gould
- Faculty for Physics and Astronomy (EP3 and TP1), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - L W Molenkamp
- Faculty for Physics and Astronomy (EP3 and TP1), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
9
|
Jeon JH, Kim H, Jang WJ, Seo J, Kahng SJ. Thickness-dependent Dirac dispersions of few-layer topological insulators supported by metal substrate. NANOTECHNOLOGY 2017; 28:215207. [PMID: 28474604 DOI: 10.1088/1361-6528/aa6b52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The surface states protected by time-reversal symmetry in 3-dimensional topological insulators have recently been confirmed by angle-resolved photoemission spectroscopy, scanning tunneling microscopy, quantum transport and so on. However, the electronic properties of ultra-thin topological insulator films have not been extensively studied, especially when the films are grown on metal substrates. In this paper, we have elucidated the local behaviors of the electronic states of ultra-thin topological insulator Bi2Se3 grown with molecular beam epitaxy on Au(111) using scanning tunneling microscopy/spectroscopy. We have observed linear dispersion of electron interference patterns at higher energies than the Fermi energy that were not accessible by conventional angle-resolved photoemission spectroscopy. Moreover, the dispersion of the interference patterns varies with the film thickness, which is explained by band bending near the interface between the topological insulator and the metal substrate. Our experiments demonstrate that interfacial effects in thin topological insulator films on metal substrate can be sensed using scanning tunneling spectroscopy.
Collapse
Affiliation(s)
- Jeong Heum Jeon
- Department of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | | | | | | | | |
Collapse
|
10
|
Klimovskikh II, Sostina D, Petukhov A, Rybkin AG, Eremeev SV, Chulkov EV, Tereshchenko OE, Kokh KA, Shikin AM. Spin-resolved band structure of heterojunction Bi-bilayer/3D topological insulator in the quantum dimension regime in annealed Bi 2Te 2.4Se 0.6. Sci Rep 2017; 7:45797. [PMID: 28378826 PMCID: PMC5381095 DOI: 10.1038/srep45797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/02/2017] [Indexed: 11/08/2022] Open
Abstract
Two- and three-dimensional topological insulators are the key materials for the future nanoelectronic and spintronic devices and quantum computers. By means of angle- and spin-resolved photoemission spectroscopy we study the electronic and spin structure of the Bi-bilayer/3D topological insulator in quantum tunneling regime formed under the short annealing of Bi2Te2.4Se0.6. Owing to the temperature-induced restructuring of the topological insulator's surface quintuple layers, the hole-like spin-split Bi-bilayer bands and the parabolic electronic-like state are observed instead of the Dirac cone. Scanning Tunneling Microscopy and X-ray Photoemission Spectroscopy measurements reveal the appearance of the Bi2 terraces at the surface under the annealing. The experimental results are supported by density functional theory calculations, predicting the spin-polarized Bi-bilayer bands interacting with the quintuple-layers-derived states. Such an easily formed heterostructure promises exciting applications in spin transport devices and low-energy electronics.
Collapse
Affiliation(s)
| | - D. Sostina
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
| | - A. Petukhov
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
| | - A. G. Rybkin
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
| | - S. V. Eremeev
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
- Institute of Strength Physics and Materials Science, 634055, Tomsk, Russia
- Tomsk State University, 634050, Tomsk, Russia
| | - E. V. Chulkov
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
- Tomsk State University, 634050, Tomsk, Russia
- Donostia International Physics Center (DIPC), 20018 San Sebastián/Donostia, Basque Country, Spain
- Departamento de Física de Materiales UPV/EHU, Centro de Física de Materiales CFM - MPC and Centro Mixto CSIC-UPV/EHU, 20080 San Sebastián/Donostia, Basque Country, Spain
| | - O. E. Tereshchenko
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
- A.V. Rzhanov Institute of Semiconductor Physics, 630090, Novosibirsk, Russia
- Novosibirsk State University, 630090, Novosibirsk, Russia
| | - K. A. Kokh
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
- Novosibirsk State University, 630090, Novosibirsk, Russia
- V.S. Sobolev Institute of Geology and Mineralogy, 630090, Novosibirsk, Russia
| | - A. M. Shikin
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
| |
Collapse
|
11
|
Hellman F, Hoffmann A, Tserkovnyak Y, Beach GSD, Fullerton EE, Leighton C, MacDonald AH, Ralph DC, Arena DA, Dürr HA, Fischer P, Grollier J, Heremans JP, Jungwirth T, Kimel AV, Koopmans B, Krivorotov IN, May SJ, Petford-Long AK, Rondinelli JM, Samarth N, Schuller IK, Slavin AN, Stiles MD, Tchernyshyov O, Thiaville A, Zink BL. Interface-Induced Phenomena in Magnetism. REVIEWS OF MODERN PHYSICS 2017; 89:025006. [PMID: 28890576 PMCID: PMC5587142 DOI: 10.1103/revmodphys.89.025006] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.
Collapse
Affiliation(s)
- Frances Hellman
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Axel Hoffmann
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Yaroslav Tserkovnyak
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Geoffrey S D Beach
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Eric E Fullerton
- Center for Memory and Recording Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0401, USA
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Allan H MacDonald
- Department of Physics, University of Texas at Austin, Austin, Texas 78712-0264, USA
| | - Daniel C Ralph
- Physics Department, Cornell University, Ithaca, New York 14853, USA; Kavli Institute at Cornell, Cornell University, Ithaca, New York 14853, USA
| | - Dario A Arena
- Department of Physics, University of South Florida, Tampa, Florida 33620-7100, USA
| | - Hermann A Dürr
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Peter Fischer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Physics Department, University of California, 1156 High Street, Santa Cruz, California 94056, USA
| | - Julie Grollier
- Unité Mixte de Physique CNRS/Thales and Université Paris Sud 11, 1 Avenue Fresnel, 91767 Palaiseau, France
| | - Joseph P Heremans
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA; Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Tomas Jungwirth
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Praha 6, Czech Republic; School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Alexey V Kimel
- Radboud University, Institute for Molecules and Materials, Nijmegen 6525 AJ, The Netherlands
| | - Bert Koopmans
- Department of Applied Physics, Center for NanoMaterials, COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilya N Krivorotov
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Steven J May
- Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Amanda K Petford-Long
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Nitin Samarth
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ivan K Schuller
- Department of Physics and Center for Advanced Nanoscience, University of California, San Diego, La Jolla, California 92093, USA; Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Andrei N Slavin
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - Mark D Stiles
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6202, USA
| | - Oleg Tchernyshyov
- Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - André Thiaville
- Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud, 91405 Orsay, France
| | - Barry L Zink
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
12
|
Kubota Y, Murata K, Miyawaki J, Ozawa K, Onbasli MC, Shirasawa T, Feng B, Yamamoto S, Liu RY, Yamamoto S, Mahatha SK, Sheverdyaeva P, Moras P, Ross CA, Suga S, Harada Y, Wang KL, Matsuda I. Interface electronic structure at the topological insulator-ferrimagnetic insulator junction. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:055002. [PMID: 27911879 DOI: 10.1088/1361-648x/29/5/055002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An interface electron state at the junction between a three-dimensional topological insulator film, Bi2Se3, and a ferrimagnetic insulator film, Y3Fe5O12 (YIG), was investigated by measurements of angle-resolved photoelectron spectroscopy and x-ray absorption magnetic circular dichroism. The surface state of the Bi2Se3 film was directly observed and localized 3d spin states of the Fe3+ in the YIG film were confirmed. The proximity effect is likely described in terms of the exchange interaction between the localized Fe 3d electrons in the YIG film and delocalized electrons of the surface and bulk states in the Bi2Se3 film.
Collapse
Affiliation(s)
- Y Kubota
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
de Oliveira ISS, Scopel WL, Miwa RH. An ab initio investigation of Bi 2Se 3 topological insulator deposited on amorphous SiO 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:045302. [PMID: 27882899 DOI: 10.1088/1361-648x/29/4/045302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We use first-principles simulations to investigate the topological properties of Bi2Se3 thin films deposited on amorphous SiO2, Bi2Se3/a-SiO2, which is a promising substrate for topological insulator (TI) based device applications. The Bi2Se3 films are bonded to a-SiO2 mediated by van der Waals interactions. Upon interaction with the substrate, the Bi2Se3 topological surface and interface states remain present, however the degeneracy between the Dirac-like cones is broken. The energy separation between the two Dirac-like cones increases with the number of Bi2Se3 quintuple layers (QLs) deposited on the substrate. Such a degeneracy breaking is caused by (i) charge transfer from the TI to the substrate and charge redistribution along the Bi2Se3 QLs, and (ii) by deformation of the QL in contact with the a-SiO2 substrate. We also investigate the role played by oxygen vacancies ([Formula: see text]) on the a-SiO2, which increases the energy splitting between the two Dirac-like cones. Finally, by mapping the electronic structure of Bi2Se3/a-SiO2, we found that the a-SiO2 surface states, even upon the presence of [Formula: see text], play a minor role on gating the electronic transport properties of Bi2Se3.
Collapse
Affiliation(s)
- I S S de Oliveira
- Departamento de Física, Universidade Federal de Lavras, C.P. 3037, 37200-000, Lavras, MG, Brazil
| | | | | |
Collapse
|
14
|
Song CL, Wang L, He K, Ji SH, Chen X, Ma XC, Xue QK. Probing Dirac fermion dynamics in topological insulator Bi2Se3 films with a scanning tunneling microscope. PHYSICAL REVIEW LETTERS 2015; 114:176602. [PMID: 25978246 DOI: 10.1103/physrevlett.114.176602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 06/04/2023]
Abstract
Scanning tunneling microscopy and spectroscopy have been used to investigate the femtosecond dynamics of Dirac fermions in the topological insulator Bi2Se3 ultrathin films. At the two-dimensional limit, bulk electrons become quantized and the quantization can be controlled by the film thickness at a single quintuple layer level. By studying the spatial decay of standing waves (quasiparticle interference patterns) off steps, we measure directly the energy and film thickness dependence of the phase relaxation length lϕ and inelastic scattering lifetime τ of topological surface-state electrons. We find that τ exhibits a remarkable (E - EF)(-2) energy dependence and increases with film thickness. We show that the features revealed are typical for electron-electron scattering between surface and bulk states.
Collapse
Affiliation(s)
- Can-Li Song
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Lili Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Ke He
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Shuai-Hua Ji
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Xi Chen
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Xu-Cun Ma
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Qi-Kun Xue
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
15
|
Strocov VN, Petrov VN, Dil JH. Concept of a multichannel spin-resolving electron analyzer based on Mott scattering. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:708-16. [PMID: 25931087 PMCID: PMC4786086 DOI: 10.1107/s160057751500363x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
The concept of a multichannel electron spin detector based on optical imaging principles and Mott scattering (iMott) is presented. A multichannel electron image produced by a standard angle-resolving (photo) electron analyzer or microscope is re-imaged by an electrostatic lens at an accelerating voltage of 40 kV onto the Au target. Quasi-elastic electrons bearing spin asymmetry of the Mott scattering are imaged by magnetic lenses onto position-sensitive electron CCDs whose differential signals yield the multichannel spin asymmetry image. Fundamental advantages of this concept include acceptance of inherently divergent electron sources from the electron analyzer or microscope focal plane as well as small aberrations achieved by virtue of high accelerating voltages, as demonstrated by extensive ray-tracing analysis. The efficiency gain compared with the single-channel Mott detector can be a factor of more than 10(4) which opens new prospects of spin-resolved spectroscopies in application not only to standard bulk and surface systems (Rashba effect, topological insulators, etc.) but also to buried heterostructures. The simultaneous spin detection combined with fast CCD readout enables efficient use of the iMott detectors at X-ray free-electron laser facilities.
Collapse
Affiliation(s)
- Vladimir N. Strocov
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Vladimir N. Petrov
- St Petersburg Polytechnical University, Polytechnicheskaya Str. 29, St Petersburg RU-195251, Russian Federation
| | - J. Hugo Dil
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
- Institut de Physique de la Matière Condensée, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|