1
|
Gou Z, Zhang H, Nait-Ouhra A, Abbasi M, Farutin A, Misbah C. Reply to the 'Comment on "Dynamics and rheology of vesicles under confined Poiseuille flow"' by G. Coupier and T. Podgorski, Soft Matter, 2024, 20, DOI: 10.1039/D3SM01679J. SOFT MATTER 2024; 20:6681-6683. [PMID: 39087430 DOI: 10.1039/d4sm00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
In this answer, we provide our arguments in support of the possibility to observe the single file-organization of red blood cells in microvessels and the resulting unexpectedly weak increase of blood viscosity with increasing hematocrit, the physiological relevance of which was questioned in the comment. The key element is that the equivalent diameter in 3D for the maximal hematocrit corresponding to a single file of red blood cells is about 10 µm and not 20 µm, as in 2D. In addition, the viscosity contrast (ratio between the cell internal and external viscosities) value must be chosen in our 2D simulation in a such a way that the effective viscosity (a linear combination of the internal, external and membrane viscosities) be close to that of a real RBC. Taking these two facts into account, we find a reasonable agreement between our 2D viscosity simulations data and experimental data, despite the crude 2D assumption.
Collapse
Affiliation(s)
- Zhe Gou
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| | - Hengdi Zhang
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| | - Abdessamad Nait-Ouhra
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
- Laboratoire de Matière Condensée et Sciences Interdisciplinaires, Faculty of Sciences, Mohammed V University of Rabat, Rabat 1014, Morocco
- Université de Lorraine, CNRS, GeoRessources, Nancy 54000, France
| | - Mehdi Abbasi
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| | | | - Chaouqi Misbah
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| |
Collapse
|
2
|
Coupier G, Podgorski T. Comment on "Dynamics and rheology of vesicles under confined Poiseuille flow" by Z. Gou, H. Zhang, A. Nait-Ouhra, M. Abbasi, A. Farutin and C. Misbah, Soft Matter, 2023, 19, 9101. SOFT MATTER 2024; 20:6677-6680. [PMID: 39082841 DOI: 10.1039/d3sm01679j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
In a recent paper, [Gou et al., Soft Matter, 2023, 19, 9101-9114] studied numerically the viscosity of a confined suspension of vesicles flowing in a channel as a function of vesicle concentration. In order to discuss the genericity of the observed behaviour, namely a nearly constant effective viscosity at low concentrations, we complement their study by a comparison with the few existing ones in the literature. In particular, we highlight that they fail to reproduce well established results for blood viscosity in microcirculation, thereby suggesting that the conclusions regarding the optimization of cell transport and oxygenation may not apply. We conclude with a quick discussion on potential improvements regarding numerical modeling, as long as physiological relevance is sought.
Collapse
Affiliation(s)
- Gwennou Coupier
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| | - Thomas Podgorski
- Université Grenoble Alpes, CNRS, Grenoble INP, LRP, F-38000 Grenoble, France.
| |
Collapse
|
3
|
Gou Z, Zhang H, Nait-Ouhra A, Abbasi M, Farutin A, Misbah C. Dynamics and rheology of vesicles under confined Poiseuille flow. SOFT MATTER 2023; 19:9101-9114. [PMID: 37990752 DOI: 10.1039/d3sm01064c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The rheological behavior and dynamics of a vesicle suspension, serving as a simplified model for red blood cells, are explored within a Poiseuille flow under the Stokes limit. Investigating vesicle response has led to the identification of novel solutions that complement previously documented forms like the parachute and slipper shapes. This study has brought to light the existence of alternative configurations, including a fully off-centered form and a multilobe structure. The study unveils the presence of two distinct branches associated with the slipper shape. One branch arises as a consequence of a supercritical bifurcation from the symmetric parachute shape, while the other emerges from a saddle-node bifurcation. Notably, the findings are represented through diagrams that display data collapsing harmoniously based on a combination of independent dimensionless parameters. Delving into the rheological implications, a remarkable observation emerges: the normalized viscosity (i.e. similar to intrinsic viscosity) exhibits a non-monotonic trend as a function of vesicle concentration. Initially, the normalized viscosity diminishes as the concentration increases, followed by a subsequent rise at higher concentrations. Noteworthy is the presence of a minimum value in the normalized viscosity at lower concentrations, aligning well with the concentrations observed in microcirculation scenarios. The intricate behavior of the normalized viscosity can be attributed to a delicate spatial arrangement within the suspension. Importantly, this trend echoes the observations made in a linear shear flow scenario, thereby underscoring the universality of the rheological behavior for confined suspensions.
Collapse
Affiliation(s)
- Zhe Gou
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| | - Hengdi Zhang
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| | - Abdessamad Nait-Ouhra
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
- Laboratoire de Matière Condensée et Sciences Interdisciplinaires, Faculty of Sciences, Mohammed V University of Rabat, Rabat 1014, Morocco
- Université de Lorraine, CNRS, GeoRessources, Nancy, 54000, France
| | - Mehdi Abbasi
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| | | | - Chaouqi Misbah
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| |
Collapse
|
4
|
Bureau L, Coupier G, Salez T. Lift at low Reynolds number. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:111. [PMID: 37957450 DOI: 10.1140/epje/s10189-023-00369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Lift forces are widespread in hydrodynamics. These are typically observed for big and fast objects and are often associated with a combination of fluid inertia (i.e. large Reynolds numbers) and specific symmetry-breaking mechanisms. In contrast, the properties of viscosity-dominated (i.e. low Reynolds numbers) flows make it more difficult for such lift forces to emerge. However, the inclusion of boundary effects qualitatively changes this picture. Indeed, in the context of soft and biological matter, recent studies have revealed the emergence of novel lift forces generated by boundary softness, flow gradients and/or surface charges. The aim of the present review is to gather and analyse this corpus of literature, in order to identify and unify the questioning within the associated communities, and pave the way towards future research.
Collapse
Affiliation(s)
- Lionel Bureau
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France.
| | | | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33400, Talence, France.
| |
Collapse
|
5
|
Liao CT, Liu AJ, Chen YL. Flow-induced "waltzing" red blood cells: Microstructural reorganization and the corresponding rheological response. SCIENCE ADVANCES 2022; 8:eabq5248. [PMID: 36427318 PMCID: PMC9699685 DOI: 10.1126/sciadv.abq5248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
We investigate flow-induced structural organization in a dilute suspension of tumbling red blood cells (RBCs) under confined shear flow. For small Reynolds (Re = 0.1) and capillary numbers (Ca), with fully coupled hydrodynamic interaction (HI) and without interparticle adhesion, we find that HI between the biconcave discoid particles prompts the formation of layered RBC chains and synchronized rotating RBC pairs, referred here as "waltzing doublets." As the volume fraction ϕ increases, more waltzing doublets appear in RBC files. Stronger shear stress disrupts structural arrangements at higher Ca. We find that the flow-induced organization of waltzing doublets changes how the suspension viscosity varies with ϕ qualitatively. The intrinsic viscosity is particularly sensitive to microstructural rearrangement, increasing (decreasing) with ϕ at low (high) Ca that correlates with the change in the fraction of doublets. We verified flow-induced collective motion with comparison to two-cell simulations in which the cell volume fraction is controlled by varying the domain volume.
Collapse
Affiliation(s)
- Chih-Tang Liao
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (R.O.C.)
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30004, Taiwan (R.O.C.)
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Tsing Hua University, Taipei 11529, Taiwan (R.O.C.)
| | - An-Jun Liu
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (R.O.C.)
- Department of Physics, National Taiwan University, Taipei 10621, Taiwan (R.O.C.)
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yeng-Long Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (R.O.C.)
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30004, Taiwan (R.O.C.)
- Physics Division, National Center for Theoretical Sciences, Taipei 10621, Taiwan (R.O.C.)
| |
Collapse
|
6
|
Hopkins CC, Haward SJ, Shen AQ. Upstream wall vortices in viscoelastic flow past a cylinder. SOFT MATTER 2022; 18:4868-4880. [PMID: 35730936 DOI: 10.1039/d2sm00418f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report a novel inertia-less, elastic flow instability for a viscoelastic, shear-thinning wormlike micellar solution flowing past a microcylinder in a channel with blockage ratio BR = 2R/W = 0.5 and aspect ratio α = H/W ≈ 5, where R ≈ 100 μm is the cylinder radius, W is the channel width, and H is the channel height. The instability manifests upstream of the cylinder and changes form with increasing Weissenberg number over the range 0.5 ≲ Wi = Uλ/R ≲ 900, where U is the average flow velocity and λ is the terminal relaxation time of the fluid. Beyond a first critical Wi, the instability begins as a bending of the streamlines near the upstream pole of the cylinder that breaks the symmetry of the flow. Beyond a second critical Wi, small, time-steady, and approximately symmetric wall-attached vortices form upstream of the cylinder. Beyond a third critical Wi, the flow becomes time dependent and pulses with a characteristic frequency commensurate with the breakage timescale of the wormlike micelles. This is accompanied by a breaking of the symmetry of the wall-attached vortices, where one vortex becomes considerably larger than the other. Finally, beyond a fourth critical Wi, a vortex forms attached to the upstream pole of the cylinder whose length fluctuates in time. The flow is highly time dependent, and the cylinder-attached vortex and wall-attached vortices compete dynamically for space and time in the channel. Our results add to the rapidly growing understanding of viscoelastic flow instabilities in microfluidic geometries.
Collapse
Affiliation(s)
- Cameron C Hopkins
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan.
| | - Simon J Haward
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan.
| | - Amy Q Shen
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|
7
|
Trejo-Soto C, Lázaro GR, Pagonabarraga I, Hernández-Machado A. Microfluidics Approach to the Mechanical Properties of Red Blood Cell Membrane and Their Effect on Blood Rheology. MEMBRANES 2022; 12:217. [PMID: 35207138 PMCID: PMC8878405 DOI: 10.3390/membranes12020217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
In this article, we describe the general features of red blood cell membranes and their effect on blood flow and blood rheology. We first present a basic description of membranes and move forward to red blood cell membranes' characteristics and modeling. We later review the specific properties of red blood cells, presenting recent numerical and experimental microfluidics studies that elucidate the effect of the elastic properties of the red blood cell membrane on blood flow and hemorheology. Finally, we describe specific hemorheological pathologies directly related to the mechanical properties of red blood cells and their effect on microcirculation, reviewing microfluidic applications for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Claudia Trejo-Soto
- Instituto de Física, Pontificia Universidad Católica de Valparaiso, Casilla 4059, Chile
| | - Guillermo R. Lázaro
- Departament de Física de la Materia Condensada, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain; (G.R.L.); (I.P.); (A.H.-M.)
| | - Ignacio Pagonabarraga
- Departament de Física de la Materia Condensada, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain; (G.R.L.); (I.P.); (A.H.-M.)
- CECAM, Centre Europeén de Calcul Atomique et Moleéculaire, École Polytechnique Feédeérale de Lausanne (EPFL), Batochime—Avenue Forel 2, 1015 Lausanne, Switzerland
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Aurora Hernández-Machado
- Departament de Física de la Materia Condensada, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain; (G.R.L.); (I.P.); (A.H.-M.)
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Hopkins CC, Haward SJ, Shen AQ. Tristability in Viscoelastic Flow Past Side-by-Side Microcylinders. PHYSICAL REVIEW LETTERS 2021; 126:054501. [PMID: 33605746 DOI: 10.1103/physrevlett.126.054501] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/04/2021] [Indexed: 05/13/2023]
Abstract
Viscoelastic flows through microscale porous arrays exhibit complex path selection and switching phenomena. However, understanding this process is limited by a lack of studies linking between a single object and large arrays. Here, we report experiments on viscoelastic flow past side-by-side microcylinders with variable intercylinder gap. With increasing flow rate, a sequence of two imperfect symmetry-breaking bifurcations forces selection of either one or two of the three possible flow paths around the cylinders. Tuning the gap length through the value where the first bifurcation becomes perfect reveals regions of bistability and tristability in a dimensionless flow rate-gap length phase diagram.
Collapse
Affiliation(s)
- Cameron C Hopkins
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Simon J Haward
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Amy Q Shen
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
9
|
Walkama DM, Waisbord N, Guasto JS. Disorder Suppresses Chaos in Viscoelastic Flows. PHYSICAL REVIEW LETTERS 2020; 124:164501. [PMID: 32383946 DOI: 10.1103/physrevlett.124.164501] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/24/2019] [Accepted: 03/23/2020] [Indexed: 05/13/2023]
Abstract
Viscoelastic flows through microstructured geometries transition from steady to time dependent and chaotic dynamics under critical flow conditions. However, the implications of geometric disorder for flow stability are unknown. We measure the onset of spatiotemporal velocity fluctuations for a viscoelastic flow through microfluidic pillar arrays, having controlled variations of geometric disorder. Introducing a small perturbation into the pillar array (∼10% of the lattice constant) delays the onset of the instability to higher flow speed, and yet larger disorders (≥25%) suppress the transition to chaos. We show that disorder introduces preferential flow paths that promote shear over extensional deformation and enhance flow stability by locally reducing polymer stretching.
Collapse
Affiliation(s)
- Derek M Walkama
- Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, USA
- Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Nicolas Waisbord
- Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, USA
| | - Jeffrey S Guasto
- Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, USA
| |
Collapse
|
10
|
Liao CT, Chen YL. Shear-induced non-monotonic viscosity dependence for model red blood cell suspensions in microvessels. BIOMICROFLUIDICS 2019; 13:064115. [PMID: 31768201 PMCID: PMC6861169 DOI: 10.1063/1.5127879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The cell-free layer thickness of an aggregating red blood cell (RBC) suspension in a rectangular microchannel is investigated by hybrid fluid-particle numerical modeling. Several factors affect the suspension viscosity, cell-free layer thickness, and the cell aggregate distribution. These include the hematocrit, vessel size, red cell stiffness, aggregation interaction, and shear rate. In particular, the effect of the shear rate on the cell-free layer thickness is controversial. We found that the suspension viscosity increases along with a decrease in the cell-free layer thickness as the shear rate increases for aggregating model RBCs at low shear rates. At moderate to high shear rates, the cell-free layer thickness increases with the increasing shear rate from medium to strong shear flow for both 10% and 20% red blood cell suspensions.
Collapse
|
11
|
Shen Z, He Y. Migration of a red blood cell in a permeable microvessel. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2019. [DOI: 10.1016/j.medntd.2019.100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Zhang H, Shen Z, Hogan B, Barakat AI, Misbah C. ATP Release by Red Blood Cells under Flow: Model and Simulations. Biophys J 2018; 115:2218-2229. [PMID: 30447988 PMCID: PMC6289826 DOI: 10.1016/j.bpj.2018.09.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022] Open
Abstract
ATP is a major player as a signaling molecule in blood microcirculation. It is released by red blood cells (RBCs) when they are subjected to shear stresses large enough to induce a sufficient shape deformation. This prominent feature of chemical response to shear stress and RBC deformation constitutes an important link between vessel geometry, flow conditions, and the mechanical properties of RBCs, which are all contributing factors affecting the chemical signals in the process of vasomotor modulation of the precapillary vessel networks. Several in vitro experiments have reported on ATP release by RBCs due to mechanical stress. These studies have considered both intact RBCs as well as cells within which suspected pathways of ATP release have been inhibited. This has provided profound insights to help elucidate the basic governing key elements, yet how the ATP release process takes place in the (intermediate) microcirculation zone is not well understood. We propose here an analytical model of ATP release. The ATP concentration is coupled in a consistent way to RBC dynamics. The release of ATP, or the lack thereof, is assumed to depend on both the local shear stress and the shape change of the membrane. The full chemo-mechanical coupling problem is written in a lattice-Boltzmann formulation and solved numerically in different geometries (straight channels and bifurcations mimicking vessel networks) and under two kinds of imposed flows (shear and Poiseuille flows). Our model remarkably reproduces existing experimental results. It also pinpoints the major contribution of ATP release when cells traverse network bifurcations. This study may aid in further identifying the interplay between mechanical properties and chemical signaling processes involved in blood microcirculation.
Collapse
Affiliation(s)
- Hengdi Zhang
- University Grenoble Alpes, LIPHY, Grenoble, France; CNRS, LIPHY, Grenoble, France
| | - Zaiyi Shen
- CNRS, LIPHY, Grenoble, France; Laboratoire Ondes et Matière d'Aquitaine, Talence CEDEX, France
| | - Brenna Hogan
- Laboratoire d'hydrodynamique de l'Ecole polytechnique, Palaiseau, France
| | - Abdul I Barakat
- Laboratoire d'hydrodynamique de l'Ecole polytechnique, Palaiseau, France
| | - Chaouqi Misbah
- University Grenoble Alpes, LIPHY, Grenoble, France; CNRS, LIPHY, Grenoble, France.
| |
Collapse
|
13
|
Nait Ouhra A, Farutin A, Aouane O, Ez-Zahraouy H, Benyoussef A, Misbah C. Shear thinning and shear thickening of a confined suspension of vesicles. Phys Rev E 2018; 97:012404. [PMID: 29448354 DOI: 10.1103/physreve.97.012404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Indexed: 11/07/2022]
Abstract
Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ[over ̇], the concentration of the suspension ϕ, and the viscosity contrast λ=η_{in}/η_{out}, where η_{in} and η_{out} are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ. We provide physical arguments on the origins of these behaviors.
Collapse
Affiliation(s)
- A Nait Ouhra
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.,Laboratoire de Matière Condensée et Sciences Interdisciplinaires, Faculty of Sciences, Mohammed V University of Rabat, 1014 Morocco
| | - A Farutin
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - O Aouane
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.,Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Dynamics of Complex Fluids and Interfaces, Fürther Straße 248, 90429 Nürnberg, Germany
| | - H Ez-Zahraouy
- Laboratoire de Matière Condensée et Sciences Interdisciplinaires, Faculty of Sciences, Mohammed V University of Rabat, 1014 Morocco
| | - A Benyoussef
- Laboratoire de Matière Condensée et Sciences Interdisciplinaires, Faculty of Sciences, Mohammed V University of Rabat, 1014 Morocco.,Hassan II Academy of Science and Technology, Rabat, 10220 Morocco
| | - C Misbah
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
14
|
Dorschner B, Bösch F, Karlin IV. Particles on Demand for Kinetic Theory. PHYSICAL REVIEW LETTERS 2018; 121:130602. [PMID: 30312073 DOI: 10.1103/physrevlett.121.130602] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/03/2018] [Indexed: 05/22/2023]
Abstract
A novel formulation of fluid dynamics as a kinetic theory with tailored, on-demand constructed particles removes restrictions on flow speed and temperature as compared to its predecessors, the lattice Boltzmann methods and their modifications. In the new kinetic theory, discrete particles are determined by a rigorous limit process which avoids ad hoc assumptions about their velocities. Classical benchmarks for incompressible and compressible flows demonstrate that the proposed discrete-particles kinetic theory opens up an unprecedented wide domain of applications for computational fluid dynamics.
Collapse
Affiliation(s)
- B Dorschner
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - F Bösch
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - I V Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
15
|
Guckenberger A, Kihm A, John T, Wagner C, Gekle S. Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel. SOFT MATTER 2018; 14:2032-2043. [PMID: 29473072 DOI: 10.1039/c7sm02272g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s-1) and high velocities (>3 mm s-1) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.
Collapse
Affiliation(s)
- Achim Guckenberger
- Biofluid Simulation and Modeling, Theoretische Physik, Universität Bayreuth, Germany.
| | | | | | | | | |
Collapse
|
16
|
Guckenberger A, Gekle S. Theory and algorithms to compute Helfrich bending forces: a review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:203001. [PMID: 28240220 DOI: 10.1088/1361-648x/aa6313] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell membranes are vital to shield a cell's interior from the environment. At the same time they determine to a large extent the cell's mechanical resistance to external forces. In recent years there has been considerable interest in the accurate computational modeling of such membranes, driven mainly by the amazing variety of shapes that red blood cells and model systems such as vesicles can assume in external flows. Given that the typical height of a membrane is only a few nanometers while the surface of the cell extends over many micrometers, physical modeling approaches mostly consider the interface as a two-dimensional elastic continuum. Here we review recent modeling efforts focusing on one of the computationally most intricate components, namely the membrane's bending resistance. We start with a short background on the most widely used bending model due to Helfrich. While the Helfrich bending energy by itself is an extremely simple model equation, the computation of the resulting forces is far from trivial. At the heart of these difficulties lies the fact that the forces involve second order derivatives of the local surface curvature which by itself is the second derivative of the membrane geometry. We systematically derive and compare the different routes to obtain bending forces from the Helfrich energy, namely the variational approach and the thin-shell theory. While both routes lead to mathematically identical expressions, so-called linear bending models are shown to reproduce only the leading order term while higher orders differ. The main part of the review contains a description of various computational strategies which we classify into three categories: the force, the strong and the weak formulation. We finally give some examples for the application of these strategies in actual simulations.
Collapse
Affiliation(s)
- Achim Guckenberger
- Biofluid Simulation and Modeling, Fachbereich Physik, Universität Bayreuth, Germany
| | | |
Collapse
|
17
|
Trejo-Soto C, Costa-Miracle E, Rodriguez-Villarreal I, Cid J, Castro M, Alarcon T, Hernandez-Machado A. Front microrheology of the non-Newtonian behaviour of blood: scaling theory of erythrocyte aggregation by aging. SOFT MATTER 2017; 13:3042-3047. [PMID: 28375423 DOI: 10.1039/c6sm02412b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We introduce a new framework to study the non-Newtonian behaviour of fluids at the microscale based on the analysis of front advancement. We apply this methodology to study the non-linear rheology of blood in microchannels. We carry out experiments in which the non-linear viscosity of blood samples is quantified at different haematocrits and ages. Under these conditions, blood exhibits a power-law dependence on the shear rate. In order to analyse our experimental data, we put forward a scaling theory which allows us to define an adhesion scaling number. This theory yields a scaling behaviour of the viscosity expressed as a function of the adhesion capillary number. By applying this scaling theory to samples of different ages, we are able to quantify how the characteristic adhesion energy varies as time progresses. This connection between microscopic and mesoscopic properties allows us to estimate quantitatively the change in the cell-cell adhesion energies as the sample ages.
Collapse
Affiliation(s)
- C Trejo-Soto
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain. and Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain
| | - E Costa-Miracle
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain and Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| | - I Rodriguez-Villarreal
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain
| | - J Cid
- Servicio de Hemoterapia y Hemostasia, Hospital Clinic de Barcelona, Barcelona, Spain
| | - M Castro
- GISC and Grupo de Dinámica No Lineal (DNL), Escuela Técnica Superior de Ingeniería (ICAI), Universidad Pontificia Comillas, E-28015 Madrid, Spain
| | - T Alarcon
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain and Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain and ICREA, Pg. Llus Companys 23, 08010 Barcelona, Spain
| | - A Hernandez-Machado
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain. and Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain and Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Clavería V, Aouane O, Thiébaud M, Abkarian M, Coupier G, Misbah C, John T, Wagner C. Clusters of red blood cells in microcapillary flow: hydrodynamic versus macromolecule induced interaction. SOFT MATTER 2016; 12:8235-8245. [PMID: 27714335 DOI: 10.1039/c6sm01165a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present experiments on RBCs that flow through micro-capillaries under physiological conditions. The strong flow-shape coupling of these deformable objects leads to a rich variety of cluster formation. We show that the RBC clusters form as a subtle imbrication between hydrodynamic interactions and adhesion forces because of plasma proteins, mimicked by the polymer dextran. Clusters form along the capillaries and macromolecule-induced adhesion contributes to their stability. However, at high yet physiological flow velocities, shear stresses overcome part of the adhesion forces, and cluster stabilization due to hydrodynamics becomes stronger. For the case of pure hydrodynamic interaction, cell-to-cell distances have a pronounced bimodal distribution. Our 2D-numerical simulations on vesicles capture the transition between adhesive and non-adhesive clusters at different flow velocities.
Collapse
Affiliation(s)
- Viviana Clavería
- Experimental Physics, Saarland University, 66123, Saarbrücken, Germany. and Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Othmane Aouane
- Experimental Physics, Saarland University, 66123, Saarbrücken, Germany. and Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France and LMPHE, URAC 12, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco
| | - Marine Thiébaud
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| | - Manouk Abkarian
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Gwennou Coupier
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| | - Chaouqi Misbah
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| | - Thomas John
- Experimental Physics, Saarland University, 66123, Saarbrücken, Germany.
| | - Christian Wagner
- Experimental Physics, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
19
|
Frapolli N, Chikatamarla SS, Karlin IV. Lattice Kinetic Theory in a Comoving Galilean Reference Frame. PHYSICAL REVIEW LETTERS 2016; 117:010604. [PMID: 27419555 DOI: 10.1103/physrevlett.117.010604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 05/22/2023]
Abstract
We prove that the fully discrete lattice Boltzmann method is invariant with respect to Galilean transformation. Based on this finding, a novel class of shifted lattices is proposed which dramatically increases the operating range of lattice Boltzmann simulations, in particular, for gas dynamics applications. A simulation of vortex-shock interaction is used to demonstrate the accuracy and efficiency of the proposed lattices. With one single algorithm it is now possible to simulate a broad range of applications, from low Mach number flows to transonic and supersonic flow regimes.
Collapse
Affiliation(s)
- N Frapolli
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - S S Chikatamarla
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - I V Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
20
|
Fornari W, Brandt L, Chaudhuri P, Lopez CU, Mitra D, Picano F. Rheology of Confined Non-Brownian Suspensions. PHYSICAL REVIEW LETTERS 2016; 116:018301. [PMID: 26799045 DOI: 10.1103/physrevlett.116.018301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 06/05/2023]
Abstract
We study the rheology of confined suspensions of neutrally buoyant rigid monodisperse spheres in plane-Couette flow using direct numerical simulations. We find that if the width of the channel is a (small) integer multiple of the sphere diameter, the spheres self-organize into two-dimensional layers that slide on each other and the effective viscosity of the suspension is significantly reduced. Each two-dimensional layer is found to be structurally liquidlike but its dynamics is frozen in time.
Collapse
Affiliation(s)
- Walter Fornari
- Linné Flow Centre and SeRC, KTH Mechanics, SE-100 44 Stockholm, Sweden
| | - Luca Brandt
- Linné Flow Centre and SeRC, KTH Mechanics, SE-100 44 Stockholm, Sweden
| | - Pinaki Chaudhuri
- Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Cyan Umbert Lopez
- Linné Flow Centre and SeRC, KTH Mechanics, SE-100 44 Stockholm, Sweden
| | - Dhrubaditya Mitra
- Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden
| | - Francesco Picano
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova, Italy
| |
Collapse
|
21
|
Lee M, Kim B, Kim QH, Hwang J, An S, Jhe W. Viscometry of single nanoliter-volume droplets using dynamic force spectroscopy. Phys Chem Chem Phys 2016; 18:27684-27690. [DOI: 10.1039/c6cp05896e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an atomic force microscope-based platform for viscometry of ‘nanoliter' volume fluids.
Collapse
Affiliation(s)
- Manhee Lee
- Department of Physics and Astronomy
- Institute of Applied Physics
- Seoul National University
- Seoul 151-747
- Korea
| | - Bongsu Kim
- Department of Physics and Astronomy
- Institute of Applied Physics
- Seoul National University
- Seoul 151-747
- Korea
| | - QHwan Kim
- Department of Physics and Astronomy
- Institute of Applied Physics
- Seoul National University
- Seoul 151-747
- Korea
| | - JongGeun Hwang
- Department of Physics and Astronomy
- Institute of Applied Physics
- Seoul National University
- Seoul 151-747
- Korea
| | - Sangmin An
- Department of Physics and Astronomy
- Institute of Applied Physics
- Seoul National University
- Seoul 151-747
- Korea
| | - Wonho Jhe
- Department of Physics and Astronomy
- Institute of Applied Physics
- Seoul National University
- Seoul 151-747
- Korea
| |
Collapse
|
22
|
Prado G, Farutin A, Misbah C, Bureau L. Viscoelastic transient of confined red blood cells. Biophys J 2015; 108:2126-36. [PMID: 25954871 PMCID: PMC4423063 DOI: 10.1016/j.bpj.2015.03.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 11/30/2022] Open
Abstract
The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, η(mem)(2D) ∼ 10(-7) N ⋅ s ⋅ m(-1). By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of η(mem)(2D), and reconcile seemingly conflicting conclusions from previous works.
Collapse
Affiliation(s)
- Gaël Prado
- Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique, Grenoble, France; Laboratoire Interdisciplinaire de Physique, University Grenoble Alpes, Grenoble, France
| | - Alexander Farutin
- Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique, Grenoble, France; Laboratoire Interdisciplinaire de Physique, University Grenoble Alpes, Grenoble, France; Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Chaouqi Misbah
- Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique, Grenoble, France; Laboratoire Interdisciplinaire de Physique, University Grenoble Alpes, Grenoble, France
| | - Lionel Bureau
- Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique, Grenoble, France; Laboratoire Interdisciplinaire de Physique, University Grenoble Alpes, Grenoble, France.
| |
Collapse
|
23
|
|
24
|
Aouane O, Thiébaud M, Benyoussef A, Wagner C, Misbah C. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033011. [PMID: 25314533 DOI: 10.1103/physreve.90.033011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 06/04/2023]
Abstract
Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.
Collapse
Affiliation(s)
- Othmane Aouane
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany and Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and LMPHE, URAC 12, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco
| | | | - Abdelilah Benyoussef
- LMPHE, URAC 12, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco
| | - Christian Wagner
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Chaouqi Misbah
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
| |
Collapse
|