1
|
Melton T, DeVore PTS, McMillan J, Chan J, Calonico-Soto A, Beck KM, Wong CW, Chou JT, Gowda A. Scalable stable comb-to-tone integrated RF photonic drive for superconducting qubits. OPTICS EXPRESS 2024; 32:18761-18770. [PMID: 38859026 DOI: 10.1364/oe.518014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024]
Abstract
The recent advent of quantum computing has the potential to overhaul security, communications, and scientific modeling. Superconducting qubits are a leading platform that is advancing noise-tolerant intermediate-scale quantum processors. The implementation requires scaling to large numbers of superconducting qubits, circuit depths, and gate speeds, wherein high-purity RF signal generation and effective cabling transport are desirable. Fiber photonic-enhanced RF signal generation has demonstrated the principle of addressing both signal generation and transport requirements, supporting intermediate qubit numbers and robust packaging efforts; however, fiber-based approaches to RF signal distribution are often bounded by their phase instability. Here, we present a silicon photonic integrated circuit-based version of a photonic-enhanced RF signal generator that demonstrates the requisite stability, as well as a path towards the necessary signal fidelity.
Collapse
|
2
|
Tang C, Nie M, Chen JY, Ma Z, Li Z, Xie Y, Sua YM, Huang SW, Huang YP. Broadband frequency comb generation through cascaded quadratic nonlinearity in thin-film lithium niobate microresonators. OPTICS LETTERS 2024; 49:2449-2452. [PMID: 38691741 DOI: 10.1364/ol.523920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Broadband frequency comb generation through cascaded quadratic nonlinearity remains experimentally untapped in free-space cavities with bulk χ(2) materials mainly due to the high threshold power and restricted ability of dispersion engineering. Thin-film lithium niobate (LN) is a good platform for nonlinear optics due to the tight mode confinement in a nano-dimensional waveguide, the ease of dispersion engineering, large quadratic nonlinearities, and flexible phase matching via periodic poling. Here we demonstrate broadband frequency comb generation through dispersion engineering in a thin-film LN microresonator. Bandwidths of 150 nm (80 nm) and 25 nm (12 nm) for center wavelengths at 1560 and 780 nm are achieved, respectively, in a cavity-enhanced second-harmonic generation (doubly resonant optical parametric oscillator). Our demonstration paves the way for pure quadratic soliton generation, which is a great complement to dissipative Kerr soliton frequency combs for extended interesting nonlinear applications.
Collapse
|
3
|
Murray CE, Tan M, Prayoonyong C, Zhu X, Chu ST, Little BE, Morandotti R, Mitchell A, Moss DJ, Corcoran B. Investigating the thermal robustness of soliton crystal microcombs. OPTICS EXPRESS 2023; 31:37749-37762. [PMID: 38017898 DOI: 10.1364/oe.503072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/13/2023] [Indexed: 11/30/2023]
Abstract
Soliton crystals are a novel form of microcomb, with relatively high conversion efficiency, good thermal robustness, and simple initiation among the methods to generate them. Soliton crystals can be easily generated in microring resonators with an appropriate mode-crossing. However, fabrication defects can significantly affect the mode-crossing placement and strength in devices. To enable soliton crystal states to be harnessed for a broader range of microcomb applications, we need a better understanding of the link between mode-crossing properties and the desired soliton crystal properties. Here, we investigate how to generate the same soliton crystal state in two different microrings, how changes in microring temperature change the mode-crossing properties, and how mode-crossing properties affect the generation of our desired soliton crystal state. We find that temperature affects the mode-crossing position in these rings but without major changes in the mode-crossing strength. We find that our wanted state can be generated over a device temperature range of 25 ∘C, with different mode-crossing properties, and is insensitive to the precise mode-crossing position between resonances.
Collapse
|
4
|
Sun Y, Wabnitz S, Parra-Rivas P. Multimode resonance transition to collapsed snaking in normal dispersive Kerr cavities: bright versus dark solitons. OPTICS LETTERS 2023; 48:5403-5406. [PMID: 37831878 DOI: 10.1364/ol.499907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
We study the dynamics of Kerr cavity solitons in the normal dispersion regime in the presence of an intracavity phase modulation. The associated parabolic potential introduces multimode resonances, which promote the formation of high-order bright solitons. By gradually reducing the potential strength, bright solitons undergo a transition into dark solitons. We describe this process as a shift from a multimode resonance to a collapsed snaking bifurcation structure. This work offers a comprehensive overview of cavity dynamics and may provide a potential pathway to access multi-stable states by effectively varying the phase modulation.
Collapse
|
5
|
Helgason ÓB, Girardi M, Ye Z, Lei F, Schröder J, Torres-Company V. Surpassing the nonlinear conversion efficiency of soliton microcombs. NATURE PHOTONICS 2023; 17:992-999. [PMID: 37920810 PMCID: PMC10618085 DOI: 10.1038/s41566-023-01280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/27/2023] [Indexed: 11/04/2023]
Abstract
Laser frequency combs are enabling some of the most exciting scientific endeavours in the twenty-first century, ranging from the development of optical clocks to the calibration of the astronomical spectrographs used for discovering Earth-like exoplanets. Dissipative Kerr solitons generated in microresonators currently offer the prospect of attaining frequency combs in miniaturized systems by capitalizing on advances in photonic integration. Most of the applications based on soliton microcombs rely on tuning a continuous-wave laser into a longitudinal mode of a microresonator engineered to display anomalous dispersion. In this configuration, however, nonlinear physics precludes one from attaining dissipative Kerr solitons with high power conversion efficiency, with typical comb powers amounting to ~1% of the available laser power. Here we demonstrate that this fundamental limitation can be overcome by inducing a controllable frequency shift to a selected cavity resonance. Experimentally, we realize this shift using two linearly coupled anomalous-dispersion microresonators, resulting in a coherent dissipative Kerr soliton with a conversion efficiency exceeding 50% and excellent line spacing stability. We describe the soliton dynamics in this configuration and find vastly modified characteristics. By optimizing the microcomb power available on-chip, these results facilitate the practical implementation of a scalable integrated photonic architecture for energy-efficient applications.
Collapse
Affiliation(s)
- Óskar B. Helgason
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Marcello Girardi
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Zhichao Ye
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Fuchuan Lei
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Jochen Schröder
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Victor Torres-Company
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
6
|
Matsko AB, Maleki L. Low threshold Kerr solitons. OPTICS LETTERS 2023; 48:715-718. [PMID: 36723571 DOI: 10.1364/ol.479572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Pumping a nonlinear optical cavity with continuous wave coherent light can result in generation of a stable train of short optical pulses. Pumping the cavity with a non-degenerate resonant coherent dichromatic pump usually does not produce a stable mode-locked regime due to competition of the oscillations at the pump frequencies. We show that generation of stable optical pulses is feasible in a dichromatically pumped cavity characterized with group velocity dispersion optimized in a way that the group velocity value becomes identical for the generated pulses and the beat note of the pump harmonics. The power threshold of the process drops nearly four times in this case and the produced pulses become sub-harmonically locked to the dichromatic pump harmonics. The process is useful for generation of broadband optical frequency combs and optical time crystals.
Collapse
|
7
|
Xue X, Grelu P, Yang B, Wang M, Li S, Zheng X, Zhou B. Dispersion-less Kerr solitons in spectrally confined optical cavities. LIGHT, SCIENCE & APPLICATIONS 2023; 12:19. [PMID: 36617564 PMCID: PMC9826788 DOI: 10.1038/s41377-022-01052-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/26/2022] [Accepted: 11/27/2022] [Indexed: 05/25/2023]
Abstract
Solitons are self-reinforcing localized wave packets that manifest in the major areas of nonlinear science, from optics to biology and Bose-Einstein condensates. Recently, optically driven dissipative solitons have attracted great attention for the implementation of the chip-scale frequency combs that are decisive for communications, spectroscopy, neural computing, and quantum information processing. In the current understanding, the generation of temporal solitons involves the chromatic dispersion as a key enabling physical effect, acting either globally or locally on the cavity dynamics in a decisive way. Here, we report on a novel class of solitons, both theoretically and experimentally, which builds up in spectrally confined optical cavities when dispersion is practically absent, both globally and locally. Precisely, the interplay between the Kerr nonlinearity and spectral filtering results in an infinite hierarchy of eigenfunctions which, combined with optical gain, allow for the generation of stable dispersion-less dissipative solitons in a previously unexplored regime. When the filter order tends to infinity, we find an unexpected link between dissipative and conservative solitons, in the form of Nyquist-pulse-like solitons endowed with an ultra-flat spectrum. In contrast to the conventional dispersion-enabled nonlinear Schrödinger solitons, these dispersion-less Nyquist solitons build on a fully confined spectrum and their energy scaling is not constrained by the pulse duration. Dispersion-less soliton molecules and their deterministic transitioning to single solitons are also evidenced. These findings broaden the fundamental scope of the dissipative soliton paradigm and open new avenues for generating soliton pulses and frequency combs endowed with unprecedented temporal and spectral features.
Collapse
Affiliation(s)
- Xiaoxiao Xue
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China.
| | - Philippe Grelu
- Laboratoire ICB, UMR 6303 CNRS, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Bofan Yang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Mian Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Shangyuan Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Xiaoping Zheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China.
| | - Bingkun Zhou
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
8
|
Wang W, Lu PK, Vinod AK, Turan D, McMillan JF, Liu H, Yu M, Kwong DL, Jarrahi M, Wong CW. Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation. Nat Commun 2022; 13:5123. [PMID: 36045124 PMCID: PMC9433451 DOI: 10.1038/s41467-022-32739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 08/12/2022] [Indexed: 12/03/2022] Open
Abstract
High-spectral-purity frequency-agile room-temperature sources in the terahertz spectrum are foundational elements for imaging, sensing, metrology, and communications. Here we present a chip-scale optical parametric oscillator based on an integrated nonlinear microresonator that provides broadly tunable single-frequency and multi-frequency oscillators in the terahertz regime. Through optical-to-terahertz down-conversion using a plasmonic nanoantenna array, coherent terahertz radiation spanning 2.8-octaves is achieved from 330 GHz to 2.3 THz, with ≈20 GHz cavity-mode-limited frequency tuning step and ≈10 MHz intracavity-mode continuous frequency tuning range at each step. By controlling the microresonator intracavity power and pump-resonance detuning, tunable multi-frequency terahertz oscillators are also realized. Furthermore, by stabilizing the microresonator pump power and wavelength, sub-100 Hz linewidth of the terahertz radiation with 10-15 residual frequency instability is demonstrated. The room-temperature generation of both single-frequency, frequency-agile terahertz radiation and multi-frequency terahertz oscillators in the chip-scale platform offers unique capabilities in metrology, sensing, imaging and communications.
Collapse
Affiliation(s)
- Wenting Wang
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, 90095, USA.
| | - Ping-Keng Lu
- Terahertz Electronics Laboratory, University of California, Los Angeles, CA, 90095, USA
| | - Abhinav Kumar Vinod
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, 90095, USA
| | - Deniz Turan
- Terahertz Electronics Laboratory, University of California, Los Angeles, CA, 90095, USA
| | - James F McMillan
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, 90095, USA
| | - Hao Liu
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, 90095, USA
| | - Mingbin Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai, China
- Institute of Microelectronics, A*STAR, Singapore, 117865, Singapore
| | - Dim-Lee Kwong
- Institute of Microelectronics, A*STAR, Singapore, 117865, Singapore
| | - Mona Jarrahi
- Terahertz Electronics Laboratory, University of California, Los Angeles, CA, 90095, USA.
| | - Chee Wei Wong
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Anderson MH, Weng W, Lihachev G, Tikan A, Liu J, Kippenberg TJ. Zero dispersion Kerr solitons in optical microresonators. Nat Commun 2022; 13:4764. [PMID: 35963859 PMCID: PMC9376110 DOI: 10.1038/s41467-022-31916-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Solitons are shape preserving waveforms that are ubiquitous across nonlinear dynamical systems from BEC to hydrodynamics, and fall into two separate classes: bright solitons existing in anomalous group velocity dispersion, and switching waves forming 'dark solitons' in normal dispersion. Bright solitons in particular have been relevant to chip-scale microresonator frequency combs, used in applications across communications, metrology, and spectroscopy. Both have been studied, yet the existence of a structure between this dichotomy has only been theoretically predicted. We report the observation of dissipative structures embodying a hybrid between switching waves and dissipative solitons, existing in the regime of vanishing group velocity dispersion where third-order dispersion is dominant, hence termed as 'zero-dispersion solitons'. They are observed to arise from the interlocking of two modulated switching waves, forming a stable solitary structure consisting of a quantized number of peaks. The switching waves form directly via synchronous pulse-driving of a Si3N4 microresonator. The resulting comb spectrum spans 136 THz or 97% of an octave, further enhanced by higher-order dispersive wave formation. This dissipative structure expands the domain of Kerr cavity physics to the regime near to zero-dispersion and could present a superior alternative to conventional solitons for broadband comb generation.
Collapse
Affiliation(s)
- Miles H Anderson
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Wenle Weng
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
- Institute for Photonics and Advanced Sensing (IPAS), and School of Physical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Grigory Lihachev
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Alexey Tikan
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Junqiu Liu
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Tobias J Kippenberg
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
10
|
Lihachev G, Weng W, Liu J, Chang L, Guo J, He J, Wang RN, Anderson MH, Liu Y, Bowers JE, Kippenberg TJ. Platicon microcomb generation using laser self-injection locking. Nat Commun 2022; 13:1771. [PMID: 35365647 PMCID: PMC8975808 DOI: 10.1038/s41467-022-29431-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
The past decade has witnessed major advances in the development and system-level applications of photonic integrated microcombs, that are coherent, broadband optical frequency combs with repetition rates in the millimeter-wave to terahertz domain. Most of these advances are based on harnessing of dissipative Kerr solitons (DKS) in microresonators with anomalous group velocity dispersion (GVD). However, microcombs can also be generated with normal GVD using localized structures that are referred to as dark pulses, switching waves or platicons. Compared with DKS microcombs that require specific designs and fabrication techniques for dispersion engineering, platicon microcombs can be readily built using CMOS-compatible platforms such as thin-film (i.e., thickness below 300 nm) silicon nitride with normal GVD. Here, we use laser self-injection locking to demonstrate a fully integrated platicon microcomb operating at a microwave K-band repetition rate. A distributed feedback (DFB) laser edge-coupled to a Si3N4 chip is self-injection-locked to a high-Q ( > 107) microresonator with high confinement waveguides, and directly excites platicons without sophisticated active control. We demonstrate multi-platicon states and switching, perform optical feedback phase study and characterize the phase noise of the K-band platicon repetition rate and the pump laser. Laser self-injection-locked platicons could facilitate the wide adoption of microcombs as a building block in photonic integrated circuits via commercial foundry service.
Collapse
Affiliation(s)
- Grigory Lihachev
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Wenle Weng
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Institute for Photonics and Advanced Sensing (IPAS), and School of Physical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junqiu Liu
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Lin Chang
- ECE Department, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Joel Guo
- ECE Department, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jijun He
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Rui Ning Wang
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Miles H Anderson
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Yang Liu
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - John E Bowers
- ECE Department, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Tobias J Kippenberg
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
11
|
Dong X, Spiess C, Bucklew VG, Renninger WH. Chirped-pulsed Kerr solitons in the Lugiato-Lefever equation with spectral filtering. PHYSICAL REVIEW RESEARCH 2021; 3:033252. [PMID: 35434640 PMCID: PMC9012338 DOI: 10.1103/physrevresearch.3.033252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical Kerr resonators support a variety of stable nonlinear phenomena in a simple and compact design. The generation of ultrashort pulses and frequency combs has been shown to benefit several applications, including spectroscopy and telecommunications. The most common anomalous dispersion Kerr resonators can be accurately described by a well-studied mean-field Lugiato-Lefever equation (LLE). Recently observed highly chirped pulses in normal dispersion resonators with a spectral filter, however, cannot. Here we examine the LLE in the normal dispersion regime modified with a Gaussian spectral filter (LLE-F). In addition to solutions associated with the LLE, we find stable highly chirped pulses. Solutions are strongly dependent on the filter bandwidth. Because of the large changes per round trip, the validity of the LLE-F fails over a large range of experimentally relevant parameters. While the mean-field approach leads to accurate predictions with respect to the nonlinearity coefficient and the dispersion, the dependence of drive power on loss deviates significantly from an experimentally accurate model, which leads to opportunities for Kerr resonators including frequency comb generation from low-Q-factor cavities.
Collapse
Affiliation(s)
- Xue Dong
- Institute of optics, University of Rochester, Rochester, New York 14627
| | | | - Victor G. Bucklew
- Institute of optics, University of Rochester, Rochester, New York 14627
| | | |
Collapse
|
12
|
Spiess C, Yang Q, Dong X, Bucklew VG, Renninger WH. Chirped dissipative solitons in driven optical resonators. OPTICA 2021; 8:861-869. [PMID: 34504904 PMCID: PMC8425384 DOI: 10.1364/optica.419771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/29/2021] [Indexed: 05/31/2023]
Abstract
Solitons are self-sustaining particle-like wave packets found throughout nature. Optical systems such as optical fibers and mode-locked lasers are relatively simple, are technologically important, and continue to play a major role in our understanding of the rich nonlinear dynamics of solitons. Here we present theoretical and experimental observations of a new class of optical soliton characterized by pulses with large and positive chirp in normal dispersion resonators with strong spectral filtering. Numerical simulations reveal several stable waveforms including dissipative solitons characterized by large frequency chirp. In experiments with fiber cavities driven with nanosecond pulses, chirped dissipative solitons matching predictions are observed. Remarkably, chirped pulses remain stable in low quality-factor resonators despite large dissipation, which enables new opportunities for nonlinear pattern formation. By extending pulse generation to normal dispersion systems and supporting higher pulse energies, chirped dissipative solitons will enable ultrashort pulse and frequency comb sources that are simpler and more effective for spectroscopy, communications, and metrology. Scaling laws are derived to provide simple design guidelines for generating chirped dissipative solitons in microresonator, fiber resonator, and bulk enhancement cavity platforms.
Collapse
Affiliation(s)
- Christopher Spiess
- Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Qian Yang
- Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Xue Dong
- Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Victor G. Bucklew
- Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
13
|
Liu M, Huang H, Lu Z, Wang Y, Cai Y, Zhao W. Dynamics of dark breathers and Raman-Kerr frequency combs influenced by high-order dispersion. OPTICS EXPRESS 2021; 29:18095-18107. [PMID: 34154076 DOI: 10.1364/oe.427718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
We investigate the dark breathers and Raman-Kerr microcombs generation influenced by stimulated Raman scattering (SRS) and high-order dispersion (HOD) effects in silicon microresonators with an integrated spatiotemporal formalism. The strong and narrow Raman gain constitute a threshold behavior with respect to free spectral range above which stable dark pulses can exist. The breathing dark pulses induced by HOD mainly depend on the amplitude and sign of third-order dispersion coefficient and their properties are also affected by the Raman assisted four wave mixing process. Such dissipative structures formed through perturbed switching waves, mainly exist in a larger red detuning region than that of stable dark pulses. Their breathing characteristics related to driving conditions have been analyzed in detail. Furthermore, the octave spanning mid-infrared (MIR) frequency combs via Cherenkov radiation are demonstrated, which circumvent chaotic and multi-soliton states compared with their anomalous dispersion-based counterpart. Our findings provide a viable way to investigate the physics inside dark pulses and broadband MIR microcombs generation.
Collapse
|
14
|
Lottes J, Biondini G, Trillo S. Excitation of switching waves in normally dispersive Kerr cavities. OPTICS LETTERS 2021; 46:2481-2484. [PMID: 33988615 DOI: 10.1364/ol.425677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
A coherently pumped, passive cavity supports, in the normal dispersion regime, the propagation of still interlocked fronts or switching waves that form invariant localized temporal structures. We address theoretically the problem of the excitation of this type of wave packet. First, we map all the dynamical behaviors of the switching waves as a function of accessible parameters, namely, the cavity detuning and input energy deficiency, using box-like excitation of the intracavity field. Then we show how a good degree of control can be obtained by applying a negative or positive external pulsed excitation.
Collapse
|
15
|
Jang YS, Liu H, Yang J, Yu M, Kwong DL, Wong CW. Nanometric Precision Distance Metrology via Hybrid Spectrally Resolved and Homodyne Interferometry in a Single Soliton Frequency Microcomb. PHYSICAL REVIEW LETTERS 2021; 126:023903. [PMID: 33512195 DOI: 10.1103/physrevlett.126.023903] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 10/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Laser interferometry serves a fundamental role in science and technology, assisting precision metrology and dimensional length measurement. During the past decade, laser frequency combs-a coherent optical-microwave frequency ruler over a broad spectral range with traceability to time-frequency standards-have contributed pivotal roles in laser dimensional metrology with ever-growing demands in measurement precision. Here we report spectrally resolved laser dimensional metrology via a free-running soliton frequency microcomb, with nanometric-scale precision. Spectral interferometry provides information on the optical time-of-flight signature, and the large free-spectral range and high coherence of the microcomb enable tooth-resolved and high-visibility interferograms that can be directly read out with optical spectrum instrumentation. We employ a hybrid timing signal from comb-line homodyne, microcomb, and background amplified spontaneous emission spectrally resolved interferometry-all from the same spectral interferogram. Our combined soliton and homodyne architecture demonstrates a 3-nm repeatability over a 23-mm nonambiguity range achieved via homodyne interferometry and over 1000-s stability in the long-term precision metrology at the white noise limits.
Collapse
Affiliation(s)
- Yoon-Soo Jang
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, California 90095, USA
- Length Standards Group, Division of Physical Metrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hao Liu
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, California 90095, USA
| | - Jinghui Yang
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, California 90095, USA
| | - Mingbin Yu
- Institute of Microelectronics, Singapore 117685, Singapore
| | - Dim-Lee Kwong
- Institute of Microelectronics, Singapore 117685, Singapore
| | - Chee Wei Wong
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
16
|
Jia K, Wang X, Kwon D, Wang J, Tsao E, Liu H, Ni X, Guo J, Yang M, Jiang X, Kim J, Zhu SN, Xie Z, Huang SW. Photonic Flywheel in a Monolithic Fiber Resonator. PHYSICAL REVIEW LETTERS 2020; 125:143902. [PMID: 33064523 DOI: 10.1103/physrevlett.125.143902] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate the first compact photonic flywheel with sub-fs time jitter (averaging times up to 10 μs) at the quantum-noise limit of a monolithic fiber resonator. Such quantum-limited performance is accessed through novel two-step pumping scheme for dissipative Kerr soliton generation. Controllable interaction between stimulated Brillouin lasing and Kerr nonlinearity enhances the DKS coherence and mitigates the thermal instability challenge, achieving a remarkable 22-Hz intrinsic comb linewidth and an unprecedented phase noise of -180 dBc/Hz at 945-MHz carrier at free running. The scheme can be generalized to various device platforms for field-deployable precision metrology.
Collapse
Affiliation(s)
- Kunpeng Jia
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Xiaohan Wang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Dohyeon Kwon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jiarong Wang
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Eugene Tsao
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Huaying Liu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Xin Ni
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jian Guo
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Mufan Yang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoshun Jiang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jungwon Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Shi-Ning Zhu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhenda Xie
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Shu-Wei Huang
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
17
|
Li Y, Huang SW, Li B, Liu H, Yang J, Vinod AK, Wang K, Yu M, Kwong DL, Wang HT, Wong KKY, Wong CW. Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs. LIGHT, SCIENCE & APPLICATIONS 2020; 9:52. [PMID: 32284854 PMCID: PMC7118405 DOI: 10.1038/s41377-020-0290-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/14/2020] [Accepted: 03/14/2020] [Indexed: 05/23/2023]
Abstract
Femtosecond mode-locked laser frequency combs have served as the cornerstone in precision spectroscopy, all-optical atomic clocks, and measurements of ultrafast dynamics. Recently frequency microcombs based on nonlinear microresonators have been examined, exhibiting remarkable precision approaching that of laser frequency combs, on a solid-state chip-scale platform and from a fundamentally different physical origin. Despite recent successes, to date, the real-time dynamical origins and high-power stabilities of such frequency microcombs have not been fully addressed. Here, we unravel the transitional dynamics of frequency microcombs from chaotic background routes to femtosecond mode-locking in real time, enabled by our ultrafast temporal magnifier metrology and improved stability of dispersion-managed dissipative solitons. Through our dispersion-managed oscillator, we further report a stability zone that is more than an order-of-magnitude larger than its prior static homogeneous counterparts, providing a novel platform for understanding ultrafast dissipative dynamics and offering a new path towards high-power frequency microcombs.
Collapse
Affiliation(s)
- Yongnan Li
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA 90095 USA
- School of Physics and The MOE Key Laboratory of Weak Light Nonlinear Photonics, Nankai University, Tianjin, China
| | - Shu-Wei Huang
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA 90095 USA
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Bowen Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Hao Liu
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA 90095 USA
| | - Jinghui Yang
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA 90095 USA
| | - Abhinav Kumar Vinod
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA 90095 USA
| | - Ke Wang
- School of Physics and The MOE Key Laboratory of Weak Light Nonlinear Photonics, Nankai University, Tianjin, China
| | - Mingbin Yu
- Institute of Microelectronics, A*STAR, Singapore, 117865 Singapore
| | - Dim-Lee Kwong
- Institute of Microelectronics, A*STAR, Singapore, 117865 Singapore
| | - Hui-Tian Wang
- School of Physics and The MOE Key Laboratory of Weak Light Nonlinear Photonics, Nankai University, Tianjin, China
| | - Kenneth Kin-Yip Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Chee Wei Wong
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
18
|
Ye Z, Fülöp A, Helgason ÓB, Andrekson PA, Torres-Company V. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics. OPTICS LETTERS 2019; 44:3326-3329. [PMID: 31259952 DOI: 10.1364/ol.44.003326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Silicon nitride is a dielectric material widely used for applications in linear and nonlinear optics. It has an ultra-broad transparency window, low intrinsic loss, and a refractive index that allows for moderate optical field confinement in waveguides. The chemical composition of this material can be precisely set during the fabrication process, leading to an extra degree of freedom for tailoring the optical and mechanical properties of photonic chips. Silicon-rich silicon nitride waveguides are appealing for nonlinear optics, because they have a higher nonlinear Kerr coefficient and refractive index than what is possible with stoichiometric silicon nitride. This is a direct consequence of the increased silicon content. However, silicon-rich silicon nitride waveguides typically display higher absorption losses. In this Letter, we report low-loss (∼0.4 dB/cm) silicon-rich silicon nitride waveguides. The structures feature high optical confinement and can be engineered with low anomalous dispersion. We find an optimum silicon composition that, through an annealing process, overcomes optical losses associated to N-H bonds in the telecom band. Based on this technology, we successfully fabricate microresonators with mean quality factors (Q) ∼0.8×106 in the C and L bands. Broadband coherent microresonator frequency combs are generated in this platform, indicating its potential for efficient Kerr nonlinear optics.
Collapse
|
19
|
Zhou H, Geng Y, Cui W, Huang SW, Zhou Q, Qiu K, Wei Wong C. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. LIGHT, SCIENCE & APPLICATIONS 2019; 8:50. [PMID: 31149335 PMCID: PMC6538660 DOI: 10.1038/s41377-019-0161-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 05/14/2023]
Abstract
Dissipative Kerr solitons in resonant frequency combs offer a promising route for ultrafast mode-locking, precision spectroscopy and time-frequency standards. The dynamics for the dissipative soliton generation, however, are intrinsically intertwined with thermal nonlinearities, limiting the soliton generation parameter map and statistical success probabilities of the solitary state. Here, via use of an auxiliary laser heating approach to suppress thermal dragging dynamics in dissipative soliton comb formation, we demonstrate stable Kerr soliton singlet formation and soliton bursts. First, we access a new soliton existence range with an inverse-sloped Kerr soliton evolution-diminishing soliton energy with increasing pump detuning. Second, we achieve deterministic transitions from Turing-like comb patterns directly into the dissipative Kerr soliton singlet pulse bypassing the chaotic states. This is achieved by avoiding subcomb overlaps at lower pump power, with near-identical singlet soliton comb generation over twenty instances. Third, with the red-detuned pump entrance route enabled, we uncover unique spontaneous soliton bursts in the direct formation of low-noise optical frequency combs from continuum background noise. The burst dynamics are due to the rapid entry and mutual attraction of the pump laser into the cavity mode, aided by the auxiliary laser and matching well with our numerical simulations. Enabled by the auxiliary-assisted frequency comb dynamics, we demonstrate an application of automatic soliton comb recovery and long-term stabilization against strong external perturbations. Our findings hold potential to expand the parameter space for ultrafast nonlinear dynamics and precision optical frequency comb stabilization.
Collapse
Affiliation(s)
- Heng Zhou
- Key Lab of Optical Fiber Sensing and Communication Networks, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Yong Geng
- Key Lab of Optical Fiber Sensing and Communication Networks, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Wenwen Cui
- Key Lab of Optical Fiber Sensing and Communication Networks, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Shu-Wei Huang
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA 90095 USA
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309 USA
| | - Qiang Zhou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Kun Qiu
- Key Lab of Optical Fiber Sensing and Communication Networks, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Chee Wei Wong
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
20
|
Bao C, Xuan Y, Wang C, Fülöp A, Leaird DE, Torres-Company V, Qi M, Weiner AM. Observation of Breathing Dark Pulses in Normal Dispersion Optical Microresonators. PHYSICAL REVIEW LETTERS 2018; 121:257401. [PMID: 30608800 DOI: 10.1103/physrevlett.121.257401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 06/09/2023]
Abstract
Breathers are localized waves in nonlinear systems that undergo a periodic variation in time or space. The concept of breathers is useful for describing many nonlinear physical systems including granular lattices, Bose-Einstein condensates, hydrodynamics, plasmas, and optics. In optics, breathers can exist in either the anomalous or the normal dispersion regimes, but they have only been characterized in the former, to our knowledge. Here, externally pumped optical microresonators are used to characterize the breathing dynamics of localized waves in the normal dispersion regime. High-Q optical microresonators featuring normal dispersion can yield mode-locked Kerr combs whose time-domain waveform corresponds to circulating dark pulses in the cavity. We show that with relatively high pump power these Kerr combs can enter a breathing regime, in which the time-domain waveform remains a dark pulse but experiences a periodic modulation on a time scale much slower than the microresonator round trip time. The breathing is observed in the optical frequency domain as a significant difference in the phase and amplitude of the modulation experienced by different spectral lines. In the highly pumped regime, a transition to a chaotic breathing state where the waveform remains dark-pulse-like is also observed, for the first time to our knowledge; such a transition is reversible by reducing the pump power.
Collapse
Affiliation(s)
- Chengying Bao
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, Indiana 47907-2035, USA
| | - Yi Xuan
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, Indiana 47907-2035, USA
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana 47907, USA
| | - Cong Wang
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, Indiana 47907-2035, USA
| | - Attila Fülöp
- Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Daniel E Leaird
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, Indiana 47907-2035, USA
| | - Victor Torres-Company
- Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Minghao Qi
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, Indiana 47907-2035, USA
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana 47907, USA
| | - Andrew M Weiner
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, Indiana 47907-2035, USA
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana 47907, USA
| |
Collapse
|
21
|
Kippenberg TJ, Gaeta AL, Lipson M, Gorodetsky ML. Dissipative Kerr solitons in optical microresonators. Science 2018; 361:361/6402/eaan8083. [DOI: 10.1126/science.aan8083] [Citation(s) in RCA: 699] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Gate-tunable frequency combs in graphene–nitride microresonators. Nature 2018; 558:410-414. [DOI: 10.1038/s41586-018-0216-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/19/2018] [Indexed: 12/24/2022]
|
23
|
Frequency Comb-Based WDM Transmission Systems Enabling Joint Signal Processing. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8050718] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Okawachi Y, Yu M, Venkataraman V, Latawiec PM, Griffith AG, Lipson M, Lončar M, Gaeta AL. Competition between Raman and Kerr effects in microresonator comb generation. OPTICS LETTERS 2017; 42:2786-2789. [PMID: 28708169 DOI: 10.1364/ol.42.002786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/19/2017] [Indexed: 05/27/2023]
Abstract
We investigate the effects of Raman and Kerr gain in crystalline microresonators and determine the conditions required to generate mode-locked frequency combs. We show theoretically that a strong, narrowband Raman gain determines a maximum microresonator size allowable to achieve comb formation. We verify this condition experimentally in diamond and silicon microresonators and show that there exists a competition between Raman and Kerr effects that leads to the existence of two different comb states.
Collapse
|
25
|
Li B, Huang SW, Li Y, Wong CW, Wong KKY. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics. Nat Commun 2017; 8:61. [PMID: 28680055 PMCID: PMC5498544 DOI: 10.1038/s41467-017-00093-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/31/2017] [Indexed: 11/24/2022] Open
Abstract
Single-shot real-time characterization of optical waveforms with sub-picosecond resolution is essential for investigating various ultrafast optical dynamics. However, the finite temporal recording length of current techniques hinders comprehensive understanding of many intriguing ultrafast optical phenomena that evolve over a timescale much longer than their fine temporal details. Inspired by the space-time duality and by stitching of multiple microscopic images to achieve a larger field of view in the spatial domain, here a panoramic-reconstruction temporal imaging (PARTI) system is devised to scale up the temporal recording length without sacrificing the resolution. As a proof-of-concept demonstration, the PARTI system is applied to study the dynamic waveforms of slowly evolved dissipative Kerr solitons in an ultrahigh-Q microresonator. Two 1.5-ns-long comprehensive evolution portraits are reconstructed with 740 fs resolution and dissipative Kerr soliton transition dynamics, in which a multiplet soliton state evolves into a stable singlet soliton state, are depicted.Real-time characterization of ultrafast dynamics comes with a tradeoff between temporal resolution and recording length. Here, Li et al. use a temporal reconstruction technique inspired by panoramic microscopy to image the dynamics of slowly evolved dissipative Kerr solitons in a microresonator.
Collapse
Affiliation(s)
- Bowen Li
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, 90095, USA
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong,, 999077, China
| | - Shu-Wei Huang
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, 90095, USA.
| | - Yongnan Li
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, 90095, USA
- School of Physics and The MOE Key Laboratory of Weak Light Nonlinear Photonics, Nankai University, Tianjin, 300072, China
| | - Chee Wei Wong
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, 90095, USA.
| | - Kenneth K Y Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong,, 999077, China.
| |
Collapse
|
26
|
Huang SW, Vinod AK, Yang J, Yu M, Kwong DL, Wong CW. Quasi-phase-matched multispectral Kerr frequency comb. OPTICS LETTERS 2017; 42:2110-2113. [PMID: 28569858 DOI: 10.1364/ol.42.002110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
We study a new type of Kerr frequency comb where the momentum conservation law is fulfilled by azimuthal modulation of the waveguide dispersion. The concept can expand the parametric range in which a Kerr frequency comb is obtained. In a good agreement with the theoretical analysis, we demonstrate a multispectral Kerr frequency comb covering important fiber-optic communication bands. Comb coherence and absence of a sub-comb offset are confirmed by continuous-wave heterodyne beat note and amplitude noise spectra measurements. The device can be used for achieving broadband optical frequency synthesizers and high-capacity coherent communication.
Collapse
|
27
|
Xue X, Leo F, Xuan Y, Jaramillo-Villegas JA, Wang PH, Leaird DE, Erkintalo M, Qi M, Weiner AM. Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e16253. [PMID: 30167244 PMCID: PMC6062166 DOI: 10.1038/lsa.2016.253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/01/2016] [Accepted: 11/11/2016] [Indexed: 05/31/2023]
Abstract
Simultaneous Kerr comb formation and second-harmonic generation with on-chip microresonators can greatly facilitate comb self-referencing for optical clocks and frequency metrology. Moreover, the presence of both second- and third-order nonlinearities results in complex cavity dynamics that is of high scientific interest but is still far from being well-understood. Here, we demonstrate that the interaction between the fundamental and the second-harmonic waves can provide an entirely new way of phase matching for four-wave mixing in optical microresonators, enabling the generation of optical frequency combs in the normal dispersion regime under conditions where comb creation is ordinarily prohibited. We derive new coupled time-domain mean-field equations and obtain simulation results showing good qualitative agreement with our experimental observations. Our findings provide a novel way of overcoming the dispersion limit for simultaneous Kerr comb formation and second-harmonic generation, which might prove to be especially important in the near-visible to visible range where several atomic transitions commonly used for the stabilization of optical clocks are located and where the large normal material dispersion is likely to dominate.
Collapse
Affiliation(s)
- Xiaoxiao Xue
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN 47907-2035, USA
| | - François Leo
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
- OPERA-photonics, Université libre de Bruxelles (U.L.B.), 50 Avenue F. D. Roosevelt, CP 194/5, B-1050 Bruxelles, Belgium
| | - Yi Xuan
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN 47907-2035, USA
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, IN 47907, USA
| | - Jose A Jaramillo-Villegas
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN 47907-2035, USA
- Facultad de Ingenierías, Universidad Tecnológica de Pereira, Pereira RIS 660003, Colombia
| | - Pei-Hsun Wang
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN 47907-2035, USA
| | - Daniel E Leaird
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN 47907-2035, USA
| | - Miro Erkintalo
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Minghao Qi
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN 47907-2035, USA
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, IN 47907, USA
| | - Andrew M Weiner
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN 47907-2035, USA
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
Li Q, Briles TC, Westly DA, Drake TE, Stone JR, Ilic BR, Diddams SA, Papp SB, Srinivasan K. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. OPTICA 2017; 4:193-203. [PMID: 28603754 PMCID: PMC5460676 DOI: 10.1364/optica.4.000193] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microresonator frequency combs can be an enabling technology for optical frequency synthesis and timekeeping in low size, weight, and power architectures. Such systems require comb operation in low-noise, phase-coherent states such as solitons, with broad spectral bandwidths (e.g., octave-spanning) for self-referencing to detect the carrier-envelope offset frequency. However, accessing such states is complicated by thermo-optic dispersion. For example, in the Si3N4 platform, precisely dispersion-engineered structures can support broadband operation, but microsecond thermal time constants often require fast pump power or frequency control to stabilize the solitons. In contrast, here we consider how broadband soliton states can be accessed with simple pump laser frequency tuning, at a rate much slower than the thermal dynamics. We demonstrate octave-spanning soliton frequency combs in Si3N4 microresonators, including the generation of a multi-soliton state with a pump power near 40 mW and a single-soliton state with a pump power near 120 mW. We also develop a simplified two-step analysis to explain how these states are accessed without fast control of the pump laser, and outline the required thermal properties for such operation. Our model agrees with experimental results as well as numerical simulations based on a Lugiato-Lefever equation that incorporates thermo-optic dispersion. Moreover, it also explains an experimental observation that a member of an adjacent mode family on the red-detuned side of the pump mode can mitigate the thermal requirements for accessing soliton states.
Collapse
Affiliation(s)
- Qing Li
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, USA
| | - Travis C. Briles
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Daron A. Westly
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Tara E. Drake
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Jordan R. Stone
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - B. Robert Ilic
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Scott A. Diddams
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Scott B. Papp
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Kartik Srinivasan
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
29
|
Kwon D, Jeon CG, Shin J, Heo MS, Park SE, Song Y, Kim J. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs. Sci Rep 2017; 7:40917. [PMID: 28102352 PMCID: PMC5244383 DOI: 10.1038/srep40917] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/13/2016] [Indexed: 11/09/2022] Open
Abstract
Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10-9 fs2/Hz (equivalent to -174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources.
Collapse
Affiliation(s)
- Dohyeon Kwon
- School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Chan-Gi Jeon
- School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Junho Shin
- School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Myoung-Sun Heo
- Center for Time and Frequency, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Sang Eon Park
- Center for Time and Frequency, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
- Science of Measurements Program, University of Science and Technology (UST), Daejeon 34114, Korea
| | - Youjian Song
- School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Jungwon Kim
- School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
30
|
Ma R, Zhang WL, Zeng XP, Yang ZJ, Rao YJ, Yao BC, Yu CB, Wu Y, Yu SF. Quasi mode-locking of coherent feedback random fiber laser. Sci Rep 2016; 6:39703. [PMID: 28004785 PMCID: PMC5177947 DOI: 10.1038/srep39703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/25/2016] [Indexed: 01/22/2023] Open
Abstract
Mode-locking is a milestone in the history of lasers that allows the generation of short light pulses and stabilization of lasers. This phenomenon is known to occur only in standard ordered lasers for long time and until recently it is found that it also occurs in disordered random lasers formed by nanoscale particles. Here, we report the realization of a so-called quasi mode-locking of coherent feedback random fiber laser which consists of a partially disordered linear cavity formed between a point reflector and a random distributed fiber Bragg grating array with an inserted graphene saturable absorber. We show that multi-groups of regular light pulses/sub-pulses with different repetition frequencies are generated within the quasi mode-locking regime through the so-called collective resonances phenomenon in such a random fiber laser. This work may provide a platform to study mode locking as well as pulse dynamic regulation of random lasing emission of coherent feedback disordered structures and pave the way to the development of novel multi-frequency pulse fiber lasers with potentially wide frequency tuning range.
Collapse
Affiliation(s)
- R Ma
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 610054, China
| | - W L Zhang
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 610054, China
| | - X P Zeng
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Z J Yang
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Y J Rao
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 610054, China
| | - B C Yao
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 610054, China
| | - C B Yu
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Y Wu
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 610054, China
| | - S F Yu
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
31
|
Cui X, Tian H, Du Y, Shi G, Zhou Z. Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings. Sci Rep 2016; 6:36066. [PMID: 27824049 PMCID: PMC5099914 DOI: 10.1038/srep36066] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/10/2016] [Indexed: 11/30/2022] Open
Abstract
We investigate narrowband transmission filters based on subwavelength-grating reflectors at normal incidence. Computational results show that the filtering is realized through symmetry-protected mode coupling. The guided mode resonances introduced by the slab layer allow flexible control of the filter frequencies. The quality factor of the filters could exceed 106. Dielectric gratings can be used over the entire range of electromagnetic waves, owing to their scale-invariant operations. Owing to the high refraction index and low index dispersion of semiconductors in the infrared range, these filters can be applied over a broad range from near infrared to terahertz frequencies.
Collapse
Affiliation(s)
- Xuan Cui
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Hao Tian
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Du
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Guang Shi
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Zhongxiang Zhou
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
32
|
Matsko AB, Savchenkov AA, Huang SW, Maleki L. Clustered frequency comb. OPTICS LETTERS 2016; 41:5102-5105. [PMID: 27805695 DOI: 10.1364/ol.41.005102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We show theoretically that it is feasible to generate a spectrally broad Kerr frequency comb consisting of several spectral clusters phase matched due to interplay among second- and higher-order group velocity dispersion contributions. We validate the theoretical analysis experimentally by driving a magnesium fluoride resonator, characterized with 110 GHz free spectral range, with a continuous wave light at 1.55 μm and observing two comb clusters separated by nearly two-thirds of an octave.
Collapse
|
33
|
Okawachi Y, Yu M, Luke K, Carvalho DO, Lipson M, Gaeta AL. Quantum random number generator using a microresonator-based Kerr oscillator. OPTICS LETTERS 2016; 41:4194-4197. [PMID: 27628355 DOI: 10.1364/ol.41.004194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate an all-optical quantum random number generator using a dual-pumped degenerate optical parametric oscillator in a silicon nitride microresonator. The frequency-degenerate bi-phase state output is realized using parametric four-wave mixing in the normal group-velocity dispersion regime with two nondegenerate pumps. We achieve a random number generation rate of 2 MHz and verify the randomness of our output using the National Institute of Standards and Technology Statistical Test Suite. The scheme offers potential for a chip-scale random number generator with gigahertz generation rates and no postprocessing.
Collapse
|
34
|
Lim J, Huang SW, Vinod AK, Mortazavian P, Yu M, Kwong DL, Savchenkov AA, Matsko AB, Maleki L, Wong CW. Stabilized chip-scale Kerr frequency comb via a high-Q reference photonic microresonator. OPTICS LETTERS 2016; 41:3706-9. [PMID: 27519068 DOI: 10.1364/ol.41.003706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We stabilize a chip-scale Si3N4 phase-locked Kerr frequency comb via locking the pump laser to an independent stable high-Q reference microresonator and locking the comb spacing to an external microwave oscillator. In this comb, the pump laser shift induces negligible impact on the comb spacing change. This scheme is a step toward miniaturization of the stabilized Kerr comb system as the microresonator reference can potentially be integrated on-chip. Fractional instability of the optical harmonics of the stabilized comb is limited by the microwave oscillator used for a comb spacing lock below 1 s averaging time and coincides with the pump laser drift in the long term.
Collapse
|
35
|
Abstract
We show a new class of complex solitary wave that exists in a nonlinear optical cavity with appropriate dispersion characteristics. The cavity soliton consists of multiple soliton-like spectro-temporal components that exhibit distinctive colors but coincide in time and share a common phase, formed together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor cavity soliton shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which would be very useful for versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy.
Collapse
|
36
|
Parra-Rivas P, Gomila D, Knobloch E, Coen S, Gelens L. Origin and stability of dark pulse Kerr combs in normal dispersion resonators. OPTICS LETTERS 2016; 41:2402-2405. [PMID: 27244374 DOI: 10.1364/ol.41.002402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We analyze dark pulse Kerr frequency combs in optical resonators with normal group-velocity dispersion using the Lugiato-Lefever model. We show that in the time domain the combs correspond to interlocked switching waves between the upper and lower homogeneous states, and explain how this fact accounts for many of their experimentally observed properties. Modulational instability does not play any role in their existence. We provide a detailed map indicating for which parameters stable dark pulse Kerr combs can be found, and how they are destabilized for increasing values of frequency detuning.
Collapse
|
37
|
Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression. Sci Rep 2016; 6:26255. [PMID: 27181420 PMCID: PMC4867630 DOI: 10.1038/srep26255] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/28/2016] [Indexed: 11/08/2022] Open
Abstract
High-Q microresonator is perceived as a promising platform for optical frequency comb generation, via dissipative soliton formation. In order to achieve a higher quality factor and obtain the necessary anomalous dispersion, multi-mode waveguides were previously implemented in Si3N4 microresonators. However, coupling between different transverse mode families in multi-mode waveguides results in periodic disruption of dispersion and quality factor, and consequently causes perturbation to dissipative soliton formation and amplitude modulation to the corresponding spectrum. Careful choice of pump wavelength to avoid the mode crossing region is thus critical in conventional Si3N4 microresonators. Here, we report a novel design of Si3N4 microresonator in which single-mode operation, high quality factor, and anomalous dispersion are attained simultaneously. The novel microresonator is consisted of uniform single-mode waveguides in the semi-circle region, to eliminate bending induced mode coupling, and adiabatically tapered waveguides in the straight region, to avoid excitation of higher order modes. The intrinsic quality factor of the microresonator reaches 1.36 × 106 while the group velocity dispersion remains to be anomalous at −50 fs2/mm. With this novel microresonator, we demonstrate that broadband phase-locked Kerr frequency combs with flat and smooth spectra can be generated by pumping at any resonances in the optical C-band.
Collapse
|
38
|
Wang PH, Jaramillo-Villegas JA, Xuan Y, Xue X, Bao C, Leaird DE, Qi M, Weiner AM. Intracavity characterization of micro-comb generation in the single-soliton regime. OPTICS EXPRESS 2016; 24:10890-7. [PMID: 27409909 DOI: 10.1364/oe.24.010890] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Soliton formation in on-chip micro-comb generation balances cavity dispersion and nonlinearity and allows coherent, low-noise comb operation. We study the intracavity waveform of an on-chip microcavity soliton in a silicon nitride microresonator configured with a drop port. Whereas combs measured at the through port are accompanied by a very strong pump line which accounts for >99% of the output power, our experiments reveal that inside the microcavity, most of the power is in the soliton. Time-domain measurements performed at the drop port provide information that directly reflects the intracavity field. Data confirm a train of bright, close to bandwidth-limited pulses, accompanied by a weak continuous wave (CW) background with a small phase shift relative to the comb.
Collapse
|
39
|
Copie F, Conforti M, Kudlinski A, Mussot A, Trillo S. Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators. PHYSICAL REVIEW LETTERS 2016; 116:143901. [PMID: 27104711 DOI: 10.1103/physrevlett.116.143901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 06/05/2023]
Abstract
We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.
Collapse
Affiliation(s)
- François Copie
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Matteo Conforti
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Alexandre Kudlinski
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Arnaud Mussot
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Stefano Trillo
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy
| |
Collapse
|
40
|
Huang SW, Yang J, Yu M, McGuyer BH, Kwong DL, Zelevinsky T, Wong CW. A broadband chip-scale optical frequency synthesizer at 2.7 × 10(-16) relative uncertainty. SCIENCE ADVANCES 2016; 2:e1501489. [PMID: 27152341 PMCID: PMC4846450 DOI: 10.1126/sciadv.1501489] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/17/2016] [Indexed: 05/15/2023]
Abstract
Optical frequency combs-coherent light sources that connect optical frequencies with microwave oscillations-have become the enabling tool for precision spectroscopy, optical clockwork, and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but Kerr nonlinear dynamics in high-Q solid-state microresonators has recently demonstrated promising features as alternative platforms. The advance not only fosters studies of chip-scale frequency metrology but also extends the realm of optical frequency combs. We report the full stabilization of chip-scale optical frequency combs. The microcomb's two degrees of freedom, one of the comb lines and the native 18-GHz comb spacing, are simultaneously phase-locked to known optical and microwave references. Active comb spacing stabilization improves long-term stability by six orders of magnitude, reaching a record instrument-limited residual instability of [Formula: see text]. Comparing 46 nitride frequency comb lines with a fiber laser frequency comb, we demonstrate the unprecedented microcomb tooth-to-tooth relative frequency uncertainty down to 50 mHz and 2.7 × 10(-16), heralding novel solid-state applications in precision spectroscopy, coherent communications, and astronomical spectrography.
Collapse
Affiliation(s)
- Shu-Wei Huang
- Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA 90095, USA
- Corresponding author. E-mail: (S.-W.H.); (C.W.W.)
| | - Jinghui Yang
- Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA 90095, USA
| | - Mingbin Yu
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 117865, Singapore
| | - Bart H. McGuyer
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Dim-Lee Kwong
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 117865, Singapore
| | - Tanya Zelevinsky
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Chee Wei Wong
- Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA 90095, USA
- Corresponding author. E-mail: (S.-W.H.); (C.W.W.)
| |
Collapse
|
41
|
Xue X, Xuan Y, Wang C, Wang PH, Liu Y, Niu B, Leaird DE, Qi M, Weiner AM. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. OPTICS EXPRESS 2016; 24:687-698. [PMID: 26832298 DOI: 10.1364/oe.24.000687] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microresonator based Kerr frequency comb generation has many attractive features, including ultrabroad spectra, chip-level integration, and low power consumption. Achieving precise tuning control over the comb frequencies will be important for a number of practical applications, but has been little explored for microresonator combs. In this paper, we characterize the thermal tuning of a coherent Kerr frequency comb generated from an on-chip silicon nitride microring. When the microring temperature is changed by ~70 °C with an integrated microheater, the line spacing and center frequency of the comb are tuned respectively by -253 MHz (-3.57 MHz/°C) and by -175 GHz (-2.63 GHz/°C); the latter constitutes 75% of the comb line spacing. From these results we obtain a shift of 25 GHz (362.07 MHz/°C) in the comb carrier-envelope offset frequency. Numerical simulations are performed by taking into account the thermo-optic effects in the waveguide core and cladding. The temperature variation of the comb line spacing predicted from simulations is close to that observed in experiments. The time-dependent thermal response of the microheater based tuning scheme is characterized; time constants of 30.9 μs and 0.71 ms are observed.
Collapse
|
42
|
Okawachi Y, Yu M, Luke K, Carvalho DO, Ramelow S, Farsi A, Lipson M, Gaeta AL. Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator. OPTICS LETTERS 2015; 40:5267-5270. [PMID: 26565851 DOI: 10.1364/ol.40.005267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate a degenerate parametric oscillator in a silicon nitride microresonator. We use two frequency-detuned pump waves to perform parametric four-wave mixing and operate in the normal group-velocity dispersion regime to produce signal and idler fields that are frequency degenerate. Our theoretical modeling shows that this regime enables generation of bimodal phase states, analogous to the χ(2)-based degenerate OPO. Our system offers potential for realization of CMOS-chip-based coherent optical computing and an all-optical quantum random number generator.
Collapse
|
43
|
Luke K, Okawachi Y, Lamont MRE, Gaeta AL, Lipson M. Broadband mid-infrared frequency comb generation in a Si(3)N(4) microresonator. OPTICS LETTERS 2015; 40:4823-6. [PMID: 26512459 DOI: 10.1364/ol.40.004823] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We demonstrate broadband frequency comb generation in the mid-infrared (MIR) from 2.3 to 3.5 μm in a Si(3)N(4) microresonator. We engineer the dispersion of the structure in the MIR using a Sellmeier equation we derive from experimental measurements performed on Si(3)N(4) films from the UV to the IR. We use deposition-anneal cycling to decrease absorption losses due to vibrational transitions in the MIR and achieve a Q-factor of 1.0×10(6). To our knowledge, this is the highest Q reported in this wavelength range for any on-chip resonator.
Collapse
|
44
|
Huang SW, Yang J, Lim J, Zhou H, Yu M, Kwong DL, Wong CW. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz. Sci Rep 2015; 5:13355. [PMID: 26311406 PMCID: PMC4550847 DOI: 10.1038/srep13355] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/23/2015] [Indexed: 11/27/2022] Open
Abstract
Laser frequency combs are coherent light sources that simultaneously provide pristine frequency spacings for precision metrology and the fundamental basis for ultrafast and attosecond sciences. Recently, nonlinear parametric conversion in high-Q microresonators has been suggested as an alternative platform for optical frequency combs, though almost all in 100 GHz frequencies or more. Here we report a low-phase-noise on-chip Kerr frequency comb with mode spacing compatible with high-speed silicon optoelectronics. The waveguide cross-section of the silicon nitride spiral resonator is designed to possess small and flattened group velocity dispersion, so that the Kerr frequency comb contains a record-high number of 3,600 phase-locked comb lines. We study the single-sideband phase noise as well as the long-term frequency stability and report the lowest phase noise floor achieved to date with -130 dBc/Hz at 1 MHz offset for the 18 GHz Kerr comb oscillator, along with feedback stabilization to achieve frequency Allan deviations of 7 × 10(-11) in 1 s. The reported system is a promising compact platform for achieving self-referenced Kerr frequency combs and also for high-capacity coherent communication architectures.
Collapse
Affiliation(s)
- S.-W. Huang
- Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, USA
- Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, and Mechanical Engineering, Columbia University, New York, NY, USA
| | - J. Yang
- Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, USA
- Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, and Mechanical Engineering, Columbia University, New York, NY, USA
| | - J. Lim
- Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, USA
| | - H. Zhou
- University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - M. Yu
- Institute of Microelectronics, Singapore, Singapore
| | - D.-L. Kwong
- Institute of Microelectronics, Singapore, Singapore
| | - C. W. Wong
- Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, USA
- Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, and Mechanical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
45
|
Miller SA, Okawachi Y, Ramelow S, Luke K, Dutt A, Farsi A, Gaeta AL, Lipson M. Tunable frequency combs based on dual microring resonators. OPTICS EXPRESS 2015; 23:21527-21540. [PMID: 26367998 DOI: 10.1364/oe.23.021527] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In order to achieve efficient parametric frequency comb generation in microresonators, external control of coupling between the cavity and the bus waveguide is necessary. However, for passive monolithically integrated structures, the coupling gap is fixed and cannot be externally controlled, making tuning the coupling inherently challenging. We design a dual-cavity coupled microresonator structure in which tuning one ring resonance frequency induces a change in the overall cavity coupling condition. We demonstrate wide extinction tunability with high efficiency by engineering the ring coupling conditions. Additionally, we note a distinct dispersion tunability resulting from coupling two cavities of slightly different path lengths, and present a new method of modal dispersion engineering. Our fabricated devices consist of two coupled high quality factor silicon nitride microresonators, where the extinction ratio of the resonances can be controlled using integrated microheaters. Using this extinction tunability, we optimize comb generation efficiency as well as provide tunability for avoiding higher-order mode-crossings, known for degrading comb generation. The device is able to provide a 110-fold improvement in the comb generation efficiency. Finally, we demonstrate open eye diagrams using low-noise phase-locked comb lines as a wavelength-division multiplexing channel.
Collapse
|
46
|
Bao C, Zhang L, Kimerling LC, Michel J, Yang C. Soliton breathing induced by stimulated Raman scattering and self-steepening in octave-spanning Kerr frequency comb generation. OPTICS EXPRESS 2015; 23:18665-18670. [PMID: 26191925 DOI: 10.1364/oe.23.018665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigate the impact of stimulated Raman scattering (SRS) and self-steepening (SS) on breather soliton dynamics in octave-spanning Kerr frequency comb generation. SRS and SS can transform chaotic fluctuations in cavity solitons into periodic breathing. Furthermore, with SRS and SS considered, bandwidth of the soliton breathes more than two times stronger. The simultaneous presence of SRS and SS also make the soliton breathe slower and degrades the coherence of the soliton.
Collapse
|
47
|
Lobanov VE, Lihachev G, Kippenberg TJ, Gorodetsky ML. Frequency combs and platicons in optical microresonators with normal GVD. OPTICS EXPRESS 2015; 23:7713-7721. [PMID: 25837109 DOI: 10.1364/oe.23.007713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We predict the existence of a novel type of the flat-top dissipative solitonic pulses, "platicons", in microresonators with normal group velocity dispersion (GVD). We propose methods to generate these platicons from cw pump. Their duration may be altered significantly by tuning the pump frequency. The transformation of a discrete energy spectrum of dark solitons of the Lugiato-Lefever equation into a quasicontinuous spectrum of platicons is demonstrated. Generation of similar structures is also possible with bi-harmonic, phase/amplitude modulated pump or via laser injection locking.
Collapse
|