1
|
Wong LWW, Shi X, Karnieli A, Lim J, Kumar S, Carbajo S, Kaminer I, Wong LJ. Free-electron crystals for enhanced X-ray radiation. LIGHT, SCIENCE & APPLICATIONS 2024; 13:29. [PMID: 38267427 PMCID: PMC10808554 DOI: 10.1038/s41377-023-01363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
Bremsstrahlung-the spontaneous emission of broadband radiation from free electrons that are deflected by atomic nuclei-contributes to the majority of X-rays emitted from X-ray tubes and used in applications ranging from medical imaging to semiconductor chip inspection. Here, we show that the bremsstrahlung intensity can be enhanced significantly-by more than three orders of magnitude-through shaping the electron wavefunction to periodically overlap with atoms in crystalline materials. Furthermore, we show how to shape the bremsstrahlung X-ray emission pattern into arbitrary angular emission profiles for purposes such as unidirectionality and multi-directionality. Importantly, we find that these enhancements and shaped emission profiles cannot be attributed solely to the spatial overlap between the electron probability distribution and the atomic centers, as predicted by the paraxial and non-recoil theory for free electron light emission. Our work highlights an unprecedented regime of free electron light emission where electron waveshaping provides multi-dimensional control over practical radiation processes like bremsstrahlung. Our results pave the way towards greater versatility in table-top X-ray sources and improved fundamental understanding of quantum electron-light interactions.
Collapse
Affiliation(s)
- Lee Wei Wesley Wong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xihang Shi
- Solid State Institute and Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Aviv Karnieli
- School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Jeremy Lim
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Suraj Kumar
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sergio Carbajo
- Electrical and Computer Engineering Department, UCLA, 420 Westwood, Los Angeles, CA, 90095, USA
- Physics and Astronomy Department, UCLA, 475 Portola Plaza, Los Angeles, CA, 90095, USA
- SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Ido Kaminer
- Solid State Institute and Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Liang Jie Wong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
2
|
Yu R, Huo P, Liu M, Zhu W, Agrawal A, Lu YQ, Xu T. Generation of Perfect Electron Vortex Beam with a Customized Beam Size Independent of Orbital Angular Momentum. NANO LETTERS 2023; 23:2436-2441. [PMID: 36723626 DOI: 10.1021/acs.nanolett.2c03822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electron vortex beam (EVB)-carrying quantized orbital angular momentum (OAM) plays an essential role in a series of fundamental research. However, the radius of the transverse intensity profile of a doughnut-shaped EVB strongly depends on the topological charge of the OAM, impeding its wide applications in electron microscopy. Inspired by the perfect vortex in optics, herein, we demonstrate a perfect electron vortex beam (PEVB), which completely unlocks the constraint between the beam size and the beam's OAM. We design nanoscale holograms to generate PEVBs carrying different quanta of OAM but exhibiting almost the same beam size. Furthermore, we show that the beam size of the PEVB can be readily controlled by only modifying the design parameters of the hologram. The generation of PEVB with a customized beam size independent of the OAM can promote various in situ applications of free electrons carrying OAM in electron microscopy.
Collapse
Affiliation(s)
- Ruixuan Yu
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Pengcheng Huo
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Mingze Liu
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Wenqi Zhu
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Amit Agrawal
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yan-Qing Lu
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Ting Xu
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| |
Collapse
|
3
|
Roitman D, Shiloh R, Lu PH, Dunin-Borkowski RE, Arie A. Shaping of Electron Beams Using Sculpted Thin Films. ACS PHOTONICS 2021; 8:3394-3405. [PMID: 34938823 PMCID: PMC8679091 DOI: 10.1021/acsphotonics.1c00951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 05/04/2023]
Abstract
Electron beam shaping by sculpted thin films relies on electron-matter interactions and the wave nature of electrons. It can be used to study physical phenomena of special electron beams and to develop technological applications in electron microscopy that offer new and improved measurement techniques and increased resolution in different imaging modes. In this Perspective, we review recent applications of sculpted thin films for electron orbital angular momentum sorting, improvements in phase contrast transmission electron microscopy, and aberration correction. For the latter, we also present new results of our work toward correction of the spherical aberration of Lorentz scanning transmission electron microscopes and suggest a method to correct chromatic aberration using thin films. This review provides practical insight for researchers in the field and motivates future progress in electron microscopy.
Collapse
Affiliation(s)
- Dolev Roitman
- School
of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roy Shiloh
- Physics
Department, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Peng-Han Lu
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich, Jülich 52428, Germany
- RWTH
Aachen University, Aachen 52062, Germany
| | - Rafal E. Dunin-Borkowski
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich, Jülich 52428, Germany
| | - Ady Arie
- School
of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
4
|
Schachinger T, Hartel P, Lu PH, Löffler S, Obermair M, Dries M, Gerthsen D, Dunin-Borkowski RE, Schattschneider P. Experimental realization of a π/2 vortex mode converter for electrons using a spherical aberration corrector. Ultramicroscopy 2021; 229:113340. [PMID: 34311124 DOI: 10.1016/j.ultramic.2021.113340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/18/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
In light optics, beams with orbital angular momentum (OAM) can be produced by employing a properly-tuned two-cylinder-lens arrangement, also called π/2 mode converter. It is not possible to convey this concept directly to the beam in an electron microscope due to the non-existence of cylinder lenses in commercial transmission electron microscopes (TEMs). A viable work-around are readily-available electron optical elements in the form of quadrupole lenses. In a proof-of-principle experiment in 2012, it has been shown that a single quadrupole in combination with a Hilbert phase-plate produces a spatially-confined, transient vortex mode. Here, an analogue to an optical π/2 mode converter is realized by repurposing a CEOS DCOR probe corrector in an aberration corrected TEM in a way that it resembles a dual cylinder lens using two quadrupoles. In order to verify the presence of OAM in the output beam, a fork dislocation grating is used as an OAM analyser. The possibility to use magnetic quadrupole fields instead of, e.g., prefabricated fork dislocation gratings to produce electron beams carrying OAM enhances the beam brightness by almost an order of magnitude and delivers switchable high-mode purity vortex beams without unwanted side-bands.
Collapse
Affiliation(s)
- T Schachinger
- Institute of Solid State Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria; University Service Centre for Transmission Electron Microscopy (USTEM), TU Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria.
| | - P Hartel
- CEOS Corrected Electron Optical Systems GmbH, Englerstraße 28, 69126 Heidelberg, Germany
| | - P-H Lu
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany; RWTH Aachen University, Ahornstraße 55, 52074 Aachen, Germany
| | - S Löffler
- University Service Centre for Transmission Electron Microscopy (USTEM), TU Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
| | - M Obermair
- Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, 76131 Karlsruhe, Germany
| | - M Dries
- Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, 76131 Karlsruhe, Germany
| | - D Gerthsen
- Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, 76131 Karlsruhe, Germany
| | - R E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - P Schattschneider
- Institute of Solid State Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria; University Service Centre for Transmission Electron Microscopy (USTEM), TU Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
| |
Collapse
|
5
|
Pozzi G, Rosi P, Tavabi AH, Karimi E, Dunin-Borkowski RE, Grillo V. A sorter for electrons based on magnetic elements. Ultramicroscopy 2021; 231:113287. [PMID: 33926773 DOI: 10.1016/j.ultramic.2021.113287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
The orbital angular momentum (OAM) sorter is an electron optical device for the measurement of an electron's OAM. It is based on two phase elements, which are referred to as an "unwrapper" and a "corrector" and are located in Fourier conjugate planes. The simplest implementation of the sorter is based on electrostatic phase elements, such as a charged needle for the unwrapper and electrodes with alternating charges or potentials for the corrector. Here, we use a formal analogy between phase shifts introduced by charges and vertical currents to propose alternative designs for the sorter elements, which are based on phase shifts introduced by magnetic fields. We use this concept to provide a general guide for phase element design, which promises to provide improved reliability of phase control in electron optics.
Collapse
Affiliation(s)
- Giulio Pozzi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Physics and Astronomy, University of Bologna, viale B. Pichat 6/2, 40127 Bologna, Italy
| | - Paolo Rosi
- Department FIM, University of Modena and Reggio Emilia, via G. Campi 213/a, 41125 Modena, Italy
| | - Amir H Tavabi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Ebrahim Karimi
- Department of Physics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario K1N 6N5, Canada
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Vincenzo Grillo
- Department FIM, University of Modena and Reggio Emilia, via G. Campi 213/a, 41125 Modena, Italy; CNR-Institute of Nanoscience-S3, via G. Campi 213/a, 41125 Modena, Italy.
| |
Collapse
|
6
|
Wong LJ, Rivera N, Murdia C, Christensen T, Joannopoulos JD, Soljačić M, Kaminer I. Control of quantum electrodynamical processes by shaping electron wavepackets. Nat Commun 2021; 12:1700. [PMID: 33731697 PMCID: PMC7969958 DOI: 10.1038/s41467-021-21367-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
Fundamental quantum electrodynamical (QED) processes, such as spontaneous emission and electron-photon scattering, encompass phenomena that underlie much of modern science and technology. Conventionally, calculations in QED and other field theories treat incoming particles as single-momentum states, omitting the possibility that coherent superposition states, i.e., shaped wavepackets, can alter fundamental scattering processes. Here, we show that free electron waveshaping can be used to design interferences between two or more pathways in a QED process, enabling precise control over the rate of that process. As an example, we show that free electron waveshaping modifies both spatial and spectral characteristics of bremsstrahlung emission, leading for instance to enhancements in directionality and monochromaticity. The ability to tailor general QED processes opens up additional avenues of control in phenomena ranging from optical excitation (e.g., plasmon and phonon emission) in electron microscopy to free electron lasing in the quantum regime.
Collapse
Affiliation(s)
- Liang Jie Wong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Nicholas Rivera
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chitraang Murdia
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas Christensen
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John D Joannopoulos
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marin Soljačić
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ido Kaminer
- Department of Electrical Engineering, Technion, Haifa, Israel.
| |
Collapse
|
7
|
Tavabi AH, Rosi P, Rotunno E, Roncaglia A, Belsito L, Frabboni S, Pozzi G, Gazzadi GC, Lu PH, Nijland R, Ghosh M, Tiemeijer P, Karimi E, Dunin-Borkowski RE, Grillo V. Experimental Demonstration of an Electrostatic Orbital Angular Momentum Sorter for Electron Beams. PHYSICAL REVIEW LETTERS 2021; 126:094802. [PMID: 33750150 DOI: 10.1103/physrevlett.126.094802] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/06/2020] [Accepted: 01/12/2021] [Indexed: 05/21/2023]
Abstract
The component of orbital angular momentum (OAM) in the propagation direction is one of the fundamental quantities of an electron wave function that describes its rotational symmetry and spatial chirality. Here, we demonstrate experimentally an electrostatic sorter that can be used to analyze the OAM states of electron beams in a transmission electron microscope. The device achieves postselection or sorting of OAM states after electron-material interactions, thereby allowing the study of new material properties such as the magnetic states of atoms. The required electron-optical configuration is achieved by using microelectromechanical systems technology and focused ion beam milling to control the electron phase electrostatically with a lateral resolution of 50 nm. An OAM resolution of 1.5ℏ is realized in tests on controlled electron vortex beams, with the perspective of reaching an optimal OAM resolution of 1ℏ in the near future.
Collapse
Affiliation(s)
- Amir H Tavabi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Paolo Rosi
- Dipartimento FIM, Universitá di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Enzo Rotunno
- Centro S3, Istituto di Nanoscienze-CNR, 41125 Modena, Italy
| | - Alberto Roncaglia
- Istituto per la Microelettronica e i Microsistemi-CNR, 40129 Bologna, Italy
| | - Luca Belsito
- Istituto per la Microelettronica e i Microsistemi-CNR, 40129 Bologna, Italy
| | - Stefano Frabboni
- Dipartimento FIM, Universitá di Modena e Reggio Emilia, 41125 Modena, Italy
- Centro S3, Istituto di Nanoscienze-CNR, 41125 Modena, Italy
| | - Giulio Pozzi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
| | | | - Peng-Han Lu
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
- RWTH Aachen University, 52074 Aachen, Germany
| | - Robert Nijland
- Thermo Fisher Scientific, PO Box 80066, 5600 KA Eindhoven, Netherlands
| | - Moumita Ghosh
- Thermo Fisher Scientific, PO Box 80066, 5600 KA Eindhoven, Netherlands
| | - Peter Tiemeijer
- Thermo Fisher Scientific, PO Box 80066, 5600 KA Eindhoven, Netherlands
| | - Ebrahim Karimi
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | |
Collapse
|
8
|
Remez R, Karnieli A, Trajtenberg-Mills S, Shapira N, Kaminer I, Lereah Y, Arie A. Observing the Quantum Wave Nature of Free Electrons through Spontaneous Emission. PHYSICAL REVIEW LETTERS 2019; 123:060401. [PMID: 31491157 DOI: 10.1103/physrevlett.123.060401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/03/2019] [Indexed: 06/10/2023]
Abstract
We investigate, both experimentally and theoretically, the interpretation of the free-electron wave function using spontaneous emission. We use a transversely wide single-electron wave function to describe the spatial extent of transverse coherence of an electron beam in a standard transmission electron microscope. When the electron beam passes next to a metallic grating, spontaneous Smith-Purcell radiation is emitted. We then examine the effect of the electron wave function transversal size on the emitted radiation. Two interpretations widely used in the literature are considered: (1) radiation by a continuous current density attributed to the quantum probability current, equivalent to the spreading of the electron charge continuously over space; and (2) interpreting the square modulus of the wave function as a probability distribution of finding a point particle at a certain location, wherein the electron charge is always localized in space. We discuss how these two interpretations give contradictory predictions for the radiation pattern in our experiment, comparing the emission from narrow and wide wave functions with respect to the emitted radiation's wavelength. Matching our experiment with a new quantum-electrodynamics derivation, we conclude that the measurements can be explained by the probability distribution approach wherein the electron interacts with the grating as a classical point charge. Our findings clarify the transition between the classical and quantum regimes and shed light on the mechanisms that take part in general light-matter interactions.
Collapse
Affiliation(s)
- Roei Remez
- School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aviv Karnieli
- School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sivan Trajtenberg-Mills
- School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Niv Shapira
- School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ido Kaminer
- Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yossi Lereah
- School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ady Arie
- School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Grünewald L, Gerthsen D, Hettler S. Fabrication of phase masks from amorphous carbon thin films for electron-beam shaping. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1290-1302. [PMID: 31293866 PMCID: PMC6604735 DOI: 10.3762/bjnano.10.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Background: Electron-beam shaping opens up the possibility for novel imaging techniques in scanning (transmission) electron microscopy (S(T)EM). Phase-modulating thin-film devices (phase masks) made of amorphous silicon nitride are commonly used to generate a wide range of different beam shapes. An additional conductive layer on such a device is required to avoid charging under electron-beam irradiation, which induces unwanted scattering events. Results: Phase masks of conductive amorphous carbon (aC) were successfully fabricated with optical lithography and focused ion beam milling. Analysis by TEM shows the successful generation of Bessel and vortex beams. No charging or degradation of the aC phase masks was observed. Conclusion: Amorphous carbon can be used as an alternative to silicon nitride for phase masks at the expense of a more complex fabrication process. The quality of arbitrary beam shapes could benefit from the application of phase masks made of amorphous C.
Collapse
Affiliation(s)
- Lukas Grünewald
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology (KIT), Engesserstrasse 7, 76131 Karlsruhe, Germany
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology (KIT), Engesserstrasse 7, 76131 Karlsruhe, Germany
| | - Simon Hettler
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology (KIT), Engesserstrasse 7, 76131 Karlsruhe, Germany
| |
Collapse
|
10
|
Li H, Liu H, Chen X. Nonlinear generation of Airy vortex beam. OPTICS EXPRESS 2018; 26:21204-21209. [PMID: 30119424 DOI: 10.1364/oe.26.021204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Recently, hybrid beams have sparked considerable interest because of their properties coming from different kinds of beams at the same time. Here, we experimentally demonstrate Airy vortex beam generation in the nonlinear frequency conversion process when the fundamental wave with its phase modulated by a spatial light modulator is incident into a homogeneous nonlinear medium. In our experiments, second harmonic Airy circle vortex beams and Airy ellipse vortex beams were generated and the topological charge was also measured. The parabolic trajectory of those Airy vortex beams can be easily adjusted by altering the fundamental wave phase. This study provides a simple way to generate second harmonic Airy vortex beams, which may broaden its future use in optical manipulation and light-sheet microscopy.
Collapse
|
11
|
Yang Y, Thirunavukkarasu G, Babiker M, Yuan J. Orbital-Angular-Momentum Mode Selection by Rotationally Symmetric Superposition of Chiral States with Application to Electron Vortex Beams. PHYSICAL REVIEW LETTERS 2017; 119:094802. [PMID: 28949569 DOI: 10.1103/physrevlett.119.094802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 05/27/2023]
Abstract
A general orbital-angular-momentum (OAM) mode selection principle is put forward involving the rotationally symmetric superposition of chiral states. This principle is not only capable of explaining the operation of vortex generating elements such as spiral zone plate holograms, but more importantly, it enables the systematic and flexible generation of structured OAM waves in general. This is demonstrated both experimentally and theoretically in the context of electron vortex beams using rotationally symmetric binary amplitude chiral sieve masks.
Collapse
Affiliation(s)
- Yuanjie Yang
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
- School of Astronautics & Aeronautics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G Thirunavukkarasu
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - M Babiker
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jun Yuan
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
12
|
Barnett SM. Relativistic Electron Vortices. PHYSICAL REVIEW LETTERS 2017; 118:114802. [PMID: 28368643 DOI: 10.1103/physrevlett.118.114802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Indexed: 06/07/2023]
Abstract
The desire to push recent experiments on electron vortices to higher energies leads to some theoretical difficulties. In particular the simple and very successful picture of phase vortices of vortex charge ℓ associated with ℓℏ units of orbital angular momentum per electron is challenged by the facts that (i) the spin and orbital angular momentum are not separately conserved for a Dirac electron, which suggests that the existence of a spin-orbit coupling will complicate matters, and (ii) that the velocity of a Dirac electron is not simply the gradient of a phase as it is in the Schrödinger theory suggesting that, perhaps, electron vortices might not exist at a fundamental level. We resolve these difficulties by showing that electron vortices do indeed exist in the relativistic theory and show that the charge of such a vortex is simply related to a conserved orbital part of the total angular momentum, closely related to the familiar situation for the orbital angular momentum of a photon.
Collapse
Affiliation(s)
- Stephen M Barnett
- School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
13
|
McMorran BJ, Agrawal A, Ercius PA, Grillo V, Herzing AA, Harvey TR, Linck M, Pierce JS. Origins and demonstrations of electrons with orbital angular momentum. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2015.0434. [PMID: 28069765 PMCID: PMC5247478 DOI: 10.1098/rsta.2015.0434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/28/2016] [Indexed: 05/14/2023]
Abstract
The surprising message of Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)) was that photons could possess orbital angular momentum in free space, which subsequently launched advancements in optical manipulation, microscopy, quantum optics, communications, many more fields. It has recently been shown that this result also applies to quantum mechanical wave functions describing massive particles (matter waves). This article discusses how electron wave functions can be imprinted with quantized phase vortices in analogous ways to twisted light, demonstrating that charged particles with non-zero rest mass can possess orbital angular momentum in free space. With Allen et al. as a bridge, connections are made between this recent work in electron vortex wave functions and much earlier works, extending a 175 year old tradition in matter wave vortices.This article is part of the themed issue 'Optical orbital angular momentum'.
Collapse
Affiliation(s)
| | - Amit Agrawal
- Center for Nanoscale Science and Technology, National Institute of Standards Technology, Gaithersburg, MD 20899, USA
- Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
| | - Peter A Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Vincenzo Grillo
- Department of Physics, University of Oregon, Eugene, OR, USA
- CNR-Istituto Nanoscienze, Centro S3, Via G. Campi 213/a, 41125 Modena, Italy
| | - Andrew A Herzing
- Materials Measurement Laboratory, National Institute of Standards Technology, Gaithersburg, MD 20899, USA
| | - Tyler R Harvey
- Department of Physics, University of Oregon, Eugene, OR, USA
| | - Martin Linck
- Corrected Electron Optical Systems GmbH, Englerstraße 28, 69126 Heidelberg, Germany
| | - Jordan S Pierce
- Department of Physics, University of Oregon, Eugene, OR, USA
| |
Collapse
|
14
|
Thirunavukkarasu G, Mousley M, Babiker M, Yuan J. Normal modes and mode transformation of pure electron vortex beams. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2015.0438. [PMID: 28069769 PMCID: PMC5247482 DOI: 10.1098/rsta.2015.0438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 05/24/2023]
Abstract
Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre-Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite-Gaussian beams.This article is part of the themed issue 'Optical orbital angular momentum'.
Collapse
Affiliation(s)
- G Thirunavukkarasu
- Department of Physics, University of York, Heslington, York YO10 5DD, UK
| | - M Mousley
- Department of Physics, University of York, Heslington, York YO10 5DD, UK
| | - M Babiker
- Department of Physics, University of York, Heslington, York YO10 5DD, UK
| | - J Yuan
- Department of Physics, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
15
|
Shen M, Li W, Lee RK. Control on the anomalous interactions of Airy beams in nematic liquid crystals. OPTICS EXPRESS 2016; 24:8501-8511. [PMID: 27137288 DOI: 10.1364/oe.24.008501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We reveal a controllable manipulation of anomalous interactions between Airy beams in nonlocal nematic liquid crystals numerically. With the help of an in-phase fundamental Gaussian beam, attraction between in-phase Airy beams can be suppressed or become a repulsive one to each other; whereas the attraction can be strengthened when the Gaussian beam is out-of-phase. In contrast to the repulsive interaction in local media, stationary bound states of breathing Airy soliton pairs are found in nematic liquid crystals.
Collapse
|
16
|
Fu S, Tsur Y, Zhou J, Shemer L, Arie A. Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses. PHYSICAL REVIEW LETTERS 2015; 115:254501. [PMID: 26722925 DOI: 10.1103/physrevlett.115.254501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 06/05/2023]
Abstract
Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation.
Collapse
Affiliation(s)
- Shenhe Fu
- Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuval Tsur
- Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Jianying Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Lev Shemer
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Ady Arie
- Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
17
|
Singh BK, Remez R, Tsur Y, Arie A. Measurement of acceleration and orbital angular momentum of Airy beam and Airy-vortex beam by astigmatic transformation. OPTICS LETTERS 2015; 40:5411-5414. [PMID: 26565887 DOI: 10.1364/ol.40.005411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Special beams, including the Airy beam and the vortex-embedded Airy beam, draw much attention due to their unique features and promising applications. Therefore, it is necessary to devise a straightforward method for measuring these peculiar features of the beams with ease. Hence we present the astigmatic transformation of Airy and Airy-vortex beam. The "acceleration" coefficient of the Airy beam is directly determined from a single image by fitting the astigmatically transformed beam to an analytic expression. In addition, the orbital angular momentum of optical vortex in Airy-vortex beam is measured directly using a single image.
Collapse
|
18
|
Clark CW, Barankov R, Huber MG, Arif M, Cory DG, Pushin DA. Controlling neutron orbital angular momentum. Nature 2015; 525:504-6. [DOI: 10.1038/nature15265] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/26/2015] [Indexed: 11/09/2022]
|