1
|
Yang Z, Li Y, Wang J, Zuo Y, Lu TX, Jing H, Ren C. Microwave quantum illumination: enhanced azimuth detection with cavity magnonics. OPTICS EXPRESS 2024; 32:28293-28308. [PMID: 39538649 DOI: 10.1364/oe.528688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/05/2024] [Indexed: 11/16/2024]
Abstract
Most current microwave quantum illumination techniques rely on hybrid quantum systems to detect the presence of targets. However, real-world radar tasks are considerably more intricate than this simplistic model. Accurately determining physical attributes such as object speed, position, and azimuth is also essential. In this study, we explore azimuth detection using a quantum illumination approach based on a cavity-optomagnonics system and analyze the accuracy of azimuth detection in this framework. Our results indicate that this approach significantly outperforms classical microwave radar in azimuth detection within the parameters of current existing experiments. Additionally, we investigate the impact of Kerr nonlinearity of the YIG sphere on azimuth detection accuracy, revealing a clear improvement with the incorporation of Kerr nonlinearity.
Collapse
|
2
|
Xu J, Zhong C, Zhuang S, Qian C, Jiang Y, Pishehvar A, Han X, Jin D, Jornet JM, Zhen B, Hu J, Jiang L, Zhang X. Slow-Wave Hybrid Magnonics. PHYSICAL REVIEW LETTERS 2024; 132:116701. [PMID: 38563939 DOI: 10.1103/physrevlett.132.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/14/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
Cavity magnonics is an emerging research area focusing on the coupling between magnons and photons. Despite its great potential for coherent information processing, it has been long restricted by the narrow interaction bandwidth. In this Letter, we theoretically propose and experimentally demonstrate a novel approach to achieve broadband photon-magnon coupling by adopting slow waves on engineered microwave waveguides. To the best of our knowledge, this is the first time that slow wave is combined with hybrid magnonics. Its unique properties promise great potentials for both fundamental research and practical applications, for instance, by deepening our understanding of the light-matter interaction in the slow wave regime and providing high-efficiency spin wave transducers. The device concept can be extended to other systems such as optomagnonics and magnomechanics, opening up new directions for hybrid magnonics.
Collapse
Affiliation(s)
- Jing Xu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Changchun Zhong
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Shihao Zhuang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Chen Qian
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yu Jiang
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Amin Pishehvar
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Xu Han
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Dafei Jin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Josep M Jornet
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Bo Zhen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jiamian Hu
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Liang Jiang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Xufeng Zhang
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
3
|
Wang ZY, He XW, Han X, Wang HF, Zhang S. Nonreciprocal P T-symmetric magnon laser in spinning cavity optomagnonics. OPTICS EXPRESS 2024; 32:4987-4997. [PMID: 38439236 DOI: 10.1364/oe.513536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 03/06/2024]
Abstract
We propose a scheme to achieve nonreciprocal parity-time (P T)-symmetric magnon laser in a P T-symmetric cavity optomagnonical system. The system consists of active and passive optical spinning resonators. We demonstrate that the Fizeau light-dragging effect induced by the spinning of a resonator results in significant variations in magnon gain and stimulated emitted magnon numbers for different driving directions. We find that utilizing the Fizeau light-dragging effect allows the system to operate at ultra-low thresholds even without reaching gain-loss balance. A one-way magnon laser can also be realized across a range of parameters. High tunability of the magnon laser is achieved by changing the spinning speed of the resonators and driving direction. Our work provides a new way to explore various nonreciprocal effects in non-Hermitian magnonic systems, which may be applied to manipulate photons and magnons in multi-body non-Hermitian coupled systems.
Collapse
|
4
|
He XW, Wang ZY, Han X, Zhang S, Wang HF. Parametrically amplified nonreciprocal magnon laser in a hybrid cavity optomagnonical system. OPTICS EXPRESS 2023; 31:43506-43517. [PMID: 38178442 DOI: 10.1364/oe.509918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
We propose a scheme to achieve a tunable nonreciprocal magnon laser with parametric amplification in a hybrid cavity optomagnonical system, which consists a yttrium iron garnet (YIG) sphere and a spinning resonator. We demonstrate the control of magnon laser can be enhanced via parametric amplification, which make easier and more convenient to control the magnon laser. Moreover, we analyze and evaluate the effects of pump light input direction and amplification amplitude on the magnon gain and laser threshold power. The results indicate that we can obtian a higher magnon gain and a broader range of threshold power of the magnon laser. In our scheme both the nonreciprocity and magnon gain of the magnon laser can be increased significantly. Our proposal provides a way to obtain a novel nonreciprocal magnon laser and offers new possibilities for both nonreciprocal optics and spin-electronics applications.
Collapse
|
5
|
Zheng LL, Shi W, Shen K, Kong D, Wang F. Controlling magnon-magnon entanglement and steering by atomic coherence. OPTICS EXPRESS 2023; 31:32953-32967. [PMID: 37859086 DOI: 10.1364/oe.493946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/15/2023] [Indexed: 10/21/2023]
Abstract
Here we show that it is possible to control magnon-magnon entanglement in a hybrid magnon-atom-cavity system based on atomic coherence. In a four-level V-type atomic system, two strong fields are applied to drive two dipole-allowed transitions and two microwave cavity modes are coupled with two dipole forbidden transitions as well as two magnon modes simultaneously. It is found that the stable magnon-magnon entanglement, one-way steering and two-way EPR steering can be generated and controlled by atomic coherence according to the following two points: (i) the coherent coupling between magnon and atoms is established via exchange of virtual photons; (ii) the dissipation of magnon mode is dominant over amplification since one of the atomic states mediated one-channel interaction always keeps empty. The coherent control of magnon-magnon correlations provides an effective approach to modify macroscopic quantum effects using the laser-driven atomic systems.
Collapse
|
6
|
Du CZ, Wang DW, Zhao CS, Yang J, Zhou L. Quantum illumination based on cavity-optomagnonics system with Kerr nonlinearity. OPTICS EXPRESS 2023; 31:28308-28319. [PMID: 37710888 DOI: 10.1364/oe.496693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Quantum illumination is a quantum optical sensing technique, which employs an entangled source to detect low-reflectivity object immersed in a bright thermal background. Hybrid cavity-optomagnonics system promises to work as quantum illumination because a yttrium iron garnet (YIG) sphere can couple to microwave field and optical field. In this paper, we propose a scheme to enhance the entanglement between the output fields of the microwave and optical cavities by considering the intrinsic Kerr nonlinearity of the YIG. We investigate the difference between intrinsic Kerr nonlinearity and optomagnonical parametric-type coupling on improving entanglement. Our result show that the large value optomagnonical parametric-type coupling does not mean the large entanglement, nevertheless, the large value of Kerr nonlinearity does monotonously improve the entanglement for our group of parameters. Consequently, under feasible parameters of current experiment, the signal-to-noise ratio and probability of detection error can be improved after considering the magnon Kerr nonlinearity.
Collapse
|
7
|
Ghasemian E. Dissipative dynamics of optomagnonic nonclassical features via anti-Stokes optical pulses: squeezing, blockade, anti-correlation, and entanglement. Sci Rep 2023; 13:12757. [PMID: 37550430 PMCID: PMC10406899 DOI: 10.1038/s41598-023-39822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023] Open
Abstract
We propose a feasible experimental model to investigate the generation and characterization of nonclassical states in a cavity optomagnonic system consisting of a ferromagnetic YIG sphere that simultaneously supports both the magnon mode and two whispering gallery modes of optical photons. The photons undergo the magnon-induced Brillouin light scattering, which is a well-established tool for the cavity-assisted manipulations of magnons as well as magnon spintronics. At first, we derive the desired interaction Hamiltonian under the influence of the anti-Stokes scattering process and then proceed to analyze the dynamical evolution of quantum statistics of photons and magnons as well as their intermodal entanglement. The results show that both photons and magnons generally acquire some nonclassical features, e.g., the strong antibunching and anti-correlation. Interestingly, the system may experience the perfect photon and magnon blockade phenomena, simultaneously. Besides, the nonclassical features may be protected against the unwanted environmental effects for a relatively long time, especially, in the weak driving field regime and when the system is initiated with a small number of particles. However, it should be noted that some fast quantum-classical transitions may occur in-between. Although the unwanted dissipative effects plague the nonclassical features, we show that this system can be adopted to prepare optomagnonic entangled states. The generation of entangled states depends on the initial state of the system and the interaction regime. The intermodal photon-magnon entanglement may be generated and pronounced, especially, if the system is initialized with low intensity even Schrödinger cat state in the strong coupling regime. The cavity-assisted manipulation of magnons is a unique and flexible mechanism that allows an interesting test bed for investigating the interdisciplinary contexts involving quantum optics and spintronics. Moreover, such a hybrid optomagnonic system may be used to design both on-demand single-photon and single-magnon sources and may find potential applications in quantum information processing.
Collapse
Affiliation(s)
- E Ghasemian
- Department of Electrical Engineering, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University, Bushehr, Iran.
| |
Collapse
|
8
|
Xu D, Gu XK, Li HK, Weng YC, Wang YP, Li J, Wang H, Zhu SY, You JQ. Quantum Control of a Single Magnon in a Macroscopic Spin System. PHYSICAL REVIEW LETTERS 2023; 130:193603. [PMID: 37243655 DOI: 10.1103/physrevlett.130.193603] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/17/2023] [Indexed: 05/29/2023]
Abstract
Nonclassical quantum states are the pivotal features of a quantum system that differs from its classical counterpart. However, the generation and coherent control of quantum states in a macroscopic spin system remain an outstanding challenge. Here we experimentally demonstrate the quantum control of a single magnon in a macroscopic spin system (i.e., 1 mm-diameter yttrium-iron-garnet sphere) coupled to a superconducting qubit via a microwave cavity. By tuning the qubit frequency in situ via the Autler-Townes effect, we manipulate this single magnon to generate its nonclassical quantum states, including the single-magnon state and the superposition of single-magnon state and vacuum (zero magnon) state. Moreover, we confirm the deterministic generation of these nonclassical states by Wigner tomography. Our experiment offers the first reported deterministic generation of the nonclassical quantum states in a macroscopic spin system and paves a way to explore its promising applications in quantum engineering.
Collapse
Affiliation(s)
- Da Xu
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xu-Ke Gu
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - He-Kang Li
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yuan-Chao Weng
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yi-Pu Wang
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jie Li
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - H Wang
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, China
- Hefei National Laboratory, Hefei 230088, China
| | - Shi-Yao Zhu
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, China
- Hefei National Laboratory, Hefei 230088, China
| | - J Q You
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Yao B, Gui YS, Rao JW, Zhang YH, Lu W, Hu CM. Coherent Microwave Emission of Gain-Driven Polaritons. PHYSICAL REVIEW LETTERS 2023; 130:146702. [PMID: 37084460 DOI: 10.1103/physrevlett.130.146702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/19/2022] [Accepted: 02/16/2023] [Indexed: 05/03/2023]
Abstract
By developing a gain-embedded cavity magnonics platform, we create a gain-driven polariton (GDP) that is activated by an amplified electromagnetic field. Distinct effects of gain-driven light-matter interaction, such as polariton auto-oscillations, polariton phase singularity, self-selection of a polariton bright mode, and gain-induced magnon-photon synchronization, are theoretically studied and experimentally manifested. Utilizing the gain-sustained photon coherence of the GDP, we demonstrate polariton-based coherent microwave amplification (∼40 dB) and achieve high-quality coherent microwave emission (Q>10^{9}).
Collapse
Affiliation(s)
- Bimu Yao
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Y S Gui
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - J W Rao
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Y H Zhang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - C-M Hu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
10
|
Xie H, He LW, Liao CG, Chen ZH, Lin XM. Generation of robust optical entanglement in cavity optomagnonics. OPTICS EXPRESS 2023; 31:7994-8004. [PMID: 36859918 DOI: 10.1364/oe.478963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
We propose a scheme to realize robust optical entanglement in cavity optomagnonics, where two optical whispering gallery modes (WGMs) couple to a magnon mode in a yttrium iron garnet (YIG) sphere. The beam-splitter-like and two-mode squeezing magnon-photon interactions can be realized simultaneously when the two optical WGMs are driven by external fields. Entanglement between the two optical modes is then generated via their coupling with magnons. By exploiting the destructive quantum interference between the bright modes of the interface, the effects of initial thermal occupations of magnons can be eliminated. Moreover, the excitation of the Bogoliubov dark mode is capable of protecting the optical entanglement from thermal heating effects. Therefore, the generated optical entanglement is robust against thermal noise and the requirement of cooling the magnon mode is relaxed. Our scheme may find applications in the study of magnon-based quantum information processing.
Collapse
|
11
|
Shen Z, Xu GT, Zhang M, Zhang YL, Wang Y, Chai CZ, Zou CL, Guo GC, Dong CH. Coherent Coupling between Phonons, Magnons, and Photons. PHYSICAL REVIEW LETTERS 2022; 129:243601. [PMID: 36563280 DOI: 10.1103/physrevlett.129.243601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Mechanical degrees of freedom, which have often been overlooked in various quantum systems, have been studied for applications ranging from quantum information processing to sensing. Here, we develop a hybrid platform consisting of a magnomechanical cavity and an optomechanical cavity, which are coherently coupled by the straightway physical contact. The phonons in the system can be manipulated either with the magnetostrictive interaction or optically through the radiation pressure. Together with mechanical state preparation and sensitive readout, we demonstrate the microwave-to-optical conversion with an ultrawide tuning range up to 3 GHz. In addition, we observe a mechanical motion interference effect, in which the optically driven mechanical motion is canceled by the microwave-driven coherent motion. Manipulating mechanical oscillators with equal facility through both magnonic and photonic channels enables new architectures for signal transduction between the optical, microwave, mechanical, and magnetic fields.
Collapse
Affiliation(s)
- Zhen Shen
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Guan-Ting Xu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Mai Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yan-Lei Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yu Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Cheng-Zhe Chai
- Yongjiang Laboratory (Y-LAB), Ningbo, Zhejiang 315202 People's Republic of China
| | - Chang-Ling Zou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
| | - Chun-Hua Dong
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
| |
Collapse
|
12
|
Kong D, Xu J, Gong C, Wang F, Hu X. Magnon-atom-optical photon entanglement via the microwave photon-mediated Raman interaction. OPTICS EXPRESS 2022; 30:34998-35013. [PMID: 36242502 DOI: 10.1364/oe.468400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
We show that it is possible to generate magnon-atom-optical photon tripartite entanglement via the microwave photon-mediated Raman interaction. Magnons in a macroscopic ferromagnet and optical photons in a cavity are induced into a Raman interaction with an atomic spin ensemble when a microwave field couples the magnons to one Raman wing. The controllable magnon-atom entanglement, magnon-optical photon entanglement, and even genuine magnon-atom-optical photon tripartite entanglement can be generated simultaneously. In addition, these bipartite and tripartite entanglements are robust against the environment temperature. Our scheme paves the way for exploring a quantum interface bridging the microwave and optical domains, and may provide a promising building block for hybrid quantum networks.
Collapse
|
13
|
Kounalakis M, Bauer GEW, Blanter YM. Analog Quantum Control of Magnonic Cat States on a Chip by a Superconducting Qubit. PHYSICAL REVIEW LETTERS 2022; 129:037205. [PMID: 35905351 DOI: 10.1103/physrevlett.129.037205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
We propose to directly and quantum-coherently couple a superconducting transmon qubit to magnons-the quanta of the collective spin excitations, in a nearby magnetic particle. The magnet's stray field couples to the qubit via a superconducting quantum interference device. We predict a resonant magnon-qubit exchange and a nonlinear radiation-pressure interaction that are both stronger than dissipation rates and tunable by an external flux bias. We additionally demonstrate a quantum control scheme that generates magnon-qubit entanglement and magnonic Schrödinger cat states with high fidelity.
Collapse
Affiliation(s)
- Marios Kounalakis
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - Gerrit E W Bauer
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
- WPI-AIMR, Tohoku University, 2-1-1, Katahira, Sendai 980-8577, Japan
- Kavli Institute for Theoretical Sciences, University of the Chinese Academy of Sciences, 100190 Beijing, China
| | - Yaroslav M Blanter
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| |
Collapse
|
14
|
Huang KW, Wu Y, Si LG. Parametric-amplification-induced nonreciprocal magnon laser. OPTICS LETTERS 2022; 47:3311-3314. [PMID: 35776613 DOI: 10.1364/ol.459917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
We theoretically propose a scheme to achieve all-optical nonreciprocal magnon lasing action in a composite cavity optomagnonical system considering of a yttrium iron garnet sphere coupled to a parametric resonator. The magnon lasing behavior can be engendered via the magnon-induced Brillouin scattering process in the cavity optomagnonical system. By unidirectionally driving the χ(2)-nonlinear resonator with a classical coherent field, the squeezed effect occurs only in the selected direction due to the phase-matching condition, resulting in asymmetric detuning between the two resonators, which is the physical mechanism to generate a nonreciprocal magnon laser. We further examine the gain factor and power threshold of the magnon laser. Moreover, the isolation rate can reach 21 dB by adjusting the amplitude of the parametric amplification. Our work shows a path to obtain an all-optical nonreciprocal magnon laser, which provides a means for the preparation of a coherent magnon laser and laser protection.
Collapse
|
15
|
Ren YL. Nonreciprocal optical-microwave entanglement in a spinning magnetic resonator. OPTICS LETTERS 2022; 47:1125-1128. [PMID: 35230307 DOI: 10.1364/ol.451050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
We propose a nonreciprocal optical-microwave entanglement in a hybrid system composed of a spinning magnetic resonator and a microwave resonator. The optical Sagnac effect caused by the spinning of the magnetic resonator leads to a significant difference in the quantum entanglement for driving the magnetic resonator from opposite directions, which results in the nonreciprocal optical-microwave entanglement. Remarkably, the nonreciprocal optical-microwave entanglement determined by the spinning speed, driving direction, and driving frequency has a high tunability, so it can be turned on or off on demand. Our work opens up a new, to the best of our knowledge, route to achieve nonreciprocal entanglement between microwave and optical domains, which may have potential applications in chiral quantum networking.
Collapse
|
16
|
Wu XY, Zhang Y, Gao YP, Wang C. Optimal photon-magnon mode matching in whispering-gallery mode cavities. OPTICS EXPRESS 2021; 29:40061-40071. [PMID: 34809356 DOI: 10.1364/oe.442641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Optomagnonic structures are widely studied in the field of nanophotonics and quantum information science. They are the key platforms for the realization of magnon-mediated microwave to optical transducers in various applications of quantum computing. In order to enhance the coupling between light (photons) and spin waves (magnons), here in this work, we use the Lagrange multiplication method to find the optimum matching condition between the optical whispering-gallery mode and the magnon with Kittle and higher-order modes in microresonators. It is found that the magnon modes located near the edge of the resonator exhibits stronger coupling strength with the optical modes. Numerically, we find the coupling constant can approach 87.6×2π H z in Kittle mode, and 459×2π H z in high-order magnon mode for a yttrium iron garnet (YIG, Y3Fe5O12 ) microdisk cavity with a radius of 300 microns and a thickness of 10 microns. We believe these results may provide an efficient way for enhancing the magneto-optical interaction in the optical devices, which will facilitate the development of magneto-optical control, optical-microwave interaction, and optical nonlinearity.
Collapse
|
17
|
Shen RC, Wang YP, Li J, Zhu SY, Agarwal GS, You JQ. Long-Time Memory and Ternary Logic Gate Using a Multistable Cavity Magnonic System. PHYSICAL REVIEW LETTERS 2021; 127:183202. [PMID: 34767406 DOI: 10.1103/physrevlett.127.183202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Multistability is an extraordinary nonlinear property of dynamical systems and can be explored to implement memory and switches. Here we experimentally realize the tristability in a three-mode cavity magnonic system with Kerr nonlinearity. The three stable states in the tristable region correspond to the stable solutions of the frequency shift of the cavity magnon polariton under specific driving conditions. We find that the system staying in which stable state depends on the history experienced by the system, and this state can be harnessed to store the history information. In our experiment, the memory time can reach as long as 5.11 s. Moreover, we demonstrate the ternary logic gate with good on-off characteristics using this multistable hybrid system. Our new findings pave a way towards cavity magnonics-based information storage and processing.
Collapse
Affiliation(s)
- Rui-Chang Shen
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yi-Pu Wang
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jie Li
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Shi-Yao Zhu
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - G S Agarwal
- Institute for Quantum Science and Engineering and Department of Biological and Agricultural Engineering, and Department of Physics and Astronomy, Texas AM University, College Station, Texas 77843, USA
| | - J Q You
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Xu YJ, Song J. Nonreciprocal magnon laser. OPTICS LETTERS 2021; 46:5276-5279. [PMID: 34653171 DOI: 10.1364/ol.440608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
A nonreciprocal magnon laser is proposed in a compound cavity optomagnonical system consisting of an yttrium iron garnet sphere coupled to a spinning resonator. On the basis of the magnon-induced Brillouin scattering process making it possible to achieve a magnon lasing action, the Fizeau light-dragging effect caused by the spinning of the resonator further results in significant modifications in the magnon gain and the threshold power of magnon lasing for different driving directions, and then a nonreciprocal magnon laser is realized. Especially, this nonreciprocal magnon laser is highly tunable by the spinning speed and the driving direction. Our work provides an experimentally feasible pathway for manipulating spin-wave excitations and may find intriguing phenomena at the crossroad between spintronics of the magnet and nonreciprocal optics.
Collapse
|
19
|
Haigh JA, Nunnenkamp A, Ramsay AJ. Polarization Dependent Scattering in Cavity Optomagnonics. PHYSICAL REVIEW LETTERS 2021; 127:143601. [PMID: 34652205 DOI: 10.1103/physrevlett.127.143601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The polarization dependence of magnon-photon scattering in an optical microcavity is reported. Because of the short cavity length, the longitudinal mode-matching conditions found in previously explored, large path-length whispering gallery resonators are absent. Nonetheless, for cross-polarized scattering a strong and broadband suppression of one sideband is observed. This arises due to an interference between the Faraday and second-order Cotton-Mouton effects. To fully account for the suppression of the cross-polarized scattering, it is necessary to consider the squeezing of magnon modes intrinsic to thin-film geometry. A copolarized scattering due to Cotton-Mouton effect is also observed. In addition, the magnon modes involved are identified as Damon-Eshbach surface modes, whose nonreciprocal propagation could be exploited in device applications. This Letter experimentally demonstrates the important role of second-order Cotton-Mouton effect for optomagnonic devices.
Collapse
Affiliation(s)
- J A Haigh
- Hitachi Cambridge Laboratory, Cambridge, CB3 0HE, United Kingdom
| | - A Nunnenkamp
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
| | - A J Ramsay
- Hitachi Cambridge Laboratory, Cambridge, CB3 0HE, United Kingdom
| |
Collapse
|
20
|
Sun FX, Zheng SS, Xiao Y, Gong Q, He Q, Xia K. Remote Generation of Magnon Schrödinger Cat State via Magnon-Photon Entanglement. PHYSICAL REVIEW LETTERS 2021; 127:087203. [PMID: 34477416 DOI: 10.1103/physrevlett.127.087203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The magnon cat state represents a macroscopic quantum superposition of collective magnetic excitations of large number spins that not only provides fundamental tests of macroscopic quantum effects but also finds applications in quantum metrology and quantum computation. In particular, remote generation and manipulation of Schrödinger cat states are particularly interesting for the development of long-distance and large-scale quantum information processing. Here, we propose an approach to remotely prepare magnon even or odd cat states by performing local non-Gaussian operations on the optical mode that is entangled with the magnon mode through pulsed optomagnonic interaction. By evaluating key properties of the resulting cat states, we show that for experimentally feasible parameters, they are generated with both high fidelity and nonclassicality, as well as with a size large enough to be useful for quantum technologies. Furthermore, the effects of experimental imperfections such as the error of projective measurements and dark count when performing single-photon operations have been discussed, where the lifetime of the created magnon cat states is expected to be t∼1 μs.
Collapse
Affiliation(s)
- Feng-Xiao Sun
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-Optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Sha-Sha Zheng
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-Optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yang Xiao
- Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-Optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, Jiangsu, China
| | - Qiongyi He
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-Optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, Jiangsu, China
| | - Ke Xia
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
21
|
Gao YP, Wang C. Hybrid coupling optomechanical assisted nonreciprocal photon blockade. OPTICS EXPRESS 2021; 29:25161-25172. [PMID: 34614853 DOI: 10.1364/oe.431211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The properties of the open quantum system in quantum information is a science now extensively investigated more generally as a fundamental issue for a variety of applications. Usually, the states of the open quantum system might be disturbed by decoherence which will reduce the fidelity in the quantum information processing. So it is better to eliminate the influence of the environment. However, as part of the composite system, rational use of the environment system could be beneficial to quantum information processing. Here we theoretically studied the environment induced quantum nonlinearity and energy spectrum tuning method in the optomechanical system. And we found that the dissipation coupling of the hybrid dissipation and dispersion optomechanical system can induce the coupling between the environment and system in the cross-Kerr interaction form. When the symmetry is broken with a directional auxiliary field, the system exhibits the non-reciprocal behavior during the photon excitation and photon blockade for the clockwise and counterclockwise modes of the whispering gallery mode microcavity. Furthermore, we believe that the cross-Kerr coupling can be more widely used in quantum information processing and quantum simulation.
Collapse
|
22
|
Kong C, Bao XM, Liu JB, Xiong H. Magnon-mediated nonreciprocal microwave transmission based on quantum interference. OPTICS EXPRESS 2021; 29:25477-25487. [PMID: 34614878 DOI: 10.1364/oe.430619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Nonreciprocity has always been a subject of interest and plays a key role in a variety of applications like signal processing and noise isolation. In this work, we propose a simple and feasible scheme to implement nonreciprocal microwave transmission in a high-quality-factor superconducting cavity with ferrimagnetic materials. We derive necessary requirements to create nonreciprocity in our system where a magnon mode and two microwave modes are coupled to each other, highlighting the adjustability of a static magnetic field controlled nonreciprocal transmission based on quantum interference between different transmission paths, which breaks time-reversal symmetry of the three-mode cavity magnonics system. The high light isolation adjusted within a range of different magnetic fields can be obtained by modulating the photon-magnon coupling strength. Due to the simplicity of the device and the system tunability, our results may facilitate potential applications for light magnetic sensing and coherent information processing.
Collapse
|
23
|
Sonner MM, Khosravi F, Janker L, Rudolph D, Koblmüller G, Jacob Z, Krenner HJ. Ultrafast electron cycloids driven by the transverse spin of a surface acoustic wave. SCIENCE ADVANCES 2021; 7:eabf7414. [PMID: 34321198 PMCID: PMC8318372 DOI: 10.1126/sciadv.abf7414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/11/2021] [Indexed: 06/01/2023]
Abstract
Spin-momentum locking is a universal wave phenomenon promising for applications in electronics and photonics. In acoustics, Lord Rayleigh showed that surface acoustic waves exhibit a characteristic elliptical particle motion strikingly similar to spin-momentum locking. Although these waves have become one of the few phononic technologies of industrial relevance, the observation of their transverse spin remained an open challenge. Here, we observe the full spin dynamics by detecting ultrafast electron cycloids driven by the gyrating electric field produced by a surface acoustic wave propagating on a slab of lithium niobate. A tubular quantum well wrapped around a nanowire serves as an ultrafast sensor tracking the full cyclic motion of electrons. Our acousto-optoelectrical approach opens previously unknown directions in the merged fields of nanoacoustics, nanophotonics, and nanoelectronics for future exploration.
Collapse
Affiliation(s)
- Maximilian M Sonner
- Lehrstuhl für Experimentalphysik 1, Institut für Physik, Universität Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
| | - Farhad Khosravi
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Lisa Janker
- Lehrstuhl für Experimentalphysik 1, Institut für Physik, Universität Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
| | - Daniel Rudolph
- Walter Schottky Institut and Physik Department E24, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Gregor Koblmüller
- Walter Schottky Institut and Physik Department E24, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Zubin Jacob
- Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA.
| | - Hubert J Krenner
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.
- Lehrstuhl für Experimentalphysik 1, Institut für Physik, Universität Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
| |
Collapse
|
24
|
De A, Drobitch JL, Majumder S, Barman S, Bandyopadhyay S, Barman A. Resonant amplification of intrinsic magnon modes and generation of new extrinsic modes in a two-dimensional array of interacting multiferroic nanomagnets by surface acoustic waves. NANOSCALE 2021; 13:10016-10023. [PMID: 34037043 DOI: 10.1039/d1nr01177d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using time-resolved magneto-optical Kerr effect (TR-MOKE) microscopy, we demonstrate surface-acoustic-wave (SAW) induced resonant amplification of intrinsic spin-wave (SW) modes, as well as generation of new extrinsic or driven modes at the SAW frequency, in a densely packed two-dimensional array of elliptical Co nanomagnets fabricated on a piezoelectric LiNbO3 substrate. This system can efficiently serve as a magnonic crystal (MC), where the intrinsic shape anisotropy and the strong inter-element magnetostatic interaction trigger the incoherent precession of the nanomagnets' magnetization in the absence of any bias magnetic field, giving rise to the 'intrinsic' SW modes. The magnetoelastic coupling leads to a rich variety of SW phenomena when the SAW is launched along the major axis of the nanomagnets, such as 4-7 times amplification of intrinsic modes (at 3, 4, 7 and 10 GHz) when the applied SAW frequencies are resonant with these frequencies, and the generation of new extrinsic modes at non-resonant SAW frequencies. However, when the SAW is launched along the minor axis, a dominant driven mode appears at the applied SAW frequency. This reveals that the magnetoelastic coupling between SW and SAW is anisotropic in nature. Micromagnetic simulation results are in qualitative agreement with the experimental observations and elucidate the underlying dynamics. Our findings lay the groundwork for bias-field free magnonics, where the SW behavior is efficiently tuned by SAWs. It has important applications in the design of energy efficient on-chip microwave devices, SW logic, and extreme sub-wavelength ultra-miniaturized microwave antennas for embedded applications.
Collapse
Affiliation(s)
- Anulekha De
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700 106, India.
| | | | | | | | | | | |
Collapse
|
25
|
Xu J, Zhong C, Han X, Jin D, Jiang L, Zhang X. Coherent Gate Operations in Hybrid Magnonics. PHYSICAL REVIEW LETTERS 2021; 126:207202. [PMID: 34110202 DOI: 10.1103/physrevlett.126.207202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Electromagnonics-the hybridization of spin excitations and electromagnetic waves-has been recognized as a promising candidate for coherent information processing in recent years. Among its various implementations, the lack of available approaches for real-time manipulation on the system dynamics has become a common and urgent limitation. In this work, by introducing a fast and uniform modulation technique, we successfully demonstrate a series of benchmark coherent gate operations in hybrid magnonics, including semiclassical analogies of Landau-Zener transitions, Rabi oscillations, Ramsey interference, and controlled mode swap operations. Our approach lays the groundwork for dynamical manipulation of coherent signals in hybrid magnonics and can be generalized to a broad range of applications.
Collapse
Affiliation(s)
- Jing Xu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Changchun Zhong
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Xu Han
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Dafei Jin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Liang Jiang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Xufeng Zhang
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
26
|
Danilin A, Slinkov G, Lobanov V, Min'kov K, Bilenko I. Magneto-optical effects in a high-Q whispering-gallery-mode resonator with a large Verdet constant. OPTICS LETTERS 2021; 46:2509-2512. [PMID: 33988622 DOI: 10.1364/ol.422322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
We have studied magneto-optical effects in an optical whispering-gallery-mode resonator (WGMR) manufactured from a Faraday-rotator material with, to the best of our knowledge, the record quality factor ($Q = 1.45 \times {10^8}$) achieved for such materials. We have experimentally measured the eigenfrequencies' deviation amplitude under the application of an external magnetic field and demonstrated the polarization plane declination over the light path. An analytical model for arbitrary magnetic field geometries in magneto-optic birefringent WRMRs has been developed.
Collapse
|
27
|
Liu YG, Xia K, Zhu SL. Efficient microwave-to-optical single-photon conversion with a single flying circular Rydberg atom. OPTICS EXPRESS 2021; 29:9942-9959. [PMID: 33820157 DOI: 10.1364/oe.416983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
We propose a scheme for converting a microwave (mw) single photon in a mw cavity to a flying optical photon. The conversion is realized by using a flying circular Rydberg atom, which plays a role of the "data bus" as an excellent memory to connect the mw and optical cavities. To link the energy levels of atom in optical domain and mw domain, we use fast decircularization method and three-photon Raman transition method. Thank to these low loss processes and the super long lifetime of circular Rydberg states, this scheme can efficiently convert single mw photons into the optical domain. Based on existing experiments and data, the conversion efficiency is simulated as 60%. The theoretical limit of the conversion efficiency is about 87%.
Collapse
|
28
|
Luo DW, Qian XF, Yu T. Nonlocal magnon entanglement generation in coupled hybrid cavity systems. OPTICS LETTERS 2021; 46:1073-1076. [PMID: 33649660 DOI: 10.1364/ol.414975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
We investigate dynamical generation of macroscopic nonlocal entanglements between two remote massive magnon-superconducting-circuit hybrid systems. Two fiber-coupled microwave cavities are employed to serve as an interaction channel connecting two sets of macroscopic hybrid units, each containing a magnon (hosted by an yttrium-iron-garnet sphere) and a superconducting-circuit qubit. Surprisingly, it is found that stronger coupling does not necessarily mean faster entanglement generation. The proposed hybrid system allows the existence of an optimal fiber coupling strength that requires the shortest amount of time to generate a systematic maximal entanglement. Our theoretical results are shown to be within the scope of specific parameters that can be achieved with current technology. The noise effects on the implementation of systems are also treated in a general environment, suggesting the robustness of entanglement generation. Our discrete-variable qubit-like entanglement theory of magnons may lead to direct applications in various quantum information tasks.
Collapse
|
29
|
Li Y, Zhao C, Amin VP, Zhang Z, Vogel M, Xiong Y, Sklenar J, Divan R, Pearson J, Stiles MD, Zhang W, Hoffmann A, Novosad V. Phase-resolved electrical detection of hybrid magnonic devices. APPLIED PHYSICS LETTERS 2021; 118:10.1063/5.0042784. [PMID: 36452035 PMCID: PMC9706546 DOI: 10.1063/5.0042784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/03/2021] [Indexed: 06/17/2023]
Abstract
We demonstrate the electrical detection of magnon-magnon hybrid dynamics in yttrium iron garnet/permalloy (YIG/Py) thin film bilayer devices. Direct microwave current injection through the conductive Py layer excites the hybrid dynamics consisting of the uniform mode of Py and the first standing spin wave (n = 1) mode of YIG, which are coupled via interfacial exchange. Both the two hybrid modes, with Py or YIG dominated excitations, can be detected via the spin rectification signals from the conductive Py layer, providing phase resolution of the coupled dynamics. The phase characterization is also applied to a nonlocally excited Py device, revealing the additional phase shift due to the perpendicular Oersted field. Our results provide a device platform for exploring hybrid magnonic dynamics and probing their phases, which are crucial for implementing coherent information processing with magnon excitations.
Collapse
Affiliation(s)
- Yi Li
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
| | - Chenbo Zhao
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
| | - Vivek P. Amin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Zhizhi Zhang
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
| | - Michael Vogel
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, Kassel 34132, Germany
| | - Yuzan Xiong
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Joseph Sklenar
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202, USA
| | - Ralu Divan
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - John Pearson
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
| | - Mark D. Stiles
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Wei Zhang
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Axel Hoffmann
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Valentine Novosad
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
| |
Collapse
|
30
|
Xu J, Zhong C, Han X, Jin D, Jiang L, Zhang X. Floquet Cavity Electromagnonics. PHYSICAL REVIEW LETTERS 2020; 125:237201. [PMID: 33337181 DOI: 10.1103/physrevlett.125.237201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/12/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Hybrid magnonics has recently attracted intensive attention as a promising platform for coherent information processing. In spite of its rapid development, on-demand control over the interaction of magnons with other information carriers, in particular, microwave photons in electromagnonic systems, has been long missing, significantly limiting the potential broad applications of hybrid magnonics. Here, we show that, by introducing Floquet engineering into cavity electromagnonics, coherent control on the magnon-microwave photon coupling can be realized. Leveraging the periodic temporal modulation from a Floquet drive, our first-of-its-kind Floquet cavity electromagnonic system enables the manipulation of the interaction between hybridized cavity electromagnonic modes. Moreover, we have achieved a new coupling regime in such systems: the Floquet ultrastrong coupling, where the Floquet splitting is comparable with or even larger than the level spacing of the two interacting modes, beyond the conventional rotating-wave picture. Our findings open up new directions for magnon-based coherent signal processing.
Collapse
Affiliation(s)
- Jing Xu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Changchun Zhong
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Xu Han
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Dafei Jin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Liang Jiang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Xufeng Zhang
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
31
|
Abstract
To explore the further possibilities of nanometer-thick ferromagnetic films (ultrathin ferromagnetic films), we investigated the ferromagnetic resonance (FMR) of 1 nm-thick Co film. Whilst an FMR signal was not observed for the Co film grown on a SiO2 substrate, the insertion of a 3 nm-thick amorphous Ta buffer layer beneath the Co enabled the detection of a salient FMR signal, which was attributed to the smooth surface of the amorphous Ta. This result implies the excitation of FMR in an ultrathin ferromagnetic film, which can pave the way to controlling magnons in ultrathin ferromagnetic films.
Collapse
|
32
|
Steering magnonic dynamics and permeability at exceptional points in a parity-time symmetric waveguide. Nat Commun 2020; 11:5663. [PMID: 33168811 PMCID: PMC7652947 DOI: 10.1038/s41467-020-19431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 10/12/2020] [Indexed: 11/18/2022] Open
Abstract
Tuning the magneto optical response and magnetic dynamics are key elements in designing magnetic metamaterials and devices. This theoretical study uncovers a highly effective way of controlling the magnetic permeability via shaping the magnonic properties of coupled magnetic waveguides separated by a nonmagnetic spacer with strong spin–orbit interaction (SOI). We demonstrate how a spacer charge current leads to enhancement of magnetic damping in one waveguide and a decrease in the other, constituting a bias-controlled magnetic parity–time (PT) symmetric system at the verge of the exceptional point where magnetic gains/losses are balanced. We find phenomena inherent to PT-symmetric systems and SOI-driven interfacial structures, including field-controlled magnon power oscillations, nonreciprocal propagation, magnon trapping and enhancement as well as an increased sensitivity to perturbations and abrupt spin reversal. The results point to a new route for designing magnonic waveguides and microstructures with enhanced magnetic response. The ability to guide and control magnons is central to their potential in future information processing. Here, using a combination of computations and analytical approaches, the authors propose a magnonic waveguide with a unique gain and loss mechanism.
Collapse
|
33
|
Yang ZB, Liu JS, Jin H, Zhu QH, Zhu AD, Liu HY, Ming Y, Yang RC. Entanglement enhanced by Kerr nonlinearity in a cavity-optomagnonics system. OPTICS EXPRESS 2020; 28:31862-31871. [PMID: 33115150 DOI: 10.1364/oe.404522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
We present a method to enhance steady-state bipartite and tripartite entanglement in a cavity-optomagnonics system by utilizing the Kerr nonlinearity originating from the magnetocrystalline anisotropy. The system comprises two microwave cavities and a magnon and represents the collective motion of several spins in a macroscopic ferrimagnet. We prove that Kerr nonlinearity is reliable for the enhancement of entanglement and produces a small frequency shift in the optimal detuning. Our system is more robust against the environment-induced decoherence than traditional optomechanical systems. Finally, we briefly analyze the validity of the system and demonstrate its feasibility for detecting the generated entanglement.
Collapse
|
34
|
Liu ZX, Xiong H. Magnon laser based on Brillouin light scattering. OPTICS LETTERS 2020; 45:5452-5455. [PMID: 33001917 DOI: 10.1364/ol.401689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
An analogous laser action of magnons has become a subject of interest, and it is crucial for the study of nonlinear magnons spintronics. In this Letter, we demonstrate the magnon laser behavior based on Brillouin light scattering in a ferrimagnetic insulator sphere, which supports optical whispering gallery modes and magnon resonances. We show that the excited magnon plays what has traditionally been the role of the Stokes wave and is coherently amplified during the Brillouin scattering process, making the magnon laser possible. Furthermore, the stimulating excited magnon number increasing exponentially with the input light power can be manipulated by adjusting the external magnetic field. In addition to providing insight into magneto-optical interaction, the study of the magnon laser action will help to develop novel, to the best of our knowledge, technologies for handling spin-wave excitations, and it could affect scientific fields beyond magnonics. Potential applications range from preparing coherent magnon sources to operating on-chip functional magnetic devices.
Collapse
|
35
|
Xiong Y, Li Y, Hammami M, Bidthanapally R, Sklenar J, Zhang X, Qu H, Srinivasan G, Pearson J, Hoffmann A, Novosad V, Zhang W. Probing magnon-magnon coupling in exchange coupled Y[Formula: see text]Fe[Formula: see text]O[Formula: see text]/Permalloy bilayers with magneto-optical effects. Sci Rep 2020; 10:12548. [PMID: 32724049 PMCID: PMC7387351 DOI: 10.1038/s41598-020-69364-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
We demonstrate the magnetically-induced transparency (MIT) effect in Y[Formula: see text]Fe[Formula: see text]O[Formula: see text](YIG)/Permalloy (Py) coupled bilayers. The measurement is achieved via a heterodyne detection of the coupled magnetization dynamics using a single wavelength that probes the magneto-optical Kerr and Faraday effects of Py and YIG, respectively. Clear features of the MIT effect are evident from the deeply modulated ferromagnetic resonance of Py due to the perpendicular-standing-spin-wave of YIG. We develop a phenomenological model that nicely reproduces the experimental results including the induced amplitude and phase evolution caused by the magnon-magnon coupling. Our work offers a new route towards studying phase-resolved spin dynamics and hybrid magnonic systems.
Collapse
Affiliation(s)
- Yuzan Xiong
- Department of Physics, Oakland University, Rochester, MI 48309 USA
- Department of Electronic and Computer Engineering, Oakland University, Rochester, MI 48309 USA
| | - Yi Li
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Mouhamad Hammami
- Department of Physics, Oakland University, Rochester, MI 48309 USA
| | | | - Joseph Sklenar
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 USA
| | - Xufeng Zhang
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Hongwei Qu
- Department of Electronic and Computer Engineering, Oakland University, Rochester, MI 48309 USA
| | | | - John Pearson
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Axel Hoffmann
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Valentine Novosad
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Wei Zhang
- Department of Physics, Oakland University, Rochester, MI 48309 USA
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 USA
| |
Collapse
|
36
|
Shim J, Kim SJ, Kim SK, Lee KJ. Enhanced Magnon-Photon Coupling at the Angular Momentum Compensation Point of Ferrimagnets. PHYSICAL REVIEW LETTERS 2020; 125:027205. [PMID: 32701310 DOI: 10.1103/physrevlett.125.027205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
We theoretically show that the coupling between magnons in an antiferromagnetically coupled ferrimagnet and microwave photons in a cavity is largely enhanced at the angular momentum compensation point (T_{A}) when T_{A} is distinct from the magnetization compensation point. The origin of the enhanced magnon-photon coupling at T_{A} is identified as the antiferromagnetic spin dynamics combined with a finite magnetization. Moreover, we show that strong magnon-photon coupling can be achieved at high excitation frequency in a ferrimagnet, which is challenging to achieve for a ferromagnet due to low magnon frequency and for an antiferromagnet due to weak magnon-photon coupling. Our results will invigorate research on magnon-photon coupling by proposing ferrimagnets as a versatile platform that offers advantages of both ferromagnets and antiferromagnets.
Collapse
Affiliation(s)
- Jaechul Shim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
- Semiconductor R&D Center, Samsung Electronics Co. Ltd., Hwaseong, Gyeonggi 18448, Korea
| | - Seok-Jong Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Se Kwon Kim
- Department of Physics, KAIST, Daejeon 34141, Korea
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
| | - Kyung-Jin Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| |
Collapse
|
37
|
Shiota Y, Taniguchi T, Ishibashi M, Moriyama T, Ono T. Tunable Magnon-Magnon Coupling Mediated by Dynamic Dipolar Interaction in Synthetic Antiferromagnets. PHYSICAL REVIEW LETTERS 2020; 125:017203. [PMID: 32678634 DOI: 10.1103/physrevlett.125.017203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
We report an experimental observation of magnon-magnon coupling in interlayer exchange coupled synthetic antiferromagnets of FeCoB/Ru/FeCoB layers. An anticrossing gap of spin-wave resonance between acoustic and optic modes appears when the external magnetic field points to the direction tilted from the spin-wave propagation. The magnitude of the gap (i.e., coupling strength) can be controlled by changing the direction of the in-plane magnetic field and also enhanced by increasing the wave number of excited spin waves. We find that the coupling strength under the specified conditions is larger than the dissipation rates of both the resonance modes, indicating that a strong coupling regime is satisfied. A theoretical analysis based on the Landau-Lifshitz equation shows quantitative agreement with the experiments and indicates that the anticrossing gap appears when the exchange symmetry of two magnetizations is broken by the spin-wave excitation.
Collapse
Affiliation(s)
- Yoichi Shiota
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomohiro Taniguchi
- National Institute of Advanced Industrial Science and Technology (AIST), Spintronic Research Center, Tsukuba, Ibaraki 305-8568, Japan
| | - Mio Ishibashi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takahiro Moriyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Teruo Ono
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
38
|
Xu WL, Liu XF, Sun Y, Gao YP, Wang TJ, Wang C. Magnon-induced chaos in an optical PT-symmetric resonator. Phys Rev E 2020; 101:012205. [PMID: 32069574 DOI: 10.1103/physreve.101.012205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Optomagnonics supports optical modes with high-quality optical factors and strong photon-magnon interaction on the scale of micrometers. These novel features provide an effective way to modulate the electromagnetic field in optical microcavities. Here in this work, we studied the magnon-induced chaos in an optomagnonical cavity under the condition of parity-time symmetry, and the chaotic behaviors of electromagnetic field could be observed under ultralow thresholds. Even more, the existence optomagnetic interaction makes this chaotic phenomenon controllable through modulating the external field. This research will enrich the study of light matter interaction in the microcavity and provide a theoretical guidance for random number state generation and the realization of the chaotic encryption of information on chips.
Collapse
Affiliation(s)
- Wen-Ling Xu
- School of Science and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xiao-Fei Liu
- School of Science and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yang Sun
- School of Science and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yong-Pan Gao
- School of Science and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Tie-Jun Wang
- School of Science and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Chuan Wang
- School of Science and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
39
|
Hisatomi R, Noguchi A, Yamazaki R, Nakata Y, Gloppe A, Nakamura Y, Usami K. Helicity-Changing Brillouin Light Scattering by Magnons in a Ferromagnetic Crystal. PHYSICAL REVIEW LETTERS 2019; 123:207401. [PMID: 31809102 DOI: 10.1103/physrevlett.123.207401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Brillouin light scattering in ferromagnetic materials usually involves one magnon and two photons and their total angular momentum is conserved. Here, we experimentally demonstrate the presence of a helicity-changing two-magnon Brillouin light scattering in a ferromagnetic crystal, which can be viewed as a four-wave mixing process involving two magnons and two photons. Moreover, we observe an unconventional helicity-changing one-magnon Brillouin light scattering, which apparently infringes the conservation law of the angular momentum. We show that the crystal angular momentum intervenes to compensate the missing angular momentum in the latter scattering process.
Collapse
Affiliation(s)
- R Hisatomi
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - A Noguchi
- Komaba Institute for Science (KIS), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - R Yamazaki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Y Nakata
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - A Gloppe
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Y Nakamura
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
- Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198, Japan
| | - K Usami
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
40
|
Optical vector analysis with attometer resolution, 90-dB dynamic range and THz bandwidth. Nat Commun 2019; 10:5135. [PMID: 31723128 PMCID: PMC6853945 DOI: 10.1038/s41467-019-13129-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022] Open
Abstract
Optical vector analysis (OVA) capable of achieving magnitude and phase responses is essential for the fabrication and application of emerging optical devices. Conventional OVA often has to make compromises among resolution, dynamic range, and bandwidth. Here we show an original method to meet the measurement requirements for ultra-wide bandwidth, ultra-high resolution, and ultra-large dynamic range simultaneously, based on an asymmetric optical probe signal generator (ASG) and receiver (ASR). The ASG and ASR remove the measurement errors introduced by the modulation nonlinearity and enable an ultra-large dynamic range. Thanks to the wavelength-independence of the ASG and ASR, the measurement range can increase by 2 N times by applying an N-tone optical frequency comb without complicated operation. In an experiment, OVA with a resolution of 334 Hz (2.67 attometer in the 1550-nm band), a dynamic range of > 90 dB and a measurement range of 1.075 THz is demonstrated. Typical methods for optical vector analysis have tradeoffs among resolution, dynamic range, and bandwidth. The authors use an asymmetric optical probe signal generator and receiver to perform attometer resolution measurement over a THz of bandwidth while maintaining high dynamic range, aiming to characterize emerging optical devices.
Collapse
|
41
|
Wang YP, Rao JW, Yang Y, Xu PC, Gui YS, Yao BM, You JQ, Hu CM. Nonreciprocity and Unidirectional Invisibility in Cavity Magnonics. PHYSICAL REVIEW LETTERS 2019; 123:127202. [PMID: 31633946 DOI: 10.1103/physrevlett.123.127202] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Indexed: 05/16/2023]
Abstract
We reveal the cooperative effect of coherent and dissipative magnon-photon couplings in an open cavity magnonic system, which leads to nonreciprocity with a considerably large isolation ratio and flexible controllability. Furthermore, we discover unidirectional invisibility for microwave propagation, which appears at the zero-damping condition for hybrid magnon-photon modes. A simple model is developed to capture the generic physics of the interference between coherent and dissipative couplings, which accurately reproduces the observations over a broad range of parameters. This general scheme could inspire methods to achieve nonreciprocity in other systems.
Collapse
Affiliation(s)
- Yi-Pu Wang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada R3T 2N2
| | - J W Rao
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada R3T 2N2
| | - Y Yang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada R3T 2N2
| | - Peng-Chao Xu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada R3T 2N2
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Y S Gui
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada R3T 2N2
| | - B M Yao
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| | - J Q You
- Interdisciplinary Center of Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - C-M Hu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada R3T 2N2
| |
Collapse
|
42
|
Schultheiss K, Verba R, Wehrmann F, Wagner K, Körber L, Hula T, Hache T, Kákay A, Awad AA, Tiberkevich V, Slavin AN, Fassbender J, Schultheiss H. Excitation of Whispering Gallery Magnons in a Magnetic Vortex. PHYSICAL REVIEW LETTERS 2019; 122:097202. [PMID: 30932517 DOI: 10.1103/physrevlett.122.097202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Indexed: 06/09/2023]
Abstract
We present the generation of whispering gallery magnons with unprecedented high wave vectors via nonlinear 3-magnon scattering in a μm-sized magnetic Ni_{81}Fe_{19} disc which is in the vortex state. These modes exhibit a strong localization at the perimeter of the disc and practically zero amplitude in an extended area around the vortex core. They originate from the splitting of the fundamental radial magnon modes, which can be resonantly excited in a vortex texture by an out-of-plane microwave field. We shed light on the basics of this nonlinear scattering mechanism from an experimental and theoretical point of view. Using Brillouin light scattering microscopy, we investigated the frequency and power dependence of the 3-magnon splitting. The spatially resolved mode profiles give evidence for the localization at the boundaries of the disc and allow for a direct determination of the modes wave number.
Collapse
Affiliation(s)
- K Schultheiss
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - R Verba
- Institute of Magnetism, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - F Wehrmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - K Wagner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - L Körber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - T Hula
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Westsächsische Hochschule Zwickau, 08056 Zwickau, Germany
| | - T Hache
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - A Kákay
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - A A Awad
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - V Tiberkevich
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - A N Slavin
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - J Fassbender
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - H Schultheiss
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
43
|
Harder M, Yang Y, Yao BM, Yu CH, Rao JW, Gui YS, Stamps RL, Hu CM. Level Attraction Due to Dissipative Magnon-Photon Coupling. PHYSICAL REVIEW LETTERS 2018; 121:137203. [PMID: 30312103 DOI: 10.1103/physrevlett.121.137203] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/03/2018] [Indexed: 06/08/2023]
Abstract
We report dissipative magnon-photon coupling caused by the cavity Lenz effect, where the magnons in a magnet induce a rf current in the cavity, leading to a cavity backaction that impedes the magnetization dynamics. This effect is revealed in our experiment as level attraction with a coalescence of hybridized magnon-photon modes, which is distinctly different from level repulsion with mode anticrossing caused by coherent magnon-photon coupling. We develop a method to control the interpolation of coherent and dissipative magnon-photon coupling, and observe a matching condition where the two effects cancel. Our work sheds light on the so-far hidden side of magnon-photon coupling, opening a new avenue for controlling and utilizing light-matter interactions.
Collapse
Affiliation(s)
- M Harder
- Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Y Yang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - B M Yao
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - C H Yu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada
- Jiangsu Key Laboratory of ASIC Design, Nantong University, Nantong 226019, China
| | - J W Rao
- Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Y S Gui
- Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - R L Stamps
- Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - C-M Hu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada
| |
Collapse
|
44
|
Sharma S, Blanter YM, Bauer GEW. Optical Cooling of Magnons. PHYSICAL REVIEW LETTERS 2018; 121:087205. [PMID: 30192616 DOI: 10.1103/physrevlett.121.087205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Inelastic scattering of light by spin waves generates an energy flow between the light and magnetization fields, a process that can be enhanced and controlled by concentrating the light in magneto-optical resonators. Here, we model the cooling of a sphere made of a magnetic insulator, such as yttrium iron garnet, using a monochromatic laser source. When the magnon lifetimes are much larger than the optical ones, we can treat the latter as a Markovian bath for magnons. The steady-state magnons are canonically distributed with a temperature that is controlled by the light intensity. We predict that such a cooling process can significantly reduce the temperature of the magnetic order within current technology.
Collapse
Affiliation(s)
- Sanchar Sharma
- Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Yaroslav M Blanter
- Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Gerrit E W Bauer
- Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, The Netherlands
- Institute for Materials Research & WPI-AIMR & CSRN, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
45
|
Johansen Ø, Brataas A. Nonlocal Coupling between Antiferromagnets and Ferromagnets in Cavities. PHYSICAL REVIEW LETTERS 2018; 121:087204. [PMID: 30192613 DOI: 10.1103/physrevlett.121.087204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Microwaves couple to magnetic moments in both ferromagnets and antiferromagnets. Although the magnons in ferromagnets and antiferromagnets radically differ, they can become entangled via strong coupling to the same microwave mode in a cavity. The equilibrium configuration of the magnetic moments crucially governs the coupling between the different magnons, because the antiferromagnetic and ferromagnetic magnons have opposite spins when their dispersion relations cross. We derive analytical expressions for the coupling strengths and find that the coupling between antiferromagnets and ferromagnets is comparable to the coupling between two ferromagnets. Our findings reveal a robust link between cavity spintronics with ferromagnets and antiferromagnets.
Collapse
Affiliation(s)
- Øyvind Johansen
- Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Arne Brataas
- Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
46
|
Liu ZX, Wang B, Xiong H, Wu Y. Magnon-induced high-order sideband generation. OPTICS LETTERS 2018; 43:3698-3701. [PMID: 30067658 DOI: 10.1364/ol.43.003698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Magnon Kerr nonlinearity plays a crucial role in the study of an optomagnonical system and may bring many interesting physical phenomena and important applications. In this Letter, we report the investigation of high-order sideband generation induced by magnon Kerr nonlinearity in an optomagnonical system, which is still unexplored in this emerging research field. We uncover that the microwave driving field plays a significant role in manipulating the generation and amplification of the higher-order sidebands and, more importantly, the sideband spacing can be regulated by controlling the beat frequency between the pump laser and the probe laser, which is extremely eventful for the spacing modulation of the sideband frequency comb. Based on the recent experimental progress, our results will deepen our cognition into optomagnonical nonlinearity and may find fundamental applications in optical frequency metrology and optical communications.
Collapse
|
47
|
Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K. Brillouin Light Scattering by Magnetic Quasivortices in Cavity Optomagnonics. PHYSICAL REVIEW LETTERS 2018; 120:133602. [PMID: 29694172 DOI: 10.1103/physrevlett.120.133602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Indexed: 06/08/2023]
Abstract
A ferromagnetic sphere can support optical vortices in the form of whispering gallery modes and magnetic quasivortices in the form of magnetostatic modes with nontrivial spin textures. These vortices can be characterized by their orbital angular momenta. We experimentally investigate Brillouin scattering of photons in the whispering gallery modes by magnons in the magnetostatic modes, zeroing in on the exchange of the orbital angular momenta between the optical vortices and magnetic quasivortices. We find that the conservation of the orbital angular momentum results in different nonreciprocal behavior in the Brillouin light scattering. New avenues for chiral optics and optospintronics can be opened up by taking the orbital angular momenta as a new degree of freedom for cavity optomagnonics.
Collapse
Affiliation(s)
- A Osada
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - A Gloppe
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - R Hisatomi
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - A Noguchi
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - R Yamazaki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - M Nomura
- Institute of Industrial Science (IIS), The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Y Nakamura
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
- Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198, Japan
| | - K Usami
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
48
|
Wang YP, Zhang GQ, Zhang D, Li TF, Hu CM, You JQ. Bistability of Cavity Magnon Polaritons. PHYSICAL REVIEW LETTERS 2018; 120:057202. [PMID: 29481165 DOI: 10.1103/physrevlett.120.057202] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/28/2017] [Indexed: 06/08/2023]
Abstract
We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.
Collapse
Affiliation(s)
- Yi-Pu Wang
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Guo-Qiang Zhang
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Dengke Zhang
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Tie-Fu Li
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China
- Institute of Microelectronics, Tsinghua National Laboratory of Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - C-M Hu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - J Q You
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
49
|
Sadgrove M, Sugawara M, Mitsumori Y, Edamatsu K. Polarization response and scaling law of chirality for a nanofibre optical interface. Sci Rep 2017; 7:17085. [PMID: 29213054 PMCID: PMC5719059 DOI: 10.1038/s41598-017-17133-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/16/2017] [Indexed: 12/02/2022] Open
Abstract
Two port optical devices couple light to either port dependent on the input photon state. An important class of two-port devices is that of evanescently-coupled interfaces where chirality of photon coupling can lead to important technological applications. Here, we perform a fundamental characterization of such an interface, reconstructing the two-port polarization response over the surface of the Poincaré sphere for an optical nanofibre. From this result, we derive a chirality measure which is universal, obeying a one parameter scaling law independent of the exact parameters of the nanofibre and wavelength of light. Additionally, we note that the polarization response differs qualitatively for single and multiple coupled emitters, with possible implications for sensing and the characterization of waveguide coupled spins.
Collapse
Affiliation(s)
- Mark Sadgrove
- Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577, Japan.
| | - Masakazu Sugawara
- Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577, Japan
| | - Yasuyoshi Mitsumori
- Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577, Japan
| | - Keiichi Edamatsu
- Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
50
|
Zhang D, Luo XQ, Wang YP, Li TF, You JQ. Observation of the exceptional point in cavity magnon-polaritons. Nat Commun 2017; 8:1368. [PMID: 29116092 PMCID: PMC5676766 DOI: 10.1038/s41467-017-01634-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/05/2017] [Indexed: 11/09/2022] Open
Abstract
Magnon-polaritons are hybrid light-matter quasiparticles originating from the strong coupling between magnons and photons. They have emerged as a potential candidate for implementing quantum transducers and memories. Owing to the dampings of both photons and magnons, the polaritons have limited lifetimes. However, stationary magnon-polariton states can be reached by a dynamical balance between pumping and losses, so the intrinsically nonequilibrium system may be described by a non-Hermitian Hamiltonian. Here we design a tunable cavity quantum electrodynamics system with a small ferromagnetic sphere in a microwave cavity and engineer the dissipations of photons and magnons to create cavity magnon-polaritons which have non-Hermitian spectral degeneracies. By tuning the magnon-photon coupling strength, we observe the polaritonic coherent perfect absorption and demonstrate the phase transition at the exceptional point. Our experiment offers a novel macroscopic quantum platform to explore the non-Hermitian physics of the cavity magnon-polaritons.
Collapse
Affiliation(s)
- Dengke Zhang
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing, 100193, China.,Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Xiao-Qing Luo
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing, 100193, China
| | - Yi-Pu Wang
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing, 100193, China
| | - Tie-Fu Li
- Institute of Microelectronics, Tsinghua National Laboratory of Information Science and Technology, Tsinghua University, Beijing, 100084, China.
| | - J Q You
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing, 100193, China.
| |
Collapse
|