1
|
Niu M, Qin SY, Wang BQ, Chen NK, Li XB. Ultrafast structural transition and electron-phonon/phonon-phonon coupling in antimony revealed by nonadiabatic molecular dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:045401. [PMID: 39401529 DOI: 10.1088/1361-648x/ad8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
Real-time time-dependent density-functional theory molecular dynamics (rt-TDDFT-MD) reveals the nonadiabatic dynamics of the ultrafast photoinduced structural transition in a typical phase-change material antimony (Sb) with Peierls distortion (PD). As the excitation intensity increases from 3.54% to 5.00%, three distinct structural transition behaviors within 1 ps are observed: no PD flipping, nonvolatile-like PD flipping, and nonstop back-and-forward PD flipping. Analyses on electron-phonon and phonon-phonon couplings indicate that the excitation-activated coherent A1gphonon mode by electron-phonon coupling drives the structural transition within several hundred femtoseconds. Then, the energy of coherent motions are transformed into that of random thermal motions via phonon-phonon coupling, which prevents the A1g-mode-like coherent structure oscillations. The electron-phonon coupling and coherent motions will be enhanced with increasing the excitation intensity. Therefore, a moderate excitation intensity that can balance the coherent and decoherent thermal movements will result in a nonvolatile-like PD flipping. These findings illustrate important roles of nonadiabatic electron-phonon/phonon-phonon couplings in the ultrafast laser-induced structural transitions in materials with PD, offering insights for manipulating their structures and properties by light.
Collapse
Affiliation(s)
- Meng Niu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, People's Republic of China
| | - Shun-Yao Qin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, People's Republic of China
| | - Bai-Qian Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, People's Republic of China
| | - Nian-Ke Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, People's Republic of China
| | - Xian-Bin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, People's Republic of China
| |
Collapse
|
2
|
Holtgrewe K, Marini G, Calandra M. Light-Induced Polaronic Crystals in Single-Layer Transition Metal Dichalcogenides. NANO LETTERS 2024; 24:13179-13184. [PMID: 39387402 DOI: 10.1021/acs.nanolett.4c03065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Light-induced ordered states can emerge in materials after irradiation with ultrafast laser pulses. However, their prediction is challenging because the inverted band occupation confounds our chemical intuition. Hence, we use a recently developed constrained density functional perturbation theory approach to systematically screen single-layer transition metal dichalcogenides (TMDs) for light-induced ordered states. We demonstrate that all examined single-layer TMDs reveal similar light-induced charge orderings. The corresponding reconstructions are periodic arrangements of polarons (polaronic crystals), characterized by triangular metal clusters and having no equivalent at equilibrium conditions. The polarons are accompanied by localized midgap states in the electronic band structure, detectable by experimental methods. We assess the selenides as the most promising candidates for potential photoexcitation experiments because they transition at low critical fluences, have low transition barriers, and maintain an open band gap under photoexcitation. Our work paves the way for innovative material design approaches targeting light-induced phases.
Collapse
Affiliation(s)
- Kris Holtgrewe
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Italy
| | - Giovanni Marini
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Italy
| | - Matteo Calandra
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Italy
| |
Collapse
|
3
|
Furci M, Marini G, Calandra M. First-Order Rhombohedral-to-Cubic Phase Transition in Photoexcited GeTe. PHYSICAL REVIEW LETTERS 2024; 132:236101. [PMID: 38905679 DOI: 10.1103/physrevlett.132.236101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/23/2024] [Indexed: 06/23/2024]
Abstract
Photoexcited GeTe undergoes a nonthermal phase transition from a rhombohedral to a rocksalt crystalline phase. The microscopic mechanism and the nature of the transition are unclear. By using constrained density functional perturbation theory and by accounting for quantum anharmonicity within the stochastic self-consistent harmonic approximation, we show that the nonthermal phase transition is strongly first order and does not involve phonon softening, at odds with the thermal one. The transition is driven by the closure of the single particle gap in the photoexcited rhombohedral phase. Finally, we show that ultrafast x-ray diffraction data are consistent with a coexistence of the two phases, as expected in a first order transition. Our results are relevant for the understanding of phase transitions and bonding in phase change materials.
Collapse
Affiliation(s)
- Matteo Furci
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Italy
| | - Giovanni Marini
- Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Via Morego, I-16163 Genova, Italy
| | - Matteo Calandra
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Italy
- Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Via Morego, I-16163 Genova, Italy
- Sorbonne Université, CNRS, Institut des Nanosciences de Paris, UMR7588, F-75252 Paris, France
| |
Collapse
|
4
|
Lee Y, Oang KY, Kim D, Ihee H. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:031301. [PMID: 38706888 PMCID: PMC11065455 DOI: 10.1063/4.0000249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The structure of molecules, particularly the dynamic changes in structure, plays an essential role in understanding physical and chemical phenomena. Time-resolved (TR) scattering techniques serve as crucial experimental tools for studying structural dynamics, offering direct sensitivity to molecular structures through scattering signals. Over the past decade, the advent of x-ray free-electron lasers (XFELs) and mega-electron-volt ultrafast electron diffraction (MeV-UED) facilities has ushered TR scattering experiments into a new era, garnering significant attention. In this review, we delve into the basic principles of TR scattering experiments, especially focusing on those that employ x-rays and electrons. We highlight the variations in experimental conditions when employing x-rays vs electrons and discuss their complementarity. Additionally, cutting-edge XFELs and MeV-UED facilities for TR x-ray and electron scattering experiments and the experiments performed at those facilities are reviewed. As new facilities are constructed and existing ones undergo upgrades, the landscape for TR x-ray and electron scattering experiments is poised for further expansion. Through this review, we aim to facilitate the effective utilization of these emerging opportunities, assisting researchers in delving deeper into the intricate dynamics of molecular structures.
Collapse
Affiliation(s)
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
| | | | | |
Collapse
|
5
|
Mori S, Tanimura H, Ichitsubo T, Sutou Y. Photoinduced Nonvolatile Displacive Transformation and Optical Switching in MnTe Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42730-42736. [PMID: 37640668 DOI: 10.1021/acsami.3c07537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
MnTe is considered a promising candidate for next-generation phase change materials owing to the reversible and nonvolatile phase transformation between its α and β' phases by irradiation of a nanosecond laser or application of a pulse voltage. In this work, for a faster phase control of MnTe, the response of metastable β-MnTe thin films to femtosecond (fs) laser irradiation was investigated. Using ultrafast optical spectroscopy, we inferred transient phase transformation. Moreover, with an increase in laser-excitation fluence, a nonvolatile structural change from the β to α phase was experimentally observed by Raman spectroscopy and transmission electron microscopy without ablation damage on the sample. The observation results strongly suggest that the fs-laser-induced β → α phase transformation proceeds through the nucleation and growth mode without a large temperature increase.
Collapse
Affiliation(s)
- Shunsuke Mori
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11, Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Tanimura
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tetsu Ichitsubo
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yuji Sutou
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11, Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
- WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
6
|
Jiang K, Li S, Chen F, Zhu L, Li W. Microstructure characterization, phase transition, and device application of phase-change memory materials. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2252725. [PMID: 37745781 PMCID: PMC10512918 DOI: 10.1080/14686996.2023.2252725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Phase-change memory (PCM), recently developed as the storage-class memory in a computer system, is a new non-volatile memory technology. In addition, the applications of PCM in a non-von Neumann computing, such as neuromorphic computing and in-memory computing, are being investigated. Although PCM-based devices have been extensively studied, several concerns regarding the electrical, thermal, and structural dynamics of phase-change devices remain. In this article, aiming at PCM devices, a comprehensive review of PCM materials is provided, including the primary PCM device mechanics that underpin read and write operations, physics-based modeling initiatives and experimental characterization of the many features examined in nanoscale PCM devices. Finally, this review will propose a prognosis on a few unsolved challenges and highlight research areas of further investigation.
Collapse
Affiliation(s)
- Kai Jiang
- School of Arts and Sciences, Shanghai Dianji University, Shanghai, China
- Department of Physics, East China Normal University, Shanghai, China
| | - Shubing Li
- Department of Physics, East China Normal University, Shanghai, China
| | - Fangfang Chen
- School of Arts and Sciences, Shanghai Dianji University, Shanghai, China
| | - Liping Zhu
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Department of Physics, Fudan University, Shanghai, China
| | - Wenwu Li
- Department of Physics, East China Normal University, Shanghai, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Chen L, Wang L, Jiang K, Zhang J, Li Y, Shang L, Zhu L, Gong S, Hu Z. Optically Induced Multistage Phase Transition in Coherent Phonon-Dominated a-GeTe. J Phys Chem Lett 2023:5760-5767. [PMID: 37326517 DOI: 10.1021/acs.jpclett.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ultrafast photoexcitation can decouple the multilevel nonequilibrium dynamics of electron-lattice interactions, providing an ideal probe for dissecting photoinduced phase transition in solids. Here, real-time time-dependent density functional theory simulations combined with occupation-constrained DFT methods are employed to explore the nonadiabatic paths of optically excited a-GeTe. Results show that the short-wavelength ultrafast laser is capable of generating full-domain carrier excitation and repopulation, whereas the long-wavelength ultrafast laser favors the excitation of lone pair electrons in the antibonded state. Photodoping makes the double-valley potential energy surface shallower and allows the insertion of A1g coherent forces in the atomic pairs, by which the phase reversal of Ge and Te atoms in the ⟨001⟩ direction is activated with ultrafast suppression of the Peierls distortion. These findings have far-reaching implications regarding nonequilibrium phase engineering strategies based on phase-change materials.
Collapse
Affiliation(s)
- Li Chen
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Lin Wang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Kai Jiang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jinzhong Zhang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yawei Li
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Liyan Shang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Liangqing Zhu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Shijing Gong
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhigao Hu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
8
|
Liu WH, Gu YX, Wang Z, Li SS, Wang LW, Luo JW. Origin of Immediate Damping of Coherent Oscillations in Photoinduced Charge-Density-Wave Transition. PHYSICAL REVIEW LETTERS 2023; 130:146901. [PMID: 37084436 DOI: 10.1103/physrevlett.130.146901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/16/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
In stark contrast to the conventional charge density wave (CDW) materials, the one-dimensional CDW on the In/Si(111) surface exhibits immediate damping of the CDW oscillation during the photoinduced phase transition. Here, we successfully reproduce the experimental observation of the photoinduced CDW transition on the In/Si(111) surface by performing real-time time-dependent density functional theory (rt-TDDFT) simulations. We show that photoexcitation promotes valence electrons from the Si substrate to the empty surface bands composed primarily of the covalent p-p bonding states of the long In-In bonds. Such photoexcitation generates interatomic forces to shorten the long In-In bonds and thus drives the structural transition. After the structural transition, these surface bands undergo a switch among different In-In bonds, causing a rotation of the interatomic forces by about π/6 and thus quickly damping the oscillations in feature CDW modes. These findings provide a deeper understanding of photoinduced phase transitions.
Collapse
Affiliation(s)
- Wen-Hao Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Xiang Gu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Shu-Shen Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin-Wang Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Jun-Wei Luo
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Yang L, Tiwari SC, Fukushima S, Shimojo F, Kalia RK, Nakano A, Vashishta P, Branicio PS. Photoexcitation-Induced Nonthermal Ultrafast Loss of Long-Range Order in GeTe. J Phys Chem Lett 2022; 13:10230-10236. [PMID: 36300798 DOI: 10.1021/acs.jpclett.2c02448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nonadiabatic quantum molecular dynamics is used to investigate the evolution of GeTe photoexcited states. Results reveal a photoexcitation-induced picosecond nonthermal path for the loss of long-range order. A valence electron excitation threshold of 4% is found to trigger local disorder by switching Ge atoms from octahedral to tetrahedral sites and promoting Ge-Ge bonding. The resulting loss of long-range order for a higher valence electron excitation fraction is achieved without fulfilling the Lindemann criterion for melting, therefore utilizing a nonthermal path. The photoexcitation-induced structural disorder is accompanied by charge transfer from Te to Ge, Ge-Te bonding-to-antibonding, and Ge-Ge antibonding-to-bonding change, triggering Ge-Te bond breaking and promoting the formation of Ge-Ge wrong bonds. These results provide an electronic-structure basis to understand the photoexcitation-induced ultrafast changes in the structure and properties of GeTe and other phase-change materials.
Collapse
Affiliation(s)
- Liqiu Yang
- Collaboratory for Advanced Computing and Simulation, University of Southern California, Los Angeles, California 90089, United States
| | - Subodh C Tiwari
- Collaboratory for Advanced Computing and Simulation, University of Southern California, Los Angeles, California 90089, United States
| | - Shogo Fukushima
- Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Fuyuki Shimojo
- Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Rajiv K Kalia
- Collaboratory for Advanced Computing and Simulation, University of Southern California, Los Angeles, California 90089, United States
| | - Aiichiro Nakano
- Collaboratory for Advanced Computing and Simulation, University of Southern California, Los Angeles, California 90089, United States
| | - Priya Vashishta
- Collaboratory for Advanced Computing and Simulation, University of Southern California, Los Angeles, California 90089, United States
| | - Paulo S Branicio
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
10
|
Kremer G, Maklar J, Nicolaï L, Nicholson CW, Yue C, Silva C, Werner P, Dil JH, Krempaský J, Springholz G, Ernstorfer R, Minár J, Rettig L, Monney C. Field-induced ultrafast modulation of Rashba coupling at room temperature in ferroelectric α-GeTe(111). Nat Commun 2022; 13:6396. [PMID: 36302853 PMCID: PMC9613697 DOI: 10.1038/s41467-022-33978-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
Abstract
Rashba materials have appeared as an ideal playground for spin-to-charge conversion in prototype spintronics devices. Among them, α-GeTe(111) is a non-centrosymmetric ferroelectric semiconductor for which a strong spin-orbit interaction gives rise to giant Rashba coupling. Its room temperature ferroelectricity was recently demonstrated as a route towards a new type of highly energy-efficient non-volatile memory device based on switchable polarization. Currently based on the application of an electric field, the writing and reading processes could be outperformed by the use of femtosecond light pulses requiring exploration of the possible control of ferroelectricity on this timescale. Here, we probe the room temperature transient dynamics of the electronic band structure of α-GeTe(111) using time and angle-resolved photoemission spectroscopy. Our experiments reveal an ultrafast modulation of the Rashba coupling mediated on the fs timescale by a surface photovoltage, namely an increase corresponding to a 13% enhancement of the lattice distortion. This opens the route for the control of the ferroelectric polarization in α-GeTe(111) and ferroelectric semiconducting materials in quantum heterostructures.
Collapse
Affiliation(s)
- Geoffroy Kremer
- Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, CH-1700, Fribourg, Switzerland.
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France.
- Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, Campus ARTEM, 2 allée André Guinier, BP 50840, 54011, Nancy, France.
| | - Julian Maklar
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Laurent Nicolaï
- New Technologies-Research Center University of West Bohemia, Plzen, Czech Republic
| | - Christopher W Nicholson
- Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, CH-1700, Fribourg, Switzerland
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Changming Yue
- Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, CH-1700, Fribourg, Switzerland
| | - Caio Silva
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Philipp Werner
- Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, CH-1700, Fribourg, Switzerland
| | - J Hugo Dil
- Photon Science Division, Paul Scherrer Institut, CH-5232, Villigen, Switzerland
- Institute of physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Juraj Krempaský
- Photon Science Division, Paul Scherrer Institut, CH-5232, Villigen, Switzerland
| | - Gunther Springholz
- Institut für Halbleiter-und Festkörperphysik, Johannes Kepler Universität, A-4040, Linz, Austria
| | - Ralph Ernstorfer
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Jan Minár
- New Technologies-Research Center University of West Bohemia, Plzen, Czech Republic.
| | - Laurenz Rettig
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Claude Monney
- Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, CH-1700, Fribourg, Switzerland
| |
Collapse
|
11
|
Wu H, Han W, Zhang X. Ultrafast Dynamics of Different Phase States Ge 2Sb 2Te 5 Film Induced by a Femtosecond Laser Pulse Irradiation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6760. [PMID: 36234103 PMCID: PMC9572123 DOI: 10.3390/ma15196760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
A femtosecond laser could realize a high transition rate of the phase change material (PCM), and the properties of the amorphous and the crystalline Ge2Sb2Te5 (GST) induced by a femtosecond laser were studied, which was one of the candidates among the PCMs. However, the characteristics of the intermediate phase states in reversible phase transitions were also important and helpful to explore the mechanisms of the phase transitions. In this paper, the ultrafast dynamics of amorphous, crystalline face-centered-cubic (FCC), and hexagonal-close-packed (HCP) states were investigated using a femtosecond laser pulse excitation through a reflective-type pump-probe technique, obtained by annealing at certain temperatures, and verified using X-ray diffraction (XRD) and the Raman spectrum. It was found that as the annealing temperature increased, the electron of the GST films could be excited more easily, while the ablation threshold decreased. Due to annealing, the structure of bonding was changed for different phase states, which resulted in the decrease in the band gap of the films. In addition, it was hard for the intermediate state films to transit to the amorphous structure state via the femtosecond laser, and the crystallization would be enhanced, while the crystalline HCP structures of GST could be directly and easily changed to the amorphous state by a pulse, which resulted from the non-thermal phase change caused by the excited electron.
Collapse
Affiliation(s)
- Hao Wu
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Weina Han
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Xiaobin Zhang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Qi Y, Chen N, Vasileiadis T, Zahn D, Seiler H, Li X, Ernstorfer R. Photoinduced Ultrafast Transition of the Local Correlated Structure in Chalcogenide Phase-Change Materials. PHYSICAL REVIEW LETTERS 2022; 129:135701. [PMID: 36206436 DOI: 10.1103/physrevlett.129.135701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/19/2021] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Revealing the bonding and time-evolving atomic dynamics in functional materials with complex lattice structures can update the fundamental knowledge on rich physics therein, and also help to manipulate the material properties as desired. As the most prototypical chalcogenide phase change material, Ge_{2}Sb_{2}Te_{5} has been widely used in optical data storage and nonvolatile electric memory due to the fast switching speed and the low energy consumption. However, the basic understanding of the structural dynamics on the atomic scale is still not clear. Using femtosecond electron diffraction, structure factor calculation, and time-dependent density-functional theory molecular dynamic simulation, we reveal the photoinduced ultrafast transition of the local correlated structure in the averaged rocksalt phase of Ge_{2}Sb_{2}Te_{5}. The randomly oriented Peierls distortion among unit cells in the averaged rocksalt phase of Ge_{2}Sb_{2}Te_{5} is termed as local correlated structures. The ultrafast suppression of the local Peierls distortions in the individual unit cell gives rise to a local structure change from the rhombohedral to the cubic geometry within ∼0.3 ps. In addition, the impact of the carrier relaxation and the large number of vacancies to the ultrafast structural response is quantified and discussed. Our Letter provides new microscopic insights into contributions of the local correlated structure to the transient structural and optical responses in phase change materials. Moreover, we stress the significance of femtosecond electron diffraction in revealing the local correlated structure in the subunit cell and the link between the local correlated structure and physical properties in functional materials with complex microstructures.
Collapse
Affiliation(s)
- Yingpeng Qi
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Nianke Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Thomas Vasileiadis
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Daniela Zahn
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Hélène Seiler
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Xianbin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ralph Ernstorfer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|
13
|
Marini G, Calandra M. Light-Tunable Charge Density Wave Orders in MoTe_{2} and WTe_{2} Single Layers. PHYSICAL REVIEW LETTERS 2021; 127:257401. [PMID: 35029411 DOI: 10.1103/physrevlett.127.257401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
By using constrained density functional theory modeling, we demonstrate that ultrafast optical pumping unveils hidden charge orders in group VI monolayer transition metal ditellurides. We show that irradiation of the insulating 2H phases stabilizes multiple transient charge density wave orders with light-tunable distortion, periodicity, electronic structure, and band gap. Moreover, optical pumping of the semimetallic 1T^{'} phases generates a transient charge ordered metallic phase composed of 2D diamond clusters. For each transient phase we identify the critical fluence at which it is observed and the specific optical and Raman fingerprints to directly compare with future ultrafast pump-probe experiments. Our work demonstrates that it is possible to stabilize charge density waves even in insulating 2D transition metal dichalcogenides by ultrafast irradiation.
Collapse
Affiliation(s)
- Giovanni Marini
- Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Via Morego, I-16163 Genova, Italy
| | - Matteo Calandra
- Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Via Morego, I-16163 Genova, Italy
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Italy
- Sorbonne Université, CNRS, Institut des Nanosciences de Paris, UMR7588, F-75252, Paris, France
| |
Collapse
|
14
|
Martinez P, Blanchet V, Descamps D, Dory JB, Fourment C, Papagiannouli I, Petit S, Raty JY, Noé P, Gaudin J. Sub-Picosecond Non-Equilibrium States in the Amorphous Phase of GeTe Phase-Change Material Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102721. [PMID: 34427368 DOI: 10.1002/adma.202102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The sub-picosecond response of amorphous germanium telluride thin film to a femtosecond laser excitation is investigated using frequency-domain interferometry and ab initio molecular dynamics. The time-resolved measurement of the surface dynamics reveals a shrinkage of the film with a dielectric properties' response faster than 300 fs. The systematic ab initio molecular dynamics simulations in non-equilibrium conditions allow the atomic configurations to be retrieved for ionic temperature from 300 to 1100 K and width of the electron distribution from 0.001 to 1.0 eV. Local order of the structures is characterized by in-depth analysis of the angle distribution, phonon modes, and pair distribution function, which evidence a transition toward a new amorphous electronic excited state close in bonding/structure to the liquid state. The results shed a new light on the optically highly excited states in chalcogenide materials involved in both important processes: phase-change materials in memory devices and ovonic threshold switching phenomenon induced by a static field.
Collapse
Affiliation(s)
- Paloma Martinez
- CELIA, Université Bordeaux, CEA, CNRS, UMR 5107, 351 Cours de la Libération, Talence, F-33405, France
| | - Valérie Blanchet
- CELIA, Université Bordeaux, CEA, CNRS, UMR 5107, 351 Cours de la Libération, Talence, F-33405, France
| | - Dominique Descamps
- CELIA, Université Bordeaux, CEA, CNRS, UMR 5107, 351 Cours de la Libération, Talence, F-33405, France
| | - Jean-Baptiste Dory
- Université Grenoble Alpes, CEA, LETI, 17 rue des Martyrs, Grenoble Cedex 9, F-38000, France
| | - Claude Fourment
- CELIA, Université Bordeaux, CEA, CNRS, UMR 5107, 351 Cours de la Libération, Talence, F-33405, France
- CEA-CESTA, 15 avenue des Sablières, CS 60001, Le Barp CEDEX, F-33116, France
| | - Irène Papagiannouli
- CELIA, Université Bordeaux, CEA, CNRS, UMR 5107, 351 Cours de la Libération, Talence, F-33405, France
| | - Stéphane Petit
- CELIA, Université Bordeaux, CEA, CNRS, UMR 5107, 351 Cours de la Libération, Talence, F-33405, France
| | - Jean-Yves Raty
- Université Grenoble Alpes, CEA, LETI, 17 rue des Martyrs, Grenoble Cedex 9, F-38000, France
- FRS-FNRS and CESAM, University of Liège, Allée du 6 Août 19, Sart-Tilman, 4000, Belgium
| | - Pierre Noé
- Université Grenoble Alpes, CEA, LETI, 17 rue des Martyrs, Grenoble Cedex 9, F-38000, France
| | - Jérôme Gaudin
- CELIA, Université Bordeaux, CEA, CNRS, UMR 5107, 351 Cours de la Libération, Talence, F-33405, France
| |
Collapse
|
15
|
Gao Y, Ye S, Lin H, Zhu X. Toward Programmable Moiré Computation. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuechen Gao
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS) The Chinese University of Hong Kong Shenzhen, 15F, Tower G2, Xinghe World, Rd Yabao, Longgang District Shenzhen Guangdong 518172 China
| | - Shuqian Ye
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS) The Chinese University of Hong Kong Shenzhen, 15F, Tower G2, Xinghe World, Rd Yabao, Longgang District Shenzhen Guangdong 518172 China
| | - Haoxiang Lin
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS) The Chinese University of Hong Kong Shenzhen, 15F, Tower G2, Xinghe World, Rd Yabao, Longgang District Shenzhen Guangdong 518172 China
| | - Xi Zhu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS) The Chinese University of Hong Kong Shenzhen, 15F, Tower G2, Xinghe World, Rd Yabao, Longgang District Shenzhen Guangdong 518172 China
| |
Collapse
|
16
|
Fedorov N, Beaulieu S, Belsky A, Blanchet V, Bouillaud R, De Anda Villa M, Filippov A, Fourment C, Gaudin J, Grisenti RE, Lamour E, Lévy A, Macé S, Mairesse Y, Martin P, Martinez P, Noé P, Papagiannouli I, Patanen M, Petit S, Vernhet D, Veyrinas K, Descamps D. Aurore: A platform for ultrafast sciences. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:105104. [PMID: 33138551 DOI: 10.1063/5.0012485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
We present the Aurore platform for ultrafast sciences. This platform is based on a unique 20 W, 1 kHz, 26 fs Ti:sapphire laser system designed for reliable operation and high intensity temporal contrast. The specific design ensures the high stability in terms of pulse duration, energy, and beam pointing necessary for extended experimental campaigns. The laser supplies 5 different beamlines, all dedicated to a specific field: attosecond science (Aurore 1), ultrafast phase transitions in solids (Aurore 2 and 3), ultrafast luminescence in solids (Aurore 4), and femtochemistry (Aurore 5). The technical specifications of these five beamlines are described in detail, and examples of the recent results are given.
Collapse
Affiliation(s)
- N Fedorov
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - S Beaulieu
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - A Belsky
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - V Blanchet
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - R Bouillaud
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - M De Anda Villa
- Sorbonne Université, CNRS, UMR 7588, Institut des Nanosciences de Paris, INSP, Campus Pierre et Marie Curie, F-75252 Paris Cedex 05, France
| | - A Filippov
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - C Fourment
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - J Gaudin
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - R E Grisenti
- Institut für Kernphysik, J. W. Goethe Universität, Max von Laue Str. 1, 60438 Frankfurt am Main, Germany
| | - E Lamour
- Sorbonne Université, CNRS, UMR 7588, Institut des Nanosciences de Paris, INSP, Campus Pierre et Marie Curie, F-75252 Paris Cedex 05, France
| | - A Lévy
- Sorbonne Université, CNRS, UMR 7588, Institut des Nanosciences de Paris, INSP, Campus Pierre et Marie Curie, F-75252 Paris Cedex 05, France
| | - S Macé
- Sorbonne Université, CNRS, UMR 7588, Institut des Nanosciences de Paris, INSP, Campus Pierre et Marie Curie, F-75252 Paris Cedex 05, France
| | - Y Mairesse
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - P Martin
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - P Martinez
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - P Noé
- Université Grenoble Alpes, CEA-LETI, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - I Papagiannouli
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - M Patanen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - S Petit
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - D Vernhet
- Sorbonne Université, CNRS, UMR 7588, Institut des Nanosciences de Paris, INSP, Campus Pierre et Marie Curie, F-75252 Paris Cedex 05, France
| | - K Veyrinas
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| | - D Descamps
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F-33405 Talence, France
| |
Collapse
|
17
|
Han ZH, Han WN, Liu FR, Han Z, Yuan YP, Cheng ZC. Ultrafast temporal-spatial dynamics of amorphous-to-crystalline phase transition in Ge 2Sb 2Te 5 thin film triggered by multiple femtosecond laser pulses irradiation. NANOTECHNOLOGY 2020; 31:115706. [PMID: 31751985 DOI: 10.1088/1361-6528/ab5a1a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Studies have shown that the crystallization phase state of Ge2Sb2Te5 (GST) can be reversibly modulated by femtosecond (fs) laser multiple pulses, which have excellent applications in reconfigurable multi-level operation fields. In this study, the temporal-spatial crystalline evolution dynamics of amorphous GST film is investigated during two fs laser pulses excitation through a pump-probe shadowgraph imaging technique. A quasi-amorphous phase state, which is different from that in the initial as-deposited amorphous GST, is emerged through the first fs laser pulse excitation with a pulse energy lower than crystallization threshold. The experimental results reveal that a crystallization enhancement effect can be induced through the second pulse excitation based on this quasi-amorphous surface structure. The stimulative cluster generated in the quasi-amorphous reduces the amorphous-to-crystalline phase transition threshold for the second fs laser pulse irradiation. The spatially-resolved phase-transition threshold extension effect in a horizontal direction is proposed with the increasing pulse number to summarize the mechanism of the crystallization enhancement effect. The specific-grain-appearance (coarse grains and fine grains representing different phase transition approach) distributed area induced by single and double fs laser pulses irradiation are experimentally demonstrated corresponding to threshold extension theory.
Collapse
Affiliation(s)
- Z H Han
- Beijing Engineering Research Center of Applied Laser Technology, Beijing University of Technology, 100124, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
You D, Fukuzawa H, Luo Y, Saito S, Berholts M, Gaumnitz T, Huttula M, Johnsson P, Kishimoto N, Myllynen H, Nemer A, Niozu A, Patanen M, Pelimanni E, Takanashi T, Wada SI, Yokono N, Owada S, Tono K, Yabashi M, Nagaya K, Kukk E, Ueda K. Multi-particle momentum correlations extracted using covariance methods on multiple-ionization of diiodomethane molecules by soft-X-ray free-electron laser pulses. Phys Chem Chem Phys 2020; 22:2648-2659. [DOI: 10.1039/c9cp03638e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correlations between the ion momenta are extracted by covariance methods formulated for the use in multiparticle momentum-resolved ion time-of-flight spectroscopy.
Collapse
|
19
|
Hirata A, Ichitsubo T, Guan PF, Fujita T, Chen MW. Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials. PHYSICAL REVIEW LETTERS 2018; 120:205502. [PMID: 29864296 DOI: 10.1103/physrevlett.120.205502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/20/2018] [Indexed: 05/09/2023]
Abstract
The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge_{2}Sb_{2}Te_{5} using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.
Collapse
Affiliation(s)
- A Hirata
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Mathematics for Advanced Materials-OIL, AIST-Tohoku University, Sendai 980-8577, Japan
| | - T Ichitsubo
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - P F Guan
- Beijing Computational Science Research Center, Beijing 100084, People's Republic of China
| | - T Fujita
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - M W Chen
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
20
|
Chen NK, Li XB, Bang J, Wang XP, Han D, West D, Zhang S, Sun HB. Directional Forces by Momentumless Excitation and Order-to-Order Transition in Peierls-Distorted Solids: The Case of GeTe. PHYSICAL REVIEW LETTERS 2018; 120:185701. [PMID: 29775378 DOI: 10.1103/physrevlett.120.185701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/11/2017] [Indexed: 05/11/2023]
Abstract
Time-dependent density-functional theory molecular dynamics reveals an unexpected effect of optical excitation in the experimentally observed rhombohedral-to-cubic transition of GeTe. The excitation induces coherent forces along [001], which may be attributed to the unique energy landscape of Peierls-distorted solids. The forces drive the A_{1g} optical phonon mode in which Ge and Te move out of phase. Upon damping of the A_{1g} mode, phase transition takes place, which involves no atomic diffusion, defect formation, or the nucleation and growth of the cubic phase.
Collapse
Affiliation(s)
- Nian-Ke Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xian-Bin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Junhyeok Bang
- Spin Engineering Physics Team, Korea Basic Science Institute (KBSI), Daejeon 305-806, Republic of Korea
| | - Xue-Peng Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Dong Han
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Damien West
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Shengbai Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
21
|
Nakajima K, Joti Y, Katayama T, Owada S, Togashi T, Abe T, Kameshima T, Okada K, Sugimoto T, Yamaga M, Hatsui T, Yabashi M. Software for the data analysis of the arrival-timing monitor at SACLA. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:592-603. [PMID: 29488941 DOI: 10.1107/s1600577517016654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/19/2017] [Indexed: 06/08/2023]
Abstract
X-ray free-electron laser (XFEL) pulses from SPring-8 Ångstrom Compact free-electron LAser (SACLA) with a temporal duration of <10 fs have provided a variety of benefits in scientific research. In a previous study, an arrival-timing monitor was developed to improve the temporal resolution in pump-probe experiments at beamline 3 by rearranging data in the order of the arrival-timing jitter between the XFEL and the synchronized optical laser pulses. This paper presents Timing Monitor Analyzer (TMA), a software package by which users can conveniently obtain arrival-timing data in the analysis environment at SACLA. The package is composed of offline tools that pull stored data from cache storage, and online tools that pull data from a data-handling server in semi-real time during beam time. Users can select the most suitable tool for their purpose, and share the results through a network connection between the offline and online analysis environments.
Collapse
Affiliation(s)
- Kyo Nakajima
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Toshinori Abe
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Kameshima
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kensuke Okada
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Sugimoto
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Mitsuhiro Yamaga
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takaki Hatsui
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
22
|
Akimoto R, Handa H, Shindo S, Sutou Y, Kuwahara M, Naruse M, Saiki T. Implementation of pulse timing discriminator functionality into a GeSbTe/GeCuTe double layer structure. OPTICS EXPRESS 2017; 25:26825-26831. [PMID: 29092167 DOI: 10.1364/oe.25.026825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
The functionality of a pulse timing discriminator, which is commonly required in optical communication systems and artificial neuromorphic engineering, was implemented into chalcogenide phase-change materials. GeSbTe (GST) and GeCuTe (GCT), which exhibit opposite refractive index behavior in their respective crystalline and amorphous phases, were employed. A GST/GCT double layer enabled the order of arrival of two counter-propagating femtosecond pulses to be encoded as a difference in the degree of amorphization of the GCT layer, i.e., either a brighter or darker contrast of the amorphized area with respect to the crystalline background. Nonthermal ultrafast amorphization contributed to a picosecond time resolution in the discrimination of the pulse arrival order.
Collapse
|
23
|
|
24
|
Takanashi T, Nakamura K, Kukk E, Motomura K, Fukuzawa H, Nagaya K, Wada SI, Kumagai Y, Iablonskyi D, Ito Y, Sakakibara Y, You D, Nishiyama T, Asa K, Sato Y, Umemoto T, Kariyazono K, Ochiai K, Kanno M, Yamazaki K, Kooser K, Nicolas C, Miron C, Asavei T, Neagu L, Schöffler M, Kastirke G, Liu XJ, Rudenko A, Owada S, Katayama T, Togashi T, Tono K, Yabashi M, Kono H, Ueda K. Ultrafast Coulomb explosion of a diiodomethane molecule induced by an X-ray free-electron laser pulse. Phys Chem Chem Phys 2017; 19:19707-19721. [DOI: 10.1039/c7cp01669g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Coulomb explosion mechanism of a CH2I2 molecule is rather different to that of CH3I. The kinetic energy of iodine ions is ∼3 times larger due to Coulomb repulsion of the two iodine ions, while that of carbon ions is almost the same for both, as indicated by the red arrows that represent kinetic energies of the atomic ions.
Collapse
|