1
|
Hendrix Y, Rauwel E, Nagpal K, Haddad R, Estephan E, Boissière C, Rauwel P. Revealing the Dependency of Dye Adsorption and Photocatalytic Activity of ZnO Nanoparticles on Their Morphology and Defect States. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1998. [PMID: 37446514 DOI: 10.3390/nano13131998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
ZnO is an effective photocatalyst applied to the degradation of organic dyes in aqueous media. In this study, the UV-light and sunlight-driven photocatalytic activities of ZnO nanoparticles are evaluated. A handheld Lovibond photometer was purposefully calibrated in order to monitor the dye removal in outdoor conditions. The effect of ZnO defect states, i.e., the presence of zinc and oxygen defects on the photocatalytic activity was probed for two types of dyes: fuchsin and methylene blue. Three morphologies of ZnO nanoparticles were deliberately selected, i.e., spherical, facetted and a mix of spherical and facetted, ascertained via transmission electron microscopy. Aqueous and non-aqueous sol-gel routes were applied to their synthesis in order to tailor their size, morphology and defect states. Raman spectroscopy demonstrated that the spherical nanoparticles contained a high amount of oxygen vacancies and zinc interstitials. Photoluminescence spectroscopy revealed that the facetted nanoparticles harbored zinc vacancies in addition to oxygen vacancies. A mechanism for dye degradation based on the possible surface defects in facetted nanoparticles is proposed in this work. The reusability of these nanoparticles for five cycles of dye degradation was also analyzed. More specifically, facetted ZnO nanoparticles tend to exhibit higher efficiencies and reusability than spherical nanoparticles.
Collapse
Affiliation(s)
- Yuri Hendrix
- Institute of Forestry and Engineering Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - Erwan Rauwel
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Keshav Nagpal
- Institute of Forestry and Engineering Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - Ryma Haddad
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Collège de France, CNRS, Sorbonne Université, 75005 Paris, France
| | - Elias Estephan
- Laboratoire Bioinginirie et Nanoscience (LBN), University of Montpellier, 34193 Montpellier, France
| | - Cédric Boissière
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Collège de France, CNRS, Sorbonne Université, 75005 Paris, France
| | - Protima Rauwel
- Institute of Forestry and Engineering Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| |
Collapse
|
2
|
Gleißner R, Beck EE, Chung S, Semione GDL, Mukharamova N, Gizer G, Pistidda C, Renner D, Noei H, Vonk V, Stierle A. Operando reaction cell for high energy surface sensitive x-ray diffraction and reflectometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:073902. [PMID: 35922329 DOI: 10.1063/5.0098893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
A proof of concept is shown for the design of a high pressure heterogeneous catalysis reaction cell suitable for surface sensitive x-ray diffraction and x-ray reflectometry over planar samples using high energy synchrotron radiation in combination with mass spectrometry. This design enables measurements in a pressure range from several tens to hundreds of bars for surface investigations under realistic industrial conditions in heterogeneous catalysis or gaseous corrosion studies.
Collapse
Affiliation(s)
- R Gleißner
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - E E Beck
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Simon Chung
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - G D L Semione
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - N Mukharamova
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - G Gizer
- Institute of Hydrogen Technology, Materials Technology, Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - C Pistidda
- Institute of Hydrogen Technology, Materials Technology, Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - D Renner
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - H Noei
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - V Vonk
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - A Stierle
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
3
|
Dupraz M, Li N, Carnis J, Wu L, Labat S, Chatelier C, van de Poll R, Hofmann JP, Almog E, Leake SJ, Watier Y, Lazarev S, Westermeier F, Sprung M, Hensen EJM, Thomas O, Rabkin E, Richard MI. Imaging the facet surface strain state of supported multi-faceted Pt nanoparticles during reaction. Nat Commun 2022; 13:3003. [PMID: 35637233 PMCID: PMC9151645 DOI: 10.1038/s41467-022-30592-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O2 adsorption or desorption during O2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here the authors demonstrate how the 3D lattice displacement and strain evolution depend on the crystallographic facets of Pt nanoparticles during CO oxidation reaction, providing new insights in the relationship between facet-related surface strain and chemistry.
Collapse
|
4
|
Aseervatham G SB, Devanesan AA, Ali DJ. Nanobiocatalysts and photocatalyst in dye degradation. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the modern era, the world today is in a mission for a new method of environmental bioremediation in faltering the damage, especially in polluted water. Recently, the global direction is regulated toward an alteration from the usual chemical-based methods to a supplementary ecofriendly green alternative. In this perspective, biocatalysts are appreciated as an economical and clean substitute which was meant to catalyze degradation of unmanageable chemicals in a rapid, green and ecologically stable manner. Among the various sources of water pollution, the textile manufacturing industries were thought to be a major dispute due to release of effluents in natural water bodies such as rivers. Other industries like paper, pulp and tannery pharmaceutical industries were also responsible in contaminating the water bodies. Photocatalysis was considered as an auspicious method for the removal of dyes from the natural bodies, specifically those with hard organic compounds; using enzymes. The present chapter briefly emphasizes on the effective methods used for degradation of dye effluents; their importance of photocatalytic and biocatalytic solution to the current environmental difficulties and future opportunities are discussed.
Collapse
Affiliation(s)
- Smilin Bell Aseervatham G
- PG and Research Department of Biotechnology & Bioinformatics , Holy Cross College (Autonomous) , Tiruchirappalli 620002 , Tamil Nadu , India
| | - Arul Ananth Devanesan
- Department of Biotechnology , Karpagam Academy of Higher Education , Pollachi Main Road, Eachanari Post , Coimbatore 641021 , Tamil Nadu , India
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing , Jiangsu , 210096 , China
| |
Collapse
|
5
|
Kim YY, Keller TF, Goncalves TJ, Abuin M, Runge H, Gelisio L, Carnis J, Vonk V, Plessow PN, Vartaniants IA, Stierle A. Single alloy nanoparticle x-ray imaging during a catalytic reaction. SCIENCE ADVANCES 2021; 7:eabh0757. [PMID: 34597137 PMCID: PMC10938497 DOI: 10.1126/sciadv.abh0757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The imaging of active nanoparticles represents a milestone in decoding heterogeneous catalysts’ dynamics. We report the facet-resolved, surface strain state of a single PtRh alloy nanoparticle on SrTiO3 determined by coherent x-ray diffraction imaging under catalytic reaction conditions. Density functional theory calculations allow us to correlate the facet surface strain state to its reaction environment–dependent chemical composition. We find that the initially Pt-terminated nanoparticle surface gets Rh-enriched under CO oxidation reaction conditions. The local composition is facet orientation dependent, and the Rh enrichment is nonreversible under subsequent CO reduction. Tracking facet-resolved strain and composition under operando conditions is crucial for a rational design of more efficient heterogeneous catalysts with tailored activity, selectivity, and lifetime.
Collapse
Affiliation(s)
- Young Yong Kim
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Thomas F. Keller
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
- University of Hamburg, Physics Department, D-20355 Hamburg, Germany
| | - Tiago J. Goncalves
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Manuel Abuin
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Henning Runge
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Luca Gelisio
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Jerome Carnis
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Vedran Vonk
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Philipp N. Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ivan A. Vartaniants
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
- National Research Nuclear University MEPhI, Moscow 115409, Russia
| | - Andreas Stierle
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
- University of Hamburg, Physics Department, D-20355 Hamburg, Germany
| |
Collapse
|
6
|
Chung S, Schober JC, Tober S, Schmidt D, Khadiev A, Novikov DV, Vonk V, Stierle A. Epitaxy and Shape Heterogeneity of a Nanoparticle Ensemble during Redox Cycles. ACS NANO 2021; 15:13267-13278. [PMID: 34350766 DOI: 10.1021/acsnano.1c03002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of metal-support epitaxy on shape and size heterogeneity of nanoparticles and their response to gas atmospheres is not very well explored. Here we show that an ensemble of Pd nanoparticles, grown on MgO(001) by deposition under ultrahigh vacuum, mostly consists of two distinctly epitaxially oriented particles, each having a different structural response to redox cycles. X-ray reciprocal space patterns were acquired in situ under oxidizing and reducing environments. Each type of nanoparticle has a truncated octahedral shape, whereby the majority grows with a cube-on-cube epitaxy on the substrate. Less frequently occurring and larger particles have their principal crystal axes rotated ±3.7° with respect to the substrate's. Upon oxidation, the top (001) facets of both types of particles shrink. The relative change of the rotated particles' top facets is much more pronounced. This finding indicates that a larger mass transfer is involved for the rotated particles and that a larger portion of high-index facets forms. On the main facets of the cube-on-cube particles, the oxidation process results in a considerable strain, as concluded from the evolution to largely asymmetric facet scattering signals. The shape and strain responses are reversible upon reduction, either by annealing to 973 K in vacuum or by reducing with hydrogen. The presented results are important for unraveling different elements of heterogeneity and their effect on the performance of real polycrystalline catalysts. It is shown that a correlation can exist between the particle-support epitaxy and redox-cycling-induced shape changes.
Collapse
Affiliation(s)
- Simon Chung
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jan-Christian Schober
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | - Steffen Tober
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | - Daniel Schmidt
- Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | - Azat Khadiev
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri V Novikov
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Vedran Vonk
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andreas Stierle
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| |
Collapse
|
7
|
Ivashenko O, Johansson N, Pettersen C, Jensen M, Zheng J, Schnadt J, Sjåstad AO. How Surface Species Drive Product Distribution during Ammonia Oxidation: An STM and Operando APXPS Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oleksii Ivashenko
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Box 1033, 0315 Oslo, Norway
| | - Niclas Johansson
- MAX IV Laboratory, Lund University, Box 118, 221 00 Lund, Sweden
| | - Christine Pettersen
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Box 1033, 0315 Oslo, Norway
| | - Martin Jensen
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Box 1033, 0315 Oslo, Norway
| | - Jian Zheng
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Box 1033, 0315 Oslo, Norway
| | - Joachim Schnadt
- MAX IV Laboratory, Lund University, Box 118, 221 00 Lund, Sweden
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box
118, 221 00 Lund, Sweden
| | - Anja O. Sjåstad
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Box 1033, 0315 Oslo, Norway
| |
Collapse
|
8
|
Vicente R, Neckel IT, Sankaranarayanan SKS, Solla-Gullon J, Fernández PS. Bragg Coherent Diffraction Imaging for In Situ Studies in Electrocatalysis. ACS NANO 2021; 15:6129-6146. [PMID: 33793205 PMCID: PMC8155327 DOI: 10.1021/acsnano.1c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
Electrocatalysis is at the heart of a broad range of physicochemical applications that play an important role in the present and future of a sustainable economy. Among the myriad of different electrocatalysts used in this field, nanomaterials are of ubiquitous importance. An increased surface area/volume ratio compared to bulk makes nanoscale catalysts the preferred choice to perform electrocatalytic reactions. Bragg coherent diffraction imaging (BCDI) was introduced in 2006 and since has been applied to obtain 3D images of crystalline nanomaterials. BCDI provides information about the displacement field, which is directly related to strain. Lattice strain in the catalysts impacts their electronic configuration and, consequently, their binding energy with reaction intermediates. Even though there have been significant improvements since its birth, the fact that the experiments can only be performed at synchrotron facilities and its relatively low resolution to date (∼10 nm spatial resolution) have prevented the popularization of this technique. Herein, we will briefly describe the fundamentals of the technique, including the electrocatalysis relevant information that we can extract from it. Subsequently, we review some of the computational experiments that complement the BCDI data for enhanced information extraction and improved understanding of the underlying nanoscale electrocatalytic processes. We next highlight success stories of BCDI applied to different electrochemical systems and in heterogeneous catalysis to show how the technique can contribute to future studies in electrocatalysis. Finally, we outline current challenges in spatiotemporal resolution limits of BCDI and provide our perspectives on recent developments in synchrotron facilities as well as the role of machine learning and artificial intelligence in addressing them.
Collapse
Affiliation(s)
- Rafael
A. Vicente
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| | - Itamar T. Neckel
- Brazilian
Synchrotron Light Laboratory, Brazilian
Center for Research in Energy and Materials, 13083-970, Campinas, São Paulo, Brazil
| | - Subramanian K.
R. S. Sankaranarayanan
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center
for Nanoscale Materials, Argonne National
Laboratory, Argonne, Illinois 60439, United
States
| | - José Solla-Gullon
- Institute
of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante, Spain
| | - Pablo S. Fernández
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Iqbal M, Bando Y, Sun Z, Wu KCW, Rowan AE, Na J, Guan BY, Yamauchi Y. In Search of Excellence: Convex versus Concave Noble Metal Nanostructures for Electrocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004554. [PMID: 33615606 DOI: 10.1002/adma.202004554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Controlling the shape of noble metal nanoparticles is a challenging but important task in electrocatalysis. Apart from hollow and nanocage structures, concave noble metal nanoparticles are considered a new class of unconventional electrocatalysts that exhibit superior electrocatalytic properties as compared with those of conventional nanoparticles (including convex and flat ones). Herein, several facile and highly reproducible routes for synthesizing nanostructured concave noble metal materials reported in the literature are discussed, together with their advantages over noble metal nanoparticles with convex shapes. In addition, possible ways of optimizing the synthesis procedure and enhancing the electrocatalytic characteristics of concave metal nanoparticles are suggested. Nanostructured noble metals with concave features are found to show better catalytic activity and stability hence improve their practical applicability in electrocatalysis.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Institute of Molecular Plus, Tianjin University, No. 11 Building, No. 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yoshio Bando
- Institute of Molecular Plus, Tianjin University, No. 11 Building, No. 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- Australian Institute of Innovative Materials, University of Wollongong, Squires Way, North Wollongong, New South Wales, 2500, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bu Yuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Joint Research Center for Future Materials, International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
10
|
Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS NANO 2021; 15:3754-3807. [PMID: 33650433 PMCID: PMC7992135 DOI: 10.1021/acsnano.0c09563] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
X-ray-based analytics are routinely applied in many fields, including physics, chemistry, materials science, and engineering. The full potential of such techniques in the life sciences and medicine, however, has not yet been fully exploited. We highlight current and upcoming advances in this direction. We describe different X-ray-based methodologies (including those performed at synchrotron light sources and X-ray free-electron lasers) and their potentials for application to investigate the nano-bio interface. The discussion is predominantly guided by asking how such methods could better help to understand and to improve nanoparticle-based drug delivery, though the concepts also apply to nano-bio interactions in general. We discuss current limitations and how they might be overcome, particularly for future use in vivo.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - John M. Abendroth
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Tobias Beck
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Robert Blick
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Cao
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Indranath Chakraborty
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Henry N. Chapman
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Centre
for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunying Chen
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - David P. Cormode
- Radiology
Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daxiang Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerald Falkenberg
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neus Feliu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Mingyuan Gao
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elisabetta Gargioni
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus-C. Glüer
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Florian Grüner
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Moustapha Hassan
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yalan Huang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Samuel Huber
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nils Huse
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yanan Kang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Thomas F. Keller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Körnig
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan
Institute for Translational Nanotechnology (MITRAN), Ypsilanti, Michigan 48198, United States
| | - Dorota Koziej
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Xing-Jie Liang
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Beibei Liu
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Yang Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ziyao Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica
en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramon 182, 20014 Donostia-San Sebastián, Spain
| | - Xiaowei Ma
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Andres Machicote
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Maison
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La
Trobe Institute for Molecular
Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Saad Megahed
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Bert Nickel
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Ferdinand Otto
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Cristina Palencia
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Arwen Pearson
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Oula Peñate-Medina
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Bing Qi
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Joachim Rädler
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Rosenhahn
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rübhausen
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Raymond E. Schaak
- Department of Chemistry, Department of Chemical Engineering,
and
Materials Research Institute, The Pennsylvania
State University, University Park, Pensylvania 16802, United States
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marius Schmidt
- Department of Physics, University
of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Oliver Schmutzler
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Florian Schulz
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - A. K. Sood
- Department of Physics, Indian Institute
of Science, Bangalore 560012, India
| | - Kathryn M. Spiers
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Theresa Staufer
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik M. Stemer
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andreas Stierle
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Xing Sun
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL) State
Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gohar Tsakanova
- Institute of Molecular Biology of National
Academy of Sciences of
Republic of Armenia, 7 Hasratyan str., 0014 Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040 Yerevan, Armenia
| | - Paul S. Weiss
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Horst Weller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Huijie Yan
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Zeng
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhao
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yuliang Zhao
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Dingcheng Zhu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhu
- Bioimaging Center, Shanghai Synchrotron Radiation Facility,
Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory
of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wolfgang J. Parak
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Sahoo SR, Ke SC. Spin-Orbit Coupling Effects in Au 4f Core-Level Electronic Structures in Supported Low-Dimensional Gold Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:554. [PMID: 33672227 PMCID: PMC7926876 DOI: 10.3390/nano11020554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022]
Abstract
Despite their many advantages, issues remain unresolved over the variability in catalytic activities in supported gold nanoparticle (AuNP)-based catalysts, which requires precise characterization to unravel the presence of any fine features. Herein, upon analyzing the Au 4f core-level spin-orbit components in many as-synthesized AuNP-based catalysts, we observed that like deviations in the Au 4f7/2 binding energy positions, both the Au 4f7/2-to-Au 4f5/2 peak intensity and linewidth ratios varied largely from the standard statistical bulk reference values. These deviations were observed in all the as-synthesized supported AuNPs irrespective of different synthesis conditions, variations in size, shape or morphology of the gold nanoparticles, and different support materials. On the other hand, the spin-orbit-splitting values remained almost unchanged and did not show any appreciable deviations from the atomic or bulk standard gold values. These deviations could originate due to alterations in the electronic band structures in the supported AuNPs and might be present in other NP-based catalyst systems as well, which could be the subject of future research interest.
Collapse
Affiliation(s)
| | - Shyue-Chu Ke
- Department of Physics, National Dong Hwa University, Hualien 974301, Taiwan;
| |
Collapse
|
12
|
Current State of the Art of the Solid Rh-Based Catalyzed Hydroformylation of Short-Chain Olefins. Catalysts 2020. [DOI: 10.3390/catal10050510] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The hydroformylation of olefins is one of the most important homogeneously catalyzed processes in industry to produce bulk chemicals. Despite the high catalytic activities and selectivity’s using rhodium-based homogeneous hydroformylation catalysts, catalyst recovery and recycling from the reaction mixture remain a challenging topic on a process level. Therefore, technical solutions involving alternate approaches with heterogeneous catalysts for the conversion of olefins into aldehydes have been considered and research activities have addressed the synthesis and development of heterogeneous rhodium-based hydroformylation catalysts. Different strategies were pursued by different groups of authors, such as the deposition of molecular rhodium complexes, metallic rhodium nanoparticles and single-atom catalysts on a solid support as well as rhodium complexes present in supported liquids. An overview of the recent developments made in the area of the heterogenization of homogeneous rhodium catalysts and their application in the hydroformylation of short-chain olefins is given. A special focus is laid on the mechanistic understanding of the heterogeneously catalyzed reactions at a molecular level in order to provide a guide for the future design of rhodium-based heterogeneous hydroformylation catalysts.
Collapse
|
13
|
Kawaguchi T, Keller TF, Runge H, Gelisio L, Seitz C, Kim YY, Maxey ER, Cha W, Ulvestad A, Hruszkewycz SO, Harder R, Vartanyants IA, Stierle A, You H. Gas-Induced Segregation in Pt-Rh Alloy Nanoparticles Observed by In Situ Bragg Coherent Diffraction Imaging. PHYSICAL REVIEW LETTERS 2019; 123:246001. [PMID: 31922849 DOI: 10.1103/physrevlett.123.246001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 05/20/2023]
Abstract
Bimetallic catalysts can undergo segregation or redistribution of the metals driven by oxidizing and reducing environments. Bragg coherent diffraction imaging (BCDI) was used to relate displacement fields to compositional distributions in crystalline Pt-Rh alloy nanoparticles. Three-dimensional images of internal composition showed that the radial distribution of compositions reverses partially between the surface shell and the core when gas flow changes between O_{2} and H_{2}. Our observation suggests that the elemental segregation of nanoparticle catalysts should be highly active during heterogeneous catalysis and can be a controlling factor in synthesis of electrocatalysts. In addition, our study exemplifies applications of BCDI for in situ 3D imaging of internal equilibrium compositions in other bimetallic alloy nanoparticles.
Collapse
Affiliation(s)
- Tomoya Kawaguchi
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Institute for Materials Research, Tohoku University, Sendai, 9808577, Japan
| | - Thomas F Keller
- Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany
- Physics Department, Universität Hamburg, D-20355 Hamburg, Germany
| | - Henning Runge
- Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany
- Physics Department, Universität Hamburg, D-20355 Hamburg, Germany
| | - Luca Gelisio
- Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany
| | - Christoph Seitz
- Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany
| | - Evan R Maxey
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Wonsuk Cha
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Andrew Ulvestad
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Stephan O Hruszkewycz
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Ross Harder
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany
- National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Andreas Stierle
- Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany
- Physics Department, Universität Hamburg, D-20355 Hamburg, Germany
| | - Hoydoo You
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
14
|
Bergmann A, Roldan Cuenya B. Operando Insights into Nanoparticle Transformations during Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01831] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
15
|
Chen W, Ji D, Zhang Y, Xu P, Gao X, Fang J, Li X, Feng L, Wen W. Schiff-base reaction induced selective sensing of trace dopamine based on a Pt41Rh59 alloy/ZIF-90 nanocomposite. NANOTECHNOLOGY 2019; 30:335708. [PMID: 31018194 DOI: 10.1088/1361-6528/ab1bfb] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zeolitic imidazole frameworks (ZIFs) are a new class of functional porous materials with attractive characters, such as gas storage, selective separation, catalysis, and drug delivery. We report herein using nanoscale ZIF-90 crystals with free aldehyde group of imidazole-2-carboxaldehyde (ICA) ligand for the selective electrochemical detection of dopamine. The averaged adsorption enthalpy ΔH (i.e., isosteric heat) of ZIF-90 to dopamine is estimated as 72 kJ mol-1 according to grand canonical Monte Carlo (GCMC) simulation. With further modification of a Pt41Rh59 alloy nanocatalyst, the electrochemical sensing performances towards dopamine are improved. The synergetic effect generated by a Pt41Rh59/ZIF-90 nanocomposite endows it a low detection limit of 1 nM and good specificity. The different anti-interference mechanisms to coexisting redox active species and amino analogues are also included in this work. The strategy demonstrated here may be extended to tune metal nodes as well as ligands of ZIFs crystals and further regulating their functionalities for different target molecules identification.
Collapse
Affiliation(s)
- Wei Chen
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China. Department of emergency, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Trautmann S, Dathe A, Csáki A, Thiele M, Müller R, Fritzsche W, Stranik O. Time-Resolved Study of Site-Specific Corrosion in a Single Crystalline Silver Nanoparticle. NANOSCALE RESEARCH LETTERS 2019; 14:240. [PMID: 31317355 PMCID: PMC6637113 DOI: 10.1186/s11671-019-3077-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
We followed over 24 h a corrosion process in monocrystalline triangular-shaped nanoparticles at a single-particle level by atomic force microscopy and optical spectroscopy techniques under ambient laboratory conditions. The triangular-shaped form of the particles was selected, because the crystallographic orientation of the particles is well defined upon their deposition on a substrate. We observed that the particles already start to alter within this time frame. Surprisingly, the corrosion starts predominantly from the tips of the particles and it creates within few hours large protrusions, which strongly suppress the plasmon character of the particles. These observations support the crystallographic model of these particles consisting of a high-defect hexagonal closed packed layer, and they could help material scientists to design more stable silver nanoparticles. Moreover, this described technique can be used to reveal kinetics of the corrosion in the nanoscale of other materials.
Collapse
Affiliation(s)
- Steffen Trautmann
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - André Dathe
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Andrea Csáki
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Matthias Thiele
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Robert Müller
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Wolfgang Fritzsche
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Ondrej Stranik
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
17
|
Timoshenko J, Wrasman CJ, Luneau M, Shirman T, Cargnello M, Bare SR, Aizenberg J, Friend CM, Frenkel AI. Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning. NANO LETTERS 2019; 19:520-529. [PMID: 30501196 DOI: 10.1021/acs.nanolett.8b04461] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are several nanometers in size, finite size effects may play a role in determining crystalline order, interatomic distances, and particle shape. Bimetallic NPs may also have different compositional distributions than bulk materials. These factors all render the determination of PRDFs challenging. Here extended X-ray absorption fine structure (EXAFS) spectroscopy, molecular dynamics simulations, and supervised machine learning (artificial neural-network) method are combined to extract PRDFs directly from experimental data. By applying this method to several systems of Pt and PdAu NPs, we demonstrate the finite size effects on the nearest neighbor distributions, bond dynamics, and alloying motifs in mono- and bimetallic particles and establish the generality of this approach.
Collapse
Affiliation(s)
- Janis Timoshenko
- Department of Materials Science and Chemical Engineering , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Cody J Wrasman
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis , Stanford University , Stanford , California 94305 , United States
| | | | | | - Matteo Cargnello
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis , Stanford University , Stanford , California 94305 , United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | | | | | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering , Stony Brook University , Stony Brook , New York 11794 , United States
- Division of Chemistry , Brookhaven National Laboratory , Upton , New York 11973 , United States
| |
Collapse
|