1
|
Ling W, Chen B, Zhao Z, Chen K, Kang D, Dai J. The thermodynamic-pathway-determined microstructure evolution of copper under shock compression. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220210. [PMID: 37393942 DOI: 10.1098/rsta.2022.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/01/2023] [Indexed: 07/04/2023]
Abstract
Shock-induced structural transformations in copper exhibit notable directional dependence and anisotropy, but the mechanisms that govern the responses of materials with different orientations are not yet well understood. In this study, we employ large-scale non-equilibrium molecular dynamics simulations to investigate the propagation of a shock wave through monocrystal copper and analyse the structural transformation dynamics in detail. Our results indicate that anisotropic structural evolution is determined by the thermodynamic pathway. A shock along the [Formula: see text] orientation causes a rapid and instantaneous temperature spike, resulting in a solid-solid phase transition. Conversely, a liquid metastable state is observed along the [Formula: see text] orientation due to thermodynamic supercooling. Notably, melting still occurs during the [Formula: see text]-oriented shock, even if it falls below the supercooling line in the thermodynamic pathway. These results highlight the importance of considering anisotropy, the thermodynamic pathway and solid-state disordering when interpreting phase transitions induced by shock. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Weidong Ling
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Bo Chen
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Zengxiu Zhao
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Kaiguo Chen
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Dongdong Kang
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Jiayu Dai
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| |
Collapse
|
2
|
Goldman N, Fried LE, Lindsey RK, Pham CH, Dettori R. Enhancing the accuracy of density functional tight binding models through ChIMES many-body interaction potentials. J Chem Phys 2023; 158:144112. [PMID: 37061479 DOI: 10.1063/5.0141616] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Semi-empirical quantum models such as Density Functional Tight Binding (DFTB) are attractive methods for obtaining quantum simulation data at longer time and length scales than possible with standard approaches. However, application of these models can require lengthy effort due to the lack of a systematic approach for their development. In this work, we discuss the use of the Chebyshev Interaction Model for Efficient Simulation (ChIMES) to create rapidly parameterized DFTB models, which exhibit strong transferability due to the inclusion of many-body interactions that might otherwise be inaccurate. We apply our modeling approach to silicon polymorphs and review previous work on titanium hydride. We also review the creation of a general purpose DFTB/ChIMES model for organic molecules and compounds that approaches hybrid functional and coupled cluster accuracy with two orders of magnitude fewer parameters than similar neural network approaches. In all cases, DFTB/ChIMES yields similar accuracy to the underlying quantum method with orders of magnitude improvement in computational cost. Our developments provide a way to create computationally efficient and highly accurate simulations over varying extreme thermodynamic conditions, where physical and chemical properties can be difficult to interrogate directly, and there is historically a significant reliance on theoretical approaches for interpretation and validation of experimental results.
Collapse
Affiliation(s)
- Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Laurence E Fried
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Rebecca K Lindsey
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - C Huy Pham
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R Dettori
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
3
|
Jiang DD, Chen PY, Wang P, He AM. Spallation Characteristics of Single Crystal Aluminum with Copper Nanoparticles Based on Atomistic Simulations. NANOMATERIALS 2021; 11:nano11102603. [PMID: 34685044 PMCID: PMC8539068 DOI: 10.3390/nano11102603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 01/30/2023]
Abstract
In this study, the effects of Cu nanoparticle inclusion on the dynamic responses of single crystal Al during shockwave loading and subsequent spallation processes have been explored by molecular dynamics simulations. At specific impact velocities, the ideal single crystal Al will not produce dislocation and stacking fault structure during shock compression, while Cu inclusion in an Al–Cu nanocomposite will lead to the formation of a regular stacking fault structure. The significant difference of a shock-induced microstructure makes the spall strength of the Al–Cu nanocomposite lower than that of ideal single crystal Al at these specific impact velocities. The analysis of the damage evolution process shows that when piston velocity up ≤ 2.0 km/s, due to the dense defects and high potential energy at the interface between inclusions and matrix, voids will nucleate preferentially at the inclusion interface, and then grow along the interface at a rate of five times faster than other voids in the Al matrix. When up ≥ 2.5 km/s, the Al matrix will shock melt or unloading melt, and micro-spallation occurs; Cu inclusions have no effect on spallation strength, but when Cu inclusions and the Al matrix are not fully diffused, the voids tend to grow and coalescence along the inclusion interface to form a large void.
Collapse
Affiliation(s)
- Dong-Dong Jiang
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, China; (D.-D.J.); (P.-Y.C.); (P.W.)
- Graduate School of China Academy of Engineering Physics, Beijing 100088, China
| | - Peng-Yu Chen
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, China; (D.-D.J.); (P.-Y.C.); (P.W.)
| | - Pei Wang
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, China; (D.-D.J.); (P.-Y.C.); (P.W.)
| | - An-Min He
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, China; (D.-D.J.); (P.-Y.C.); (P.W.)
- Correspondence:
| |
Collapse
|
4
|
Goldman N, Kweon KE, Sadigh B, Heo TW, Lindsey RK, Pham CH, Fried LE, Aradi B, Holliday K, Jeffries JR, Wood BC. Semi-Automated Creation of Density Functional Tight Binding Models through Leveraging Chebyshev Polynomial-Based Force Fields. J Chem Theory Comput 2021; 17:4435-4448. [PMID: 34128678 DOI: 10.1021/acs.jctc.1c00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional tight binding (DFTB) is an attractive method for accelerated quantum simulations of condensed matter due to its enhanced computational efficiency over standard density functional theory (DFT) approaches. However, DFTB models can be challenging to determine for individual systems of interest, especially for metallic and interfacial systems where different bonding arrangements can lead to significant changes in electronic states. In this regard, we have created a rapid-screening approach for determining systematically improvable DFTB interaction potentials that can yield transferable models for a variety of conditions. Our method leverages a recent reactive molecular dynamics force field where many-body interactions are represented by linear combinations of Chebyshev polynomials. This allows for the efficient creation of multi-center representations with relative ease, requiring only a small investment in initial DFT calculations. We have focused our workflow on TiH2 as a model system and show that a relatively small training set based on unit-cell-sized calculations yields a model accurate for both bulk and surface properties. Our approach is easy to implement and can yield reliable DFTB models over a broad range of thermodynamic conditions, where physical and chemical properties can be difficult to interrogate directly and there is historically a significant reliance on theoretical approaches for interpretation and validation of experimental results.
Collapse
Affiliation(s)
- Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Kyoung E Kweon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Babak Sadigh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Tae Wook Heo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Rebecca K Lindsey
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - C Huy Pham
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Laurence E Fried
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universität Bremen, P.O.B. 330440, Bremen D-28334, Germany
| | - Kiel Holliday
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jason R Jeffries
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Brandon C Wood
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
5
|
Mishra A, Kunka C, Echeverria MJ, Dingreville R, Dongare AM. Fingerprinting shock-induced deformations via diffraction. Sci Rep 2021; 11:9872. [PMID: 33972567 PMCID: PMC8111029 DOI: 10.1038/s41598-021-88908-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
During the various stages of shock loading, many transient modes of deformation can activate and deactivate to affect the final state of a material. In order to fundamentally understand and optimize a shock response, researchers seek the ability to probe these modes in real-time and measure the microstructural evolutions with nanoscale resolution. Neither post-mortem analysis on recovered samples nor continuum-based methods during shock testing meet both requirements. High-speed diffraction offers a solution, but the interpretation of diffractograms suffers numerous debates and uncertainties. By atomistically simulating the shock, X-ray diffraction, and electron diffraction of three representative BCC and FCC metallic systems, we systematically isolated the characteristic fingerprints of salient deformation modes, such as dislocation slip (stacking faults), deformation twinning, and phase transformation as observed in experimental diffractograms. This study demonstrates how to use simulated diffractograms to connect the contributions from concurrent deformation modes to the evolutions of both 1D line profiles and 2D patterns for diffractograms from single crystals. Harnessing these fingerprints alongside information on local pressures and plasticity contributions facilitate the interpretation of shock experiments with cutting-edge resolution in both space and time.
Collapse
Affiliation(s)
- Avanish Mishra
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA.,Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Cody Kunka
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Marco J Echeverria
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Rémi Dingreville
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87123, USA.
| | - Avinash M Dongare
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
6
|
Yao S, Yu J, Cui Y, Pei X, Yu Y, Wu Q. Revisiting the Power Law Characteristics of the Plastic Shock Front under Shock Loading. PHYSICAL REVIEW LETTERS 2021; 126:085503. [PMID: 33709763 DOI: 10.1103/physrevlett.126.085503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Under uniaxial shock compression, the steepness of the plastic shock front usually exhibits power law characteristics with the Hugoniot pressure, also known as the "Swegle-Grady law." In this Letter, we show that the Swegle-Grady law can be described better by a third power law rather than the classical fourth power law at the strain rate between 10^{5}-10^{7} s^{-1}. A simple dislocation-based continuum model is developed, which reproduced the third power law and revealed very good agreement with recent experiments of multiple types of metals quantitatively. New insights into this unusual macroscopic phenomenon are presented through quantifying the connection between the macroscopic mechanical response and the collective dynamics of dislocation assembles. It is found that the Swegle-Grady law results from the particular stress dependence of the plasticity behaviors, and that the difference between the third power scaling and the classical fourth power scaling results from different shock dissipative actions.
Collapse
Affiliation(s)
- Songlin Yao
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Jidong Yu
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Yinan Cui
- Applied Mechanics Laboratory, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyang Pei
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Yuying Yu
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Qiang Wu
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| |
Collapse
|
7
|
Takagi S, Ichiyanagi K, Kyono A, Nozawa S, Kawai N, Fukaya R, Funamori N, Adachi SI. Development of shock-dynamics study with synchrotron-based time-resolved X-ray diffraction using an Nd:glass laser system. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:371-377. [PMID: 32153275 DOI: 10.1107/s1600577519016084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The combination of high-power laser and synchrotron X-ray pulses allows us to observe material responses under shock compression and release states at the crystal structure on a nanosecond time scale. A higher-power Nd:glass laser system for laser shock experiments was installed as a shock driving source at the NW14A beamline of PF-AR, KEK, Japan. It had a maximum pulse energy of 16 J, a pulse duration of 12 ns and a flat-top intensity profile on the target position. The shock-induced deformation dynamics of polycrystalline aluminium was investigated using synchrotron-based time-resolved X-ray diffraction (XRD) under laser-induced shock. The shock pressure reached up to about 17 GPa with a strain rate of at least 4.6 × 107 s-1 and remained there for nanoseconds. The plastic deformation caused by the shock-wave loading led to crystallite fragmentation. The preferred orientation of the polycrystalline aluminium remained essentially unchanged during the shock compression and release processes in this strain rate. The newly established time-resolved XRD experimental system can provide useful information for understanding the complex dynamic compression and release behaviors.
Collapse
Affiliation(s)
- Sota Takagi
- Division of Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kouhei Ichiyanagi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Atsushi Kyono
- Division of Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobuaki Kawai
- Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Ryo Fukaya
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobumasa Funamori
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
8
|
Unraveling the Role of Interfaces on the Spall Failure of Cu/Ta Multilayered Systems. Sci Rep 2020; 10:208. [PMID: 31937793 PMCID: PMC6959279 DOI: 10.1038/s41598-019-57048-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/07/2019] [Indexed: 11/26/2022] Open
Abstract
Molecular dynamics (MD) simulations are carried out to investigate the effects of the type and spacing of FCC/BCC interfaces on the deformation and spall behavior. The simulations are carried out using model Cu/Ta multilayers with six different types of interfaces. The results suggest that interface type can significantly affect the structure and intensity of the incoming shock wave, change the activated slip systems, alter dislocation slip and twinning behavior, affect where and how voids are nucleated during spallation and the resulting spall strength. Moreover, the above aspects are significantly affected by the interface spacing. A transition from homogeneous to heterogeneous dislocation nucleation occurs as the interface spacing is decreased to 6 nm. Depending on interface type and spacing, damage (voids) nucleation and spall failure is observed to occur not only at the Cu/Ta interfaces, but also in the weaker Cu layer interior, or even in the stronger Ta layer interior, although different mechanisms underlie each of these three distinct failure modes. These findings point to the fact that, depending on the combination of interface type and spacing, interfaces can lead to both strengthening and weakening of the Cu/Ta multilayered microstructures.
Collapse
|
9
|
Heighway PG, Sliwa M, McGonegle D, Wehrenberg C, Bolme CA, Eggert J, Higginbotham A, Lazicki A, Lee HJ, Nagler B, Park HS, Rudd RE, Smith RF, Suggit MJ, Swift D, Tavella F, Remington BA, Wark JS. Nonisentropic Release of a Shocked Solid. PHYSICAL REVIEW LETTERS 2019; 123:245501. [PMID: 31922830 DOI: 10.1103/physrevlett.123.245501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/09/2019] [Indexed: 06/10/2023]
Abstract
We present molecular dynamics simulations of shock and release in micron-scale tantalum crystals that exhibit postbreakout temperatures far exceeding those expected under the standard assumption of isentropic release. We show via an energy-budget analysis that this is due to plastic-work heating from material strength that largely counters thermoelastic cooling. The simulations are corroborated by experiments where the release temperatures of laser-shocked tantalum foils are deduced from their thermal strains via in situ x-ray diffraction and are found to be close to those behind the shock.
Collapse
Affiliation(s)
- P G Heighway
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - M Sliwa
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - D McGonegle
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - C Wehrenberg
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA
| | - C A Bolme
- Los Alamos National Laboratory, Bikini Atoll Road, SM-30, Los Alamos, New Mexico 87545, USA
| | - J Eggert
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA
| | - A Higginbotham
- York Plasma Institute, University of York, Heslington, York YO10 5DD, United Kingdom
| | - A Lazicki
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA
| | - H J Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - B Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - H-S Park
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA
| | - R E Rudd
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA
| | - R F Smith
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA
| | - M J Suggit
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - D Swift
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA
| | - F Tavella
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - B A Remington
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
10
|
Krygier A, Powell PD, McNaney JM, Huntington CM, Prisbrey ST, Remington BA, Rudd RE, Swift DC, Wehrenberg CE, Arsenlis A, Park HS, Graham P, Gumbrell E, Hill MP, Comley AJ, Rothman SD. Extreme Hardening of Pb at High Pressure and Strain Rate. PHYSICAL REVIEW LETTERS 2019; 123:205701. [PMID: 31809064 DOI: 10.1103/physrevlett.123.205701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 06/10/2023]
Abstract
We study the high-pressure strength of Pb and Pb-4wt%Sb at the National Ignition Facility. We measure Rayleigh-Taylor growth of preformed ripples ramp compressed to ∼400 GPa peak pressure, among the highest-pressure strength measurements ever reported on any platform. We find agreement with 2D simulations using the Improved Steinberg-Guinan strength model for body-centered-cubic Pb; the Pb-4wt%Sb alloy behaves similarly within the error bars. The combination of high-rate, pressure-induced hardening and polymorphism yield an average inferred flow stress of ∼3.8 GPa at high pressure, a ∼250-fold increase, changing Pb from soft to extremely strong.
Collapse
Affiliation(s)
- A Krygier
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - P D Powell
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - J M McNaney
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - C M Huntington
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - S T Prisbrey
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - B A Remington
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - R E Rudd
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - D C Swift
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - C E Wehrenberg
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - A Arsenlis
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - H-S Park
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - P Graham
- Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | - E Gumbrell
- Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | - M P Hill
- Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | - A J Comley
- Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | - S D Rothman
- Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| |
Collapse
|
11
|
Zhang YY, Tang MX, Cai Y, E JC, Luo SN. Deducing density and strength of nanocrystalline Ta and diamond under extreme conditions from X-ray diffraction. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:413-421. [PMID: 30855250 DOI: 10.1107/s1600577518017216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
In situ X-ray diffraction with advanced X-ray sources offers unique opportunities for investigating materials properties under extreme conditions such as shock-wave loading. Here, Singh's theory for deducing high-pressure density and strength from two-dimensional (2D) diffraction patterns is rigorously examined with large-scale molecular dynamics simulations of isothermal compression and shock-wave compression. Two representative solids are explored: nanocrystalline Ta and diamond. Analysis of simulated 2D X-ray diffraction patterns is compared against direct molecular dynamics simulation results. Singh's method is highly accurate for density measurement (within 1%) and reasonable for strength measurement (within 10%), and can be used for such measurements on nanocrystalline and polycrystalline solids under extreme conditions (e.g. in the megabar regime).
Collapse
Affiliation(s)
- Y Y Zhang
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| | - M X Tang
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| | - Y Cai
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| | - J C E
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| | - S N Luo
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| |
Collapse
|