1
|
Hosoda K, Seno S, Kamiura R, Murakami N, Kondoh M. Biodiversity and Constrained Information Dynamics in Ecosystems: A Framework for Living Systems. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1624. [PMID: 38136504 PMCID: PMC10742641 DOI: 10.3390/e25121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
The increase in ecosystem biodiversity can be perceived as one of the universal processes converting energy into information across a wide range of living systems. This study delves into the dynamics of living systems, highlighting the distinction between ex post adaptation, typically associated with natural selection, and its proactive counterpart, ex ante adaptability. Through coalescence experiments using synthetic ecosystems, we (i) quantified ecosystem stability, (ii) identified correlations between some biodiversity indexes and the stability, (iii) proposed a mechanism for increasing biodiversity through moderate inter-ecosystem interactions, and (iv) inferred that the information carrier of ecosystems is species composition, or merged genomic information. Additionally, it was suggested that (v) changes in ecosystems are constrained to a low-dimensional state space, with three distinct alteration trajectories-fluctuations, rapid environmental responses, and long-term changes-converging into this state space in common. These findings suggest that daily fluctuations may predict broader ecosystem changes. Our experimental insights, coupled with an exploration of living systems' information dynamics from an ecosystem perspective, enhance our predictive capabilities for natural ecosystem behavior, providing a universal framework for understanding a broad spectrum of living systems.
Collapse
Affiliation(s)
- Kazufumi Hosoda
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; (R.K.); (N.M.)
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka 565-0871, Japan
- Institute for Transdisciplinary Graduate Degree Programs, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Rikuto Kamiura
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; (R.K.); (N.M.)
| | - Naomi Murakami
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; (R.K.); (N.M.)
| | - Michio Kondoh
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan;
| |
Collapse
|
2
|
Göppel T, Rosenberger JH, Altaner B, Gerland U. Thermodynamic and Kinetic Sequence Selection in Enzyme-Free Polymer Self-Assembly Inside a Non-Equilibrium RNA Reactor. Life (Basel) 2022; 12:life12040567. [PMID: 35455058 PMCID: PMC9032526 DOI: 10.3390/life12040567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
The RNA world is one of the principal hypotheses to explain the emergence of living systems on the prebiotic Earth. It posits that RNA oligonucleotides acted as both carriers of information as well as catalytic molecules, promoting their own replication. However, it does not explain the origin of the catalytic RNA molecules. How could the transition from a pre-RNA to an RNA world occur? A starting point to answer this question is to analyze the dynamics in sequence space on the lowest level, where mononucleotide and short oligonucleotides come together and collectively evolve into larger molecules. To this end, we study the sequence-dependent self-assembly of polymers from a random initial pool of short building blocks via templated ligation. Templated ligation requires two strands that are hybridized adjacently on a third strand. The thermodynamic stability of such a configuration crucially depends on the sequence context and, therefore, significantly influences the ligation probability. However, the sequence context also has a kinetic effect, since non-complementary nucleotide pairs in the vicinity of the ligation site stall the ligation reaction. These sequence-dependent thermodynamic and kinetic effects are explicitly included in our stochastic model. Using this model, we investigate the system-level dynamics inside a non-equilibrium ‘RNA reactor’ enabling a fast chemical activation of the termini of interacting oligomers. Moreover, the RNA reactor subjects the oligomer pool to periodic temperature changes inducing the reshuffling of the system. The binding stability of strands typically grows with the number of complementary nucleotides forming the hybridization site. While shorter strands unbind spontaneously during the cold phase, larger complexes only disassemble during the temperature peaks. Inside the RNA reactor, strand growth is balanced by cleavage via hydrolysis, such that the oligomer pool eventually reaches a non-equilibrium stationary state characterized by its length and sequence distribution. How do motif-dependent energy and stalling parameters affect the sequence composition of the pool of long strands? As a critical factor for self-enhancing sequence selection, we identify kinetic stalling due to non-complementary base pairs at the ligation site. Kinetic stalling enables cascades of self-amplification that result in a strong reduction of occupied states in sequence space. Moreover, we discuss the significance of the symmetry breaking for the transition from a pre-RNA to an RNA world.
Collapse
|
3
|
Ameta S, Matsubara YJ, Chakraborty N, Krishna S, Thutupalli S. Self-Reproduction and Darwinian Evolution in Autocatalytic Chemical Reaction Systems. Life (Basel) 2021; 11:308. [PMID: 33916135 PMCID: PMC8066523 DOI: 10.3390/life11040308] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding the emergence of life from (primitive) abiotic components has arguably been one of the deepest and yet one of the most elusive scientific questions. Notwithstanding the lack of a clear definition for a living system, it is widely argued that heredity (involving self-reproduction) along with compartmentalization and metabolism are key features that contrast living systems from their non-living counterparts. A minimal living system may be viewed as "a self-sustaining chemical system capable of Darwinian evolution". It has been proposed that autocatalytic sets of chemical reactions (ACSs) could serve as a mechanism to establish chemical compositional identity, heritable self-reproduction, and evolution in a minimal chemical system. Following years of theoretical work, autocatalytic chemical systems have been constructed experimentally using a wide variety of substrates, and most studies, thus far, have focused on the demonstration of chemical self-reproduction under specific conditions. While several recent experimental studies have raised the possibility of carrying out some aspects of experimental evolution using autocatalytic reaction networks, there remain many open challenges. In this review, we start by evaluating theoretical studies of ACSs specifically with a view to establish the conditions required for such chemical systems to exhibit self-reproduction and Darwinian evolution. Then, we follow with an extensive overview of experimental ACS systems and use the theoretically established conditions to critically evaluate these empirical systems for their potential to exhibit Darwinian evolution. We identify various technical and conceptual challenges limiting experimental progress and, finally, conclude with some remarks about open questions.
Collapse
Affiliation(s)
- Sandeep Ameta
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Yoshiya J. Matsubara
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Nayan Chakraborty
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
| |
Collapse
|
4
|
Roy S, Bapat NV, Derr J, Rajamani S, Sengupta S. Emergence of ribozyme and tRNA-like structures from mineral-rich muddy pools on prebiotic earth. J Theor Biol 2020; 506:110446. [PMID: 32798505 DOI: 10.1016/j.jtbi.2020.110446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
The RNA world hypothesis, although a viable one regarding the origin of life on earth, has so far failed to provide a compelling explanation for the synthesis of RNA enzymes from free nucleotides via abiotic processes. To tackle this long-standing problem, we develop a realistic model for the onset of the RNA world, using experimentally determined rates for polymerization reactions. We start with minimal assumptions about the initial state that only requires the presence of short oligomers or just free nucleotides and consider the effects of environmental cycling by dividing a day into a dry, semi-wet and wet phases that are distinguished by the nature of reactions they support. Long polymers, with maximum lengths sometimes exceeding 100 nucleotides, spontaneously emerge due to a combination of non-enzymatic, non-templated polymer extension and template-directed primer extension processes. The former helps in increasing the lengths of RNA strands, whereas the later helps in producing complementary copies of the strands. Strands also undergo hydrolysis in a structure-dependent manner that favour breaking of bonds connecting unpaired nucleotides. We identify the most favourable conditions needed for the emergence of ribozyme and tRNA-like structures and double stranded RNA molecules, classify all RNA strands on the basis of their secondary structures and determine their abundance in the population. Our results indicate that under suitable environmental conditions, non-enzymatic processes would have been sufficient to lead to the emergence of a variety of ribozyme-like molecules with complex secondary structures and potential catalytic functions.
Collapse
Affiliation(s)
- Suvam Roy
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Niraja V Bapat
- Department of Biology, Indian Institute of Science Education and Research, Pune; Dr. Homi-Bhabha Road, Pune 411008, India
| | - Julien Derr
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, 5 Rue Thomas Mann, 75013 Paris, France.
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune; Dr. Homi-Bhabha Road, Pune 411008, India
| | - Supratim Sengupta
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.
| |
Collapse
|
5
|
Ball R, Brindley J. Anomalous thermal fluctuation distribution sustains proto-metabolic cycles and biomolecule synthesis. Phys Chem Chem Phys 2020; 22:971-975. [PMID: 31854402 DOI: 10.1039/c9cp05756k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An environment far from equilibrium is thought to be a necessary condition for the origin and persistence of life. In this context we report open-flow simulations of a non-enzymic proto-metabolic system, in which hydrogen peroxide acts both as oxidant and driver of thermochemical cycling. We find that a Gaussian perturbed input produces a non-Boltzmann output fluctuation distribution around the mean oscillation maximum. Our main result is that net biosynthesis can occur under fluctuating cyclical but not steady drive. Consequently we may revise the necessary condition to "dynamically far from equilibrium".
Collapse
Affiliation(s)
- Rowena Ball
- Mathematical Sciences Institute and Research School of Chemistry, Australian National University, Canberra, ACT 2602, Australia.
| | - John Brindley
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
6
|
Kamimura A, Kaneko K. Molecular Diversity and Network Complexity in Growing Protocells. Life (Basel) 2019; 9:E53. [PMID: 31226813 PMCID: PMC6617351 DOI: 10.3390/life9020053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/02/2022] Open
Abstract
A great variety of molecular components is encapsulated in cells. Each of these components is replicated for cell reproduction. To address the essential role of the huge diversity of cellular components, we studied a model of protocells that convert resources into catalysts with the aid of a catalytic reaction network. As the resources were limited, the diversity in the intracellular components was found to be increased to allow the use of diverse resources for cellular growth. A scaling relation was demonstrated between resource abundances and molecular diversity. In the present study, we examined how the molecular species diversify and how complex catalytic reaction networks develop through an evolutionary course. At some generations, molecular species first appear as parasites that do not contribute to the replication of other molecules. Later, the species turn into host species that contribute to the replication of other species, with further diversification of molecular species. Thus, a complex joint network evolves with this successive increase in species. The present study sheds new light on the origin of molecular diversity and complex reaction networks at the primitive stage of a cell.
Collapse
Affiliation(s)
- Atsushi Kamimura
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Kunihiko Kaneko
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|