1
|
Kirkby W, Lee AC, Baillie D, Bland T, Ferlaino F, Blakie PB, Bisset RN. Excitations of a Binary Dipolar Supersolid. PHYSICAL REVIEW LETTERS 2024; 133:103401. [PMID: 39303250 DOI: 10.1103/physrevlett.133.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024]
Abstract
We predict a rich excitation spectrum of a binary dipolar supersolid in a linear crystal geometry, where the ground state consists of two partially immiscible components with alternating, interlocking domains. We identify three Goldstone branches, each with first-sound, second-sound, or spin-sound character. In analogy with a diatomic crystal, the resulting lattice has a two-domain primitive basis and we find that the crystal (first-sound-like) branch is split into optical and acoustic phonons. We also find a spin-Higgs branch that is associated with the supersolid modulation amplitude.
Collapse
|
2
|
Šindik M, Zawiślak T, Recati A, Stringari S. Sound, Superfluidity, and Layer Compressibility in a Ring Dipolar Supersolid. PHYSICAL REVIEW LETTERS 2024; 132:146001. [PMID: 38640362 DOI: 10.1103/physrevlett.132.146001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 04/21/2024]
Abstract
We propose a protocol to excite the Goldstone modes of a supersolid dipolar Bose-Einstein condensed gas confined in a ring geometry. By abruptly removing an applied periodic modulation proportional to cos(φ), where φ is the azimuthal angle, we explore the resulting oscillations of the gas by solving the extended Gross-Pitaevskii equation. The value of the two longitudinal sound velocities exhibited in the supersolid phase are analyzed using the hydrodynamic theory of supersolids at zero temperature, which explicitly takes into account both the superfluid and the crystal nature of the system. This approach allows for the determination of the layer compressibility modulus as well as of the superfluid fraction, f_{S}, in agreement with the Leggett estimate of the nonclassical moment of inertia.
Collapse
Affiliation(s)
- Marija Šindik
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Povo, Trento, Italy
| | - Tomasz Zawiślak
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Povo, Trento, Italy
| | - Alessio Recati
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Povo, Trento, Italy
| | - Sandro Stringari
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Povo, Trento, Italy
| |
Collapse
|
3
|
Houwman JJA, Baillie D, Blakie PB, Natale G, Ferlaino F, Mark MJ. Measurement of the Excitation Spectrum of a Dipolar Gas in the Macrodroplet Regime. PHYSICAL REVIEW LETTERS 2024; 132:103401. [PMID: 38518353 DOI: 10.1103/physrevlett.132.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 03/24/2024]
Abstract
The excitation spectrum of a cigar-shaped strongly dipolar quantum gas at the crossover from a Bose-Einstein condensate to a trapped macrodroplet is predicted to exhibit peculiar features-a strong upward shift of low momentum excitation energies together with a strong multiband response for high momenta. By performing Bragg spectroscopy over a wide range of momenta, we observe both key elements and also confirm the predicted stiffening of excitation modes when approaching the macrodroplet regime. Our measurements are in good agreement with numerical calculations taking into account finite size effects.
Collapse
Affiliation(s)
- J J A Houwman
- Universität Innsbruck, Institut für Experimentalphysik, 6020 Innsbruck, Austria
| | - D Baillie
- Department of Physics, Centre for Quantum Science, and The Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin 9016, New Zealand
| | - P B Blakie
- Department of Physics, Centre for Quantum Science, and The Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin 9016, New Zealand
| | - G Natale
- Universität Innsbruck, Institut für Experimentalphysik, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
| | - F Ferlaino
- Universität Innsbruck, Institut für Experimentalphysik, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
| | - M J Mark
- Universität Innsbruck, Institut für Experimentalphysik, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Masalaeva N, Ritsch H, Mivehvar F. Tuning Photon-Mediated Interactions in a Multimode Cavity: From Supersolid to Insulating Droplets Hosting Phononic Excitations. PHYSICAL REVIEW LETTERS 2023; 131:173401. [PMID: 37955466 DOI: 10.1103/physrevlett.131.173401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
Ultracold atoms trapped in laser-generated optical lattices serve as a versatile platform for quantum simulations. However, as these lattices are infinitely stiff, they do not allow to emulate phonon degrees of freedom. This restriction can be lifted in emerged optical lattices inside multimode cavities. Motivated by recent experimental progress in multimode cavity QED, we propose a scheme to implement and study supersolid and droplet states with phononlike lattice excitations by coupling a Bose gas to many longitudinal modes of a ring cavity. The interplay between contact collisional and tunable-range cavity-mediated interactions leads to a rich phase diagram, which includes elastic supersolid as well as insulating droplet phases exhibiting roton-type mode softening for a continuous range of momenta across the superradiant phase transition. The nontrivial dynamic response of the system to a local density perturbation further proves the existence of phononlike modes.
Collapse
Affiliation(s)
- Natalia Masalaeva
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Farokh Mivehvar
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
Sánchez-Baena J, Politi C, Maucher F, Ferlaino F, Pohl T. Heating a dipolar quantum fluid into a solid. Nat Commun 2023; 14:1868. [PMID: 37015907 PMCID: PMC10073146 DOI: 10.1038/s41467-023-37207-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
Raising the temperature of a material enhances the thermal motion of particles. Such an increase in thermal energy commonly leads to the melting of a solid into a fluid and eventually vaporises the liquid into a gaseous phase of matter. Here, we study the finite-temperature physics of dipolar quantum fluids and find surprising deviations from this general phenomenology. In particular, we describe how heating a dipolar superfluid from near-zero temperatures can induce a phase transition to a supersolid state with a broken translational symmetry. We discuss the observation of this effect in experiments on ultracold dysprosium atoms, which opens the door for exploring the unusual thermodynamics of dipolar quantum fluids.
Collapse
Affiliation(s)
- J Sánchez-Baena
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark.
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, 08034, Barcelona, Spain.
| | - C Politi
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria
| | - F Maucher
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark
- Departament de Física, Universitat de les Illes Balears & IAC-3, Campus UIB, E-07122, Palma de Mallorca, Spain
| | - F Ferlaino
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria
| | - T Pohl
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
6
|
Dong B, Zhang Y. Raman laser induced self-organization with topology in a dipolar condensate. OPTICS EXPRESS 2023; 31:7523-7534. [PMID: 36859881 DOI: 10.1364/oe.479091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
We investigate the ground states of a dipolar Bose-Einstein condensate (BEC) subject to Raman laser induced spin-orbit coupling with mean-field theory. Owing to the interplay between spin-orbit coupling and atom-atom interactions, the BEC presents remarkable self-organization behavior and thus hosts various exotic phases including vortex with discrete rotational symmetry, stripe with spin helix, and chiral lattices with C4 symmetry. The peculiar chiral self-organized array of square lattice, which spontaneously breaks both U(1) and rotational symmetries, is observed when the contact interaction is considerable in comparison with the spin-orbit coupling. Moreover, we show that the Raman-induced spin-orbit coupling plays a crucial role in forming rich topological spin textures of the chiral self-organized phases by introducing a channel for atoms to turn on spin flipping between two components. The self-organization phenomena predicted here feature topology owing to spin-orbit coupling. In addition, we find long-lived metastable self-organized arrays with C6 symmetry in the case of strong spin-orbit coupling. We also present a proposal to observe these predicted phases in ultracold atomic dipolar gases with laser-induced spin-orbit coupling, which may stimulate broad theoretical as well as experimental interest.
Collapse
|
7
|
Chomaz L, Ferrier-Barbut I, Ferlaino F, Laburthe-Tolra B, Lev BL, Pfau T. Dipolar physics: a review of experiments with magnetic quantum gases. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 86:026401. [PMID: 36583342 DOI: 10.1088/1361-6633/aca814] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Since the achievement of quantum degeneracy in gases of chromium atoms in 2004, the experimental investigation of ultracold gases made of highly magnetic atoms has blossomed. The field has yielded the observation of many unprecedented phenomena, in particular those in which long-range and anisotropic dipole-dipole interactions (DDIs) play a crucial role. In this review, we aim to present the aspects of the magnetic quantum-gas platform that make it unique for exploring ultracold and quantum physics as well as to give a thorough overview of experimental achievements. Highly magnetic atoms distinguish themselves by the fact that their electronic ground-state configuration possesses a large electronic total angular momentum. This results in a large magnetic moment and a rich electronic transition spectrum. Such transitions are useful for cooling, trapping, and manipulating these atoms. The complex atomic structure and large dipolar moments of these atoms also lead to a dense spectrum of resonances in their two-body scattering behaviour. These resonances can be used to control the interatomic interactions and, in particular, the relative importance of contact over dipolar interactions. These features provide exquisite control knobs for exploring the few- and many-body physics of dipolar quantum gases. The study of dipolar effects in magnetic quantum gases has covered various few-body phenomena that are based on elastic and inelastic anisotropic scattering. Various many-body effects have also been demonstrated. These affect both the shape, stability, dynamics, and excitations of fully polarised repulsive Bose or Fermi gases. Beyond the mean-field instability, strong dipolar interactions competing with slightly weaker contact interactions between magnetic bosons yield new quantum-stabilised states, among which are self-bound droplets, droplet assemblies, and supersolids. Dipolar interactions also deeply affect the physics of atomic gases with an internal degree of freedom as these interactions intrinsically couple spin and atomic motion. Finally, long-range dipolar interactions can stabilise strongly correlated excited states of 1D gases and also impact the physics of lattice-confined systems, both at the spin-polarised level (Hubbard models with off-site interactions) and at the spinful level (XYZ models). In the present manuscript, we aim to provide an extensive overview of the various related experimental achievements up to the present.
Collapse
Affiliation(s)
- Lauriane Chomaz
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Physikalisches Institut der Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - Igor Ferrier-Barbut
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Francesca Ferlaino
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
| | - Bruno Laburthe-Tolra
- Université Sorbonne Paris Nord, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France
- CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| | - Benjamin L Lev
- Departments of Physics and Applied Physics and Ginzton Laboratory, Stanford University, Stanford, CA 94305, United States of America
| | - Tilman Pfau
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| |
Collapse
|
8
|
Tian Z, Wu L, Zhang L, Jing J, Du J. Probing Lorentz-invariance-violation-induced nonthermal Unruh effect in quasi-two-dimensional dipolar condensates. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.106.l061701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Bland T, Poli E, Politi C, Klaus L, Norcia MA, Ferlaino F, Santos L, Bisset RN. Two-Dimensional Supersolid Formation in Dipolar Condensates. PHYSICAL REVIEW LETTERS 2022; 128:195302. [PMID: 35622047 DOI: 10.1103/physrevlett.128.195302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/19/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Dipolar condensates have recently been coaxed to form the long-sought supersolid phase. While one-dimensional supersolids may be prepared by triggering a roton instability, we find that such a procedure in two dimensions (2D) leads to a loss of both global phase coherence and crystalline order. Unlike in 1D, the 2D roton modes have little in common with the supersolid configuration. We develop a finite-temperature stochastic Gross-Pitaevskii theory that includes beyond-mean-field effects to explore the formation process in 2D and find that evaporative cooling directly into the supersolid phase-hence bypassing the first-order roton instability-can produce a robust supersolid in a circular trap. Importantly, the resulting supersolid is stable at the final nonzero temperature. We then experimentally produce a 2D supersolid in a near-circular trap through such an evaporative procedure. Our work provides insight into the process of supersolid formation in 2D and defines a realistic path to the formation of large two-dimensional supersolid arrays.
Collapse
Affiliation(s)
- T Bland
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
| | - E Poli
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - C Politi
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - L Klaus
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - M A Norcia
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
| | - F Ferlaino
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - L Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Hannover 30167, Germany
| | - R N Bisset
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
10
|
Crystallization of bosonic quantum Hall states in a rotating quantum gas. Nature 2022; 601:58-62. [PMID: 34987216 DOI: 10.1038/s41586-021-04170-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/21/2021] [Indexed: 11/08/2022]
Abstract
The dominance of interactions over kinetic energy lies at the heart of strongly correlated quantum matter, from fractional quantum Hall liquids1, to atoms in optical lattices2 and twisted bilayer graphene3. Crystalline phases often compete with correlated quantum liquids, and transitions between them occur when the energy cost of forming a density wave approaches zero. A prime example occurs for electrons in high-strength magnetic fields, where the instability of quantum Hall liquids towards a Wigner crystal4-9 is heralded by a roton-like softening of density modulations at the magnetic length7,10-12. Remarkably, interacting bosons in a gauge field are also expected to form analogous liquid and crystalline states13-21. However, combining interactions with strong synthetic magnetic fields has been a challenge for experiments on bosonic quantum gases18,21. Here we study the purely interaction-driven dynamics of a Landau gauge Bose-Einstein condensate22 in and near the lowest Landau level. We observe a spontaneous crystallization driven by condensation of magneto-rotons7,10, excitations visible as density modulations at the magnetic length. Increasing the cloud density smoothly connects this behaviour to a quantum version of the Kelvin-Helmholtz hydrodynamic instability, driven by the sheared internal flow profile of the rapidly rotating condensate. At long times the condensate self-organizes into a persistent array of droplets separated by vortex streets, which are stabilized by a balance of interactions and effective magnetic forces.
Collapse
|
11
|
Iglesias Martínez JA, Groß MF, Chen Y, Frenzel T, Laude V, Kadic M, Wegener M. Experimental observation of roton-like dispersion relations in metamaterials. SCIENCE ADVANCES 2021; 7:eabm2189. [PMID: 34851658 PMCID: PMC8635434 DOI: 10.1126/sciadv.abm2189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/13/2021] [Indexed: 05/21/2023]
Abstract
Previously, rotons were observed in correlated quantum systems at low temperatures, including superfluid helium and Bose-Einstein condensates. Here, following a recent theoretical proposal, we report the direct experimental observation of roton-like dispersion relations in two different three-dimensional metamaterials under ambient conditions. One experiment uses transverse elastic waves in microscale metamaterials at ultrasound frequencies. The other experiment uses longitudinal air-pressure waves in macroscopic channel–based metamaterials at audible frequencies. In both experiments, we identify the roton-like minimum in the dispersion relation that is associated to a triplet of waves at a given frequency. Our work shows that designed interactions in metamaterials beyond the nearest neighbors open unprecedented experimental opportunities to tailor the lowest dispersion branch—while most previous metamaterial studies have concentrated on shaping higher dispersion branches.
Collapse
Affiliation(s)
| | - Michael Fidelis Groß
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe 76128, Germany
| | - Yi Chen
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe 76128, Germany
- Corresponding author. (Y.C.); (M.W.)
| | - Tobias Frenzel
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe 76128, Germany
| | - Vincent Laude
- Institut FEMTO-ST, UMR 6174, CNRS, Université de Bourgogne Franche-Comté, Besançon, 25030, France
| | - Muamer Kadic
- Institut FEMTO-ST, UMR 6174, CNRS, Université de Bourgogne Franche-Comté, Besançon, 25030, France
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76128, Germany
| | - Martin Wegener
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe 76128, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76128, Germany
- Corresponding author. (Y.C.); (M.W.)
| |
Collapse
|
12
|
Choi J, Zadorozhko AA, Choi J, Kim E. Spatially Modulated Superfluid State in Two-Dimensional ^{4}He Films. PHYSICAL REVIEW LETTERS 2021; 127:135301. [PMID: 34623862 DOI: 10.1103/physrevlett.127.135301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The second layer of ^{4}He films adsorbed on a graphite substrate is an excellent experimental platform to study the interplay between superfluid and structural orders. Here, we report a rigid two-frequency torsional oscillator study on the second layer as a function of temperature and ^{4}He atomic density. For the first time, we show experimentally that the superfluid density is independent of frequency, which can be interpreted as unequivocal evidence of genuine superfluidity. The phase diagram established in this work reveals that a superfluid phase coexists with hexatic density-wave correlation and a registered solid phase. This suggests the second layer as a candidate for hosting two exotic quantum ground states: the spatially modulated superfluid and supersolid phases resulting from the interplay between superfluid and structural orders.
Collapse
Affiliation(s)
- Jaewon Choi
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Alexey A Zadorozhko
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeakyung Choi
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eunseong Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Chen CA, Hung CL. Observation of Scale Invariance in Two-Dimensional Matter-Wave Townes Solitons. PHYSICAL REVIEW LETTERS 2021; 127:023604. [PMID: 34296901 DOI: 10.1103/physrevlett.127.023604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
We report near-deterministic generation of two-dimensional (2D) matter-wave Townes solitons and a precision test on scale invariance in attractive 2D Bose gases. We induce a shape-controlled modulational instability in an elongated 2D matter wave to create an array of isolated solitary waves of various sizes and peak densities. We confirm scale invariance by observing the collapse of solitary-wave density profiles onto a single curve in a dimensionless coordinate rescaled according to their peak densities and observe that the scale-invariant profiles measured at different coupling constants g can further collapse onto the universal profile of Townes solitons. The reported scaling behavior is tested with a nearly 60-fold difference in soliton interaction energies and allows us to discuss the impact of a non-negligible magnetic dipole-dipole interaction (MDDI) on 2D scale invariance. We confirm that the effect of MDDI in our alkali cesium quasi-2D samples effectively conforms to the same scaling law governed by a contact interaction to well within our experiment uncertainty.
Collapse
Affiliation(s)
- Cheng-An Chen
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chen-Lung Hung
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
14
|
Schmidt JN, Hertkorn J, Guo M, Böttcher F, Schmidt M, Ng KSH, Graham SD, Langen T, Zwierlein M, Pfau T. Roton Excitations in an Oblate Dipolar Quantum Gas. PHYSICAL REVIEW LETTERS 2021; 126:193002. [PMID: 34047619 DOI: 10.1103/physrevlett.126.193002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
We observe signatures of radial and angular roton excitations around a droplet crystallization transition in dipolar Bose-Einstein condensates. In situ measurements are used to characterize the density fluctuations near this transition. The static structure factor is extracted and used to identify the radial and angular roton excitations by their characteristic symmetries. These fluctuations peak as a function of the interaction strength indicating the crystallization transition of the system. We compare our observations to a theoretically calculated excitation spectrum allowing us to connect the crystallization mechanism with the softening of the angular roton modes.
Collapse
Affiliation(s)
- J-N Schmidt
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - J Hertkorn
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - M Guo
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - F Böttcher
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - M Schmidt
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - K S H Ng
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - S D Graham
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - T Langen
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - M Zwierlein
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T Pfau
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
Böttcher F, Schmidt JN, Hertkorn J, Ng KSH, Graham SD, Guo M, Langen T, Pfau T. New states of matter with fine-tuned interactions: quantum droplets and dipolar supersolids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:012403. [PMID: 33176284 DOI: 10.1088/1361-6633/abc9ab] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Quantum fluctuations can stabilize Bose-Einstein condensates (BEC) against the mean-field collapse. Stabilization of the condensate has been observed in quantum degenerate Bose-Bose mixtures and dipolar BECs. The fine-tuning of the interatomic interactions can lead to the emergence of two new states of matter: liquid-like self-bound quantum droplets and supersolid crystals formed from these droplets. We review the properties of these exotic states of matter and summarize the experimental progress made using dipolar quantum gases and Bose-Bose mixtures. We conclude with an outline of important open questions that could be addressed in the future.
Collapse
Affiliation(s)
- Fabian Böttcher
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Jan-Niklas Schmidt
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Jens Hertkorn
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Kevin S H Ng
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Sean D Graham
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Mingyang Guo
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Tim Langen
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Tilman Pfau
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
16
|
Chatterjee B, Lévêque C, Schmiedmayer J, Lode AUJ. Detecting One-Dimensional Dipolar Bosonic Crystal Orders via Full Distribution Functions. PHYSICAL REVIEW LETTERS 2020; 125:093602. [PMID: 32915623 DOI: 10.1103/physrevlett.125.093602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We explore the ground states of a few dipolar bosons in optical lattices with incommensurate filling. The competition of kinetic, potential, and interaction energies leads to the emergence of a variety of crystal state orders with characteristic one- and two-body densities. We probe the transitions between these orders and construct the emergent state diagram as a function of the dipolar interaction strength and the lattice depth. We show that the crystal state orders can be observed using the full distribution functions of the particle number extracted from simulated single-shot images.
Collapse
Affiliation(s)
| | - Camille Lévêque
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
- Wolfgang Pauli Institute c/o Faculty of Mathematics, University of Vienna, Oskar-Morgenstern Platz 1, 1090 Vienna, Austria
| | - Jörg Schmiedmayer
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
| | - Axel U J Lode
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
- Wolfgang Pauli Institute c/o Faculty of Mathematics, University of Vienna, Oskar-Morgenstern Platz 1, 1090 Vienna, Austria
- Institute of Physics, Albert-Ludwig University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|
17
|
Mishra C, Santos L, Nath R. Self-Bound Doubly Dipolar Bose-Einstein Condensates. PHYSICAL REVIEW LETTERS 2020; 124:073402. [PMID: 32142338 DOI: 10.1103/physrevlett.124.073402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
We analyze the physics of self-bound droplets in a doubly dipolar Bose-Einstein condensate composed by particles with both electric and magnetic dipole moments. Using the particularly relevant case of dysprosium, we show that the anisotropy of the doubly dipolar interaction potential is highly versatile and nontrivial, depending critically on the relative orientation and strength between the two dipole moments. This opens novel possibilities for exploring intriguing quantum many-body physics. Interestingly, by varying the angle between the two dipoles we find a dimensional crossover from quasi-one-dimensional to quasi-two-dimensional self-bound droplets. This opens a so far unique scenario in condensate physics, in which a dimensional crossover is solely driven by interactions in the absence of any confinement.
Collapse
Affiliation(s)
- Chinmayee Mishra
- Indian Institute of Science Education and Research, Pune 411 008, India
| | - Luis Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstrasse 2, DE-30167 Hannover, Germany
| | - Rejish Nath
- Indian Institute of Science Education and Research, Pune 411 008, India
| |
Collapse
|
18
|
Hertkorn J, Böttcher F, Guo M, Schmidt JN, Langen T, Büchler HP, Pfau T. Fate of the Amplitude Mode in a Trapped Dipolar Supersolid. PHYSICAL REVIEW LETTERS 2019; 123:193002. [PMID: 31765213 DOI: 10.1103/physrevlett.123.193002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/13/2019] [Indexed: 06/10/2023]
Abstract
We theoretically investigate the spectrum of elementary excitations of a trapped dipolar quantum gas across the BEC-supersolid phase transition. Our calculations reveal the existence of distinct Higgs amplitude and Nambu-Goldstone modes that emerge from the softening roton modes of the dipolar BEC at the phase transition point. On the supersolid side of the transition, the energy of the Higgs amplitude mode increases rapidly, leading to a strong coupling to higher-lying modes. Our Letter highlights how the symmetry-breaking nature of the supersolid state translates to finite-size systems.
Collapse
Affiliation(s)
- J Hertkorn
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - F Böttcher
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - M Guo
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - J N Schmidt
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - T Langen
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - H P Büchler
- Institute for Theoretical Physics III and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - T Pfau
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
19
|
Tanzi L, Roccuzzo SM, Lucioni E, Famà F, Fioretti A, Gabbanini C, Modugno G, Recati A, Stringari S. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 2019; 574:382-385. [DOI: 10.1038/s41586-019-1568-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/29/2019] [Indexed: 11/09/2022]
|
20
|
The low-energy Goldstone mode in a trapped dipolar supersolid. Nature 2019; 574:386-389. [DOI: 10.1038/s41586-019-1569-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/29/2019] [Indexed: 11/08/2022]
|
21
|
Natale G, van Bijnen RMW, Patscheider A, Petter D, Mark MJ, Chomaz L, Ferlaino F. Excitation Spectrum of a Trapped Dipolar Supersolid and Its Experimental Evidence. PHYSICAL REVIEW LETTERS 2019; 123:050402. [PMID: 31491290 DOI: 10.1103/physrevlett.123.050402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Indexed: 06/10/2023]
Abstract
We study the spectrum of elementary excitations of a dipolar Bose gas in a three-dimensional anisotropic trap across the superfluid-supersolid phase transition. Theoretically, we show that, when entering the supersolid phase, two distinct excitation branches appear, respectively associated with dominantly crystal and superfluid excitations. These results confirm infinite-system predictions, showing that finite-size effects play only a small qualitative role, and connect the two branches to the simultaneous occurrence of crystal and superfluid orders. Experimentally, we probe compressional excitations in an Er quantum gas across the phase diagram. While in the Bose-Einstein condensate regime the system exhibits an ordinary quadrupole oscillation, in the supersolid regime we observe a striking two-frequency response of the system, related to the two spontaneously broken symmetries.
Collapse
Affiliation(s)
- G Natale
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - R M W van Bijnen
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
| | - A Patscheider
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - D Petter
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - M J Mark
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
| | - L Chomaz
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - F Ferlaino
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
| |
Collapse
|