1
|
Lu B, Niu Y, Chen Q, Wong PKJ, Guo Q, Jiang W, Rath A, Pennycook SJ, Wang L, Xia K, Zhai Y, Shen Wee AT, Zhang W. Is Semiconducting Transition-Metal Dichalcogenide Suitable for Spin Pumping? NANO LETTERS 2025; 25:35-40. [PMID: 39689902 DOI: 10.1021/acs.nanolett.4c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Spin pumping has been reported on interfaces formed with ferromagnetic metals and layered transition-metal dichalcogenides (TMDs), as signified by enhanced Gilbert damping parameters extracted from magnetodynamics measurements. However, whether the observed damping enhancement purely arises from the pumping effect has remained debatable, given that possible extrinsic disturbances on the interfaces cannot be excluded in most of the experiments. Here, we explore an atomically clean interface formed with CoFeB and atomically thin MoSe2, achieved by an all in situ growth strategy based on molecular beam epitaxy. Taking advantage of ferromagnetic resonance analysis, we find that the Gilbert damping of the CoFeB/MoSe2 interface closely resembles that of CoFeB/SiO2, suggesting the absence of spin pumping. With similar findings demonstrated on a few more representative interfaces, this work clarifies the unsuitability of semiconducting TMDs for spin pumping and suggests that the observed damping enhancement in the previous reports may be predominantly attributed to extrinsic contributions during the experimental process.
Collapse
Affiliation(s)
- Bin Lu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yue Niu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Qian Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Ping Kwan Johnny Wong
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qingjie Guo
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Wei Jiang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Ashutosh Rath
- Central Characterization Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
| | - Stephen J Pennycook
- Center for Advanced 2D Materials and Graphene Research Center, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Lei Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Ke Xia
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Ya Zhai
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Andrew Thye Shen Wee
- Center for Advanced 2D Materials and Graphene Research Center, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Wen Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Mamica S. Spin-wave mode coupling in the presence of the demagnetizing field in cobalt-permalloy magnonic crystals. Sci Rep 2024; 14:22966. [PMID: 39362950 PMCID: PMC11449932 DOI: 10.1038/s41598-024-74923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
We present the results of studies on the non-uniform frequency shift of spin wave spectrum in a two-dimensional magnonic crystal of cobalt/permalloy under the influence of external magnetic field changes. We investigate the phenomenon of coupling of modes and, as a consequence, their hybridization. By taking advantage of the fact that compressing the crystal structure along the direction of the external magnetic field leads to an enhancement of the demagnetizing field, we analyse its effect on the frequency shift of individual modes depending on their concentration in Co. We show that the consequence of this enhancement is a shift in the coupling of modes towards higher magnetic fields. This provides a potential opportunity to design which pairs of modes and in what range of fields hybridization will occur.
Collapse
Affiliation(s)
- S Mamica
- Faculty of Physics, ISQI, A. Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, Poznań, 61-614, Poland.
| |
Collapse
|
3
|
Flebus B, Grundler D, Rana B, Otani Y, Barsukov I, Barman A, Gubbiotti G, Landeros P, Akerman J, Ebels U, Pirro P, Demidov VE, Schultheiss K, Csaba G, Wang Q, Ciubotaru F, Nikonov DE, Che P, Hertel R, Ono T, Afanasiev D, Mentink J, Rasing T, Hillebrands B, Kusminskiy SV, Zhang W, Du CR, Finco A, van der Sar T, Luo YK, Shiota Y, Sklenar J, Yu T, Rao J. The 2024 magnonics roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:363501. [PMID: 38565125 DOI: 10.1088/1361-648x/ad399c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Magnonicsis a research field that has gained an increasing interest in both the fundamental and applied sciences in recent years. This field aims to explore and functionalize collective spin excitations in magnetically ordered materials for modern information technologies, sensing applications and advanced computational schemes. Spin waves, also known as magnons, carry spin angular momenta that allow for the transmission, storage and processing of information without moving charges. In integrated circuits, magnons enable on-chip data processing at ultrahigh frequencies without the Joule heating, which currently limits clock frequencies in conventional data processors to a few GHz. Recent developments in the field indicate that functional magnonic building blocks for in-memory computation, neural networks and Ising machines are within reach. At the same time, the miniaturization of magnonic circuits advances continuously as the synergy of materials science, electrical engineering and nanotechnology allows for novel on-chip excitation and detection schemes. Such circuits can already enable magnon wavelengths of 50 nm at microwave frequencies in a 5G frequency band. Research into non-charge-based technologies is urgently needed in view of the rapid growth of machine learning and artificial intelligence applications, which consume substantial energy when implemented on conventional data processing units. In its first part, the 2024 Magnonics Roadmap provides an update on the recent developments and achievements in the field of nano-magnonics while defining its future avenues and challenges. In its second part, the Roadmap addresses the rapidly growing research endeavors on hybrid structures and magnonics-enabled quantum engineering. We anticipate that these directions will continue to attract researchers to the field and, in addition to showcasing intriguing science, will enable unprecedented functionalities that enhance the efficiency of alternative information technologies and computational schemes.
Collapse
Affiliation(s)
- Benedetta Flebus
- Department of Physics, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, United States of America
| | - Dirk Grundler
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Institute of Electrical and Micro Engineering (IEM), EPFL, Lausanne 1015, Switzerland
| | - Bivas Rana
- Institute of Spintronics and Quantum Information (ISQI), Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - YoshiChika Otani
- Center for Emergent Matter Science, RIKEN, Wako, Japan
- Institute for Solid State Physics (ISSP), University of Tokyo, Kashiwa, Japan
| | - Igor Barsukov
- Department of Physics and Astronomy, University of California, Riverside, United States of America
| | - Anjan Barman
- S N Bose National Centre for Basic Sciences, Salt Lake, Sector III, Kolkata, India
| | | | - Pedro Landeros
- Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
| | - Johan Akerman
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Ursula Ebels
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble-INP, SPINTEC, Grenoble 38000, France
| | - Philipp Pirro
- Fachbereich Physik and Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | | | | | - Gyorgy Csaba
- Pázmány Péter Catholic University, Budapest, Hungary
| | - Qi Wang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | - Dmitri E Nikonov
- Components Research, Intel Corp., Hillsboro, OR 97124, United States of America
| | - Ping Che
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau 91767, France
| | - Riccardo Hertel
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, Strasbourg 67000, France
| | - Teruo Ono
- Institute for Chemical Research, Kyoto University, Center for Spintronics Research Network, Kyoto University, Uji, Japan
| | - Dmytro Afanasiev
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Johan Mentink
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Theo Rasing
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Burkard Hillebrands
- Fachbereich Physik and Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Silvia Viola Kusminskiy
- RWTH Aachen University, Aachen and Max Planck Institute for the Physics of Light, Erlangen, Germany
| | - Wei Zhang
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Chunhui Rita Du
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Aurore Finco
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier 34095, France
| | - Toeno van der Sar
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft 2628 CJ, The Netherlands
| | - Yunqiu Kelly Luo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, United States of America
- Kavli Institute at Cornell, Ithaca, NY 14853, United States of America
| | - Yoichi Shiota
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Joseph Sklenar
- Wayne State University, Detroit, MI, United States of America
| | - Tao Yu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jinwei Rao
- ShanghaiTech University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Wang Y, Zhang Y, Li C, Wei J, He B, Xu H, Xia J, Luo X, Li J, Dong J, He W, Yan Z, Yang W, Ma F, Chai G, Yan P, Wan C, Han X, Yu G. Ultrastrong to nearly deep-strong magnon-magnon coupling with a high degree of freedom in synthetic antiferromagnets. Nat Commun 2024; 15:2077. [PMID: 38453947 PMCID: PMC10920873 DOI: 10.1038/s41467-024-46474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Ultrastrong and deep-strong coupling are two coupling regimes rich in intriguing physical phenomena. Recently, hybrid magnonic systems have emerged as promising candidates for exploring these regimes, owing to their unique advantages in quantum engineering. However, because of the relatively weak coupling between magnons and other quasiparticles, ultrastrong coupling is predominantly realized at cryogenic temperatures, while deep-strong coupling remains to be explored. In our work, we achieve both theoretical and experimental realization of room-temperature ultrastrong magnon-magnon coupling in synthetic antiferromagnets with intrinsic asymmetry of magnetic anisotropy. Unlike most ultrastrong coupling systems, where the counter-rotating coupling strength g2 is strictly equal to the co-rotating coupling strength g1, our systems allow for highly tunable g1 and g2. This high degree of freedom also enables the realization of normalized g1 or g2 larger than 0.5. Particularly, our experimental findings reveal that the maximum observed g1 is nearly identical to the bare frequency, with g1/ω0 = 0.963, indicating a close realization of deep-strong coupling within our hybrid magnonic systems. Our results highlight synthetic antiferromagnets as platforms for exploring unconventional ultrastrong and even deep-strong coupling regimes, facilitating the further exploration of quantum phenomena.
Collapse
Affiliation(s)
- Yuqiang Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing, 210046, China
| | - Chaozhong Li
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Jinwu Wei
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Bin He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongjun Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Jihao Xia
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuming Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahui Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Dong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Wenqing He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengren Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlong Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fusheng Ma
- Jiangsu Key Laboratory of Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing, 210046, China.
| | - Guozhi Chai
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Peng Yan
- School of Electronic Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Caihua Wan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiufeng Han
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Guoqiang Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
5
|
He XW, Wang ZY, Han X, Zhang S, Wang HF. Parametrically amplified nonreciprocal magnon laser in a hybrid cavity optomagnonical system. OPTICS EXPRESS 2023; 31:43506-43517. [PMID: 38178442 DOI: 10.1364/oe.509918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
We propose a scheme to achieve a tunable nonreciprocal magnon laser with parametric amplification in a hybrid cavity optomagnonical system, which consists a yttrium iron garnet (YIG) sphere and a spinning resonator. We demonstrate the control of magnon laser can be enhanced via parametric amplification, which make easier and more convenient to control the magnon laser. Moreover, we analyze and evaluate the effects of pump light input direction and amplification amplitude on the magnon gain and laser threshold power. The results indicate that we can obtian a higher magnon gain and a broader range of threshold power of the magnon laser. In our scheme both the nonreciprocity and magnon gain of the magnon laser can be increased significantly. Our proposal provides a way to obtain a novel nonreciprocal magnon laser and offers new possibilities for both nonreciprocal optics and spin-electronics applications.
Collapse
|
6
|
Santos OA, van Wees BJ. Magnon Confinement in an All-on-Chip YIG Cavity Resonator Using Hybrid YIG/Py Magnon Barriers. NANO LETTERS 2023; 23:9303-9309. [PMID: 37819876 PMCID: PMC10603800 DOI: 10.1021/acs.nanolett.3c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Confining magnons in cavities can introduce new functionalities to magnonic devices, enabling future magnonic structures to emulate the established photonic and electronic components. As a proof-of-concept, we report magnon confinement in a lithographically defined all-on-chip YIG cavity created between two YIG/Permalloy bilayers. We take advantage of the modified magnetic properties of the covered/uncovered YIG film to define on-chip distinct regions with boundaries capable of confining magnons. We confirm this by measuring multiple spin-pumping voltage peaks in a 400 nm wide platinum strip placed along the center of the cavity. These peaks coincide with multiple spin-wave resonance modes calculated for a YIG slab with the corresponding geometry. The fabrication of micrometer-sized YIG cavities following this technique represents a new approach to control coherent magnons, while the spin-pumping voltage in a nanometer-sized Pt strip demonstrates to be a noninvasive local detector of the magnon resonance intensity.
Collapse
Affiliation(s)
- Obed Alves Santos
- Physics
of Nanodevices Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4 AG, Groningen 9747, The Netherlands
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Bart J. van Wees
- Physics
of Nanodevices Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4 AG, Groningen 9747, The Netherlands
| |
Collapse
|
7
|
Nicolaides C, Bazzi F, Vouros E, Flesariu DF, Chrysochos N, Koutentis PA, Constantinides CP, Trypiniotis T. Metal-Free Organic Radical Spin Source. NANO LETTERS 2023; 23:4579-4586. [PMID: 37154760 DOI: 10.1021/acs.nanolett.3c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Organic radicals have long been suggested as candidates for organic magnets and components in organic spintronic devices. Herein, we demonstrate spin current emission from an organic radical film via spin pumping at room temperature. We present the synthesis and the thin film preparation of a Blatter-type radical with outstanding stability and low roughness. These features enable the fabrication of a radical/ferromagnet bilayer, in which the spin current emission from the organic radical layer can be reversibly reduced when the ferromagnetic film is brought into simultaneous resonance with the radical. The results provide an experimental demonstration of a metal-free organic radical layer operating as a spin source, opening a new avenue for the development of purely organic spintronic devices and bridging the gap between potential and real applications.
Collapse
Affiliation(s)
| | - Fadwat Bazzi
- Department of Natural Sciences, University of Michigan - Dearborn, 4901 Evergreen Rd, Dearborn, Michigan 48128-1491, United States
| | - Evangelos Vouros
- Department of Physics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Dragos F Flesariu
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Nicolas Chrysochos
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | | | - Christos P Constantinides
- Department of Natural Sciences, University of Michigan - Dearborn, 4901 Evergreen Rd, Dearborn, Michigan 48128-1491, United States
| | | |
Collapse
|
8
|
Lee BH, Fakhrul T, Ross CA, Beach GSD. Large Anomalous Frequency Shift in Perpendicular Standing Spin Wave Modes in BiYIG Films Induced by Thin Metallic Overlayers. PHYSICAL REVIEW LETTERS 2023; 130:126703. [PMID: 37027880 DOI: 10.1103/physrevlett.130.126703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Interface-driven effects on magnon dynamics are studied in magnetic insulator-metal bilayers using Brillouin light scattering. It is found that the Damon-Eshbach modes exhibit a significant frequency shift due to interfacial anisotropy generated by thin metallic overlayers. In addition, an unexpectedly large shift in the perpendicular standing spin wave mode frequencies is also observed, which cannot be explained by anisotropy-induced mode stiffening or surface pinning. Rather, it is suggested that additional confinement may result from spin pumping at the insulator-metal interface, which results in a locally overdamped interface region. These results uncover previously unidentified interface-driven changes in magnetization dynamics that may be exploited to locally control and modulate magnonic properties in thin-film heterostructures.
Collapse
Affiliation(s)
- Byung Hun Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Takian Fakhrul
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Geoffrey S D Beach
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
9
|
Ren H, Zheng XY, Channa S, Wu G, O'Mahoney DA, Suzuki Y, Kent AD. Hybrid spin Hall nano-oscillators based on ferromagnetic metal/ferrimagnetic insulator heterostructures. Nat Commun 2023; 14:1406. [PMID: 36918562 PMCID: PMC10015054 DOI: 10.1038/s41467-023-37028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Spin-Hall nano-oscillators (SHNOs) are promising spintronic devices to realize current controlled GHz frequency signals in nanoscale devices for neuromorphic computing and creating Ising systems. However, traditional SHNOs devices based on transition metals have high auto-oscillation threshold currents as well as low quality factors and output powers. Here we demonstrate a new type of hybrid SHNO based on a permalloy (Py) ferromagnetic-metal nanowire and low-damping ferrimagnetic insulator, in the form of epitaxial lithium aluminum ferrite (LAFO) thin films. The superior characteristics of such SHNOs are associated with the excitation of larger spin-precession angles and volumes. We further find that the presence of the ferrimagnetic insulator enhances the auto-oscillation amplitude of spin-wave edge modes, consistent with our micromagnetic modeling. This hybrid SHNO expands spintronic applications, including providing new means of coupling multiple SHNOs for neuromorphic computing and advancing magnonics.
Collapse
Affiliation(s)
- Haowen Ren
- Center for Quantum Phenomena, Department of Physics, New York University, New York, NY, 10003, USA.
| | - Xin Yu Zheng
- Department of Applied Physics and Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
| | - Sanyum Channa
- Department of Physics and Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
| | - Guanzhong Wu
- Center for Quantum Phenomena, Department of Physics, New York University, New York, NY, 10003, USA
| | - Daisy A O'Mahoney
- Department of Materials Science and Engineering and Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
| | - Yuri Suzuki
- Department of Applied Physics and Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
| | - Andrew D Kent
- Center for Quantum Phenomena, Department of Physics, New York University, New York, NY, 10003, USA.
| |
Collapse
|
10
|
Sheng L, Elyasi M, Chen J, He W, Wang Y, Wang H, Feng H, Zhang Y, Medlej I, Liu S, Jiang W, Han X, Yu D, Ansermet JP, Bauer GEW, Yu H. Nonlocal Detection of Interlayer Three-Magnon Coupling. PHYSICAL REVIEW LETTERS 2023; 130:046701. [PMID: 36763421 DOI: 10.1103/physrevlett.130.046701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
A leading nonlinear effect in magnonics is the interaction that splits a high-frequency magnon into two low-frequency magnons with conserved linear momentum. Here, we report experimental observation of nonlocal three-magnon scattering between spatially separated magnetic systems, viz. a CoFeB nanowire and a yttrium iron garnet (YIG) thin film. Above a certain threshold power of an applied microwave field, a CoFeB Kittel magnon splits into a pair of counterpropagating YIG magnons that induce voltage signals in Pt electrodes on each side, in excellent agreement with model calculations based on the interlayer dipolar interaction. The excited YIG magnon pairs reside mainly in the first excited (n=1) perpendicular standing spin-wave mode. With increasing power, the n=1 magnons successively scatter into nodeless (n=0) magnons through a four-magnon process. Our results demonstrate nonlocal detection of two separately propagating magnons emerging from one common source that may enable quantum entanglement between distant magnons for quantum information applications.
Collapse
Affiliation(s)
- Lutong Sheng
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Mehrdad Elyasi
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Jilei Chen
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Wenqing He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yizhan Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanchen Wang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- International Quantum Academy, Shenzhen 518048, China
| | - Hongmei Feng
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Israa Medlej
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Song Liu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Wanjun Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Xiufeng Han
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Jean-Philippe Ansermet
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Gerrit E W Bauer
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Haiming Yu
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- International Quantum Academy, Shenzhen 518048, China
| |
Collapse
|
11
|
Kumar Mondal A, Majumder S, Kumar Mahato B, Barman S, Otani Y, Barman A. Bias field orientation driven reconfigurable magnonics and magnon-magnon coupling in triangular shaped Ni 80Fe 20nanodot arrays. NANOTECHNOLOGY 2023; 34:135701. [PMID: 36571848 DOI: 10.1088/1361-6528/acae5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Reconfigurable magnonics have attracted intense interest due to their myriad advantages including energy efficiency, easy tunability and miniaturization of on-chip data communication and processing devices. Here, we demonstrate efficient reconfigurability of spin-wave (SW) dynamics as well as SW avoided crossing by varying bias magnetic field orientation in triangular shaped Ni80Fe20nanodot arrays. In particular, for a range of in-plane angles of bias field, we achieve mutual coherence between two lower frequency modes leading to a drastic modification in the ferromagnetic resonance frequency. Significant modification in magnetic stray field distribution is observed at the avoided crossing regime due to anisotropic dipolar interaction between two neighbouring dots. Furthermore, using micromagnetic simulations we demonstrate that the hybrid SW modes propagate longer through an array as opposed to the non-interacting modes present in this system, indicating the possibility of coherent energy transfer of hybrid magnon modes. This result paves the way for the development of integrated on-chip magnonic devices operating in the gigahertz frequency regime.
Collapse
Affiliation(s)
- Amrit Kumar Mondal
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700 106, India
| | - Sudip Majumder
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700 106, India
| | - Bipul Kumar Mahato
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700 106, India
| | - Saswati Barman
- Institute of Engineering and Management, Sector V, Salt Lake, Kolkata 700091, India
| | - Yoshichika Otani
- CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Anjan Barman
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700 106, India
| |
Collapse
|
12
|
Huang KW, Wu Y, Si LG. Parametric-amplification-induced nonreciprocal magnon laser. OPTICS LETTERS 2022; 47:3311-3314. [PMID: 35776613 DOI: 10.1364/ol.459917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
We theoretically propose a scheme to achieve all-optical nonreciprocal magnon lasing action in a composite cavity optomagnonical system considering of a yttrium iron garnet sphere coupled to a parametric resonator. The magnon lasing behavior can be engendered via the magnon-induced Brillouin scattering process in the cavity optomagnonical system. By unidirectionally driving the χ(2)-nonlinear resonator with a classical coherent field, the squeezed effect occurs only in the selected direction due to the phase-matching condition, resulting in asymmetric detuning between the two resonators, which is the physical mechanism to generate a nonreciprocal magnon laser. We further examine the gain factor and power threshold of the magnon laser. Moreover, the isolation rate can reach 21 dB by adjusting the amplitude of the parametric amplification. Our work shows a path to obtain an all-optical nonreciprocal magnon laser, which provides a means for the preparation of a coherent magnon laser and laser protection.
Collapse
|
13
|
Manipulation of Time- and Frequency-Domain Dynamics by Magnon-Magnon Coupling in Synthetic Antiferromagnets. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry8010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnons (the quanta of spin waves) could be used to encode information in beyond Moore computing applications. In this study, the magnon coupling between acoustic mode and optic mode in synthetic antiferromagnets (SAFs) is investigated by micromagnetic simulations. For a symmetrical SAF system, the time-evolution magnetizations of the two ferromagnetic layers oscillate in-phase at the acoustic mode and out-of-phase at the optic mode, showing an obvious crossing point in their antiferromagnetic resonance spectra. However, the symmetry breaking in an asymmetrical SAF system by the thickness difference, can induce an anti-crossing gap between the two frequency branches of resonance modes and thereby a strong magnon-magnon coupling appears between the resonance modes. The magnon coupling induced a hybridized resonance mode and its phase difference varies with the coupling strength. The maximum coupling occurs at the bias magnetic field at which the two ferromagnetic layers oscillate with a 90° phase difference. Besides, we show how the resonance modes in SAFs change from the in-phase state to the out-of-phase state by slightly tuning the magnon-magnon coupling strength. Our work provides a clear physical picture for the understanding of magnon-magnon coupling in a SAF system and may provide an opportunity to handle the magnon interaction in synthetic antiferromagnetic spintronics.
Collapse
|
14
|
Wang H, Xiao Y, Guo M, Lee-Wong E, Yan GQ, Cheng R, Du CR. Spin Pumping of an Easy-Plane Antiferromagnet Enhanced by Dzyaloshinskii-Moriya Interaction. PHYSICAL REVIEW LETTERS 2021; 127:117202. [PMID: 34558931 DOI: 10.1103/physrevlett.127.117202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Recently, antiferromagnets have received revived interest due to their significant potential for developing next-generation ultrafast magnetic storage. Here, we report dc spin pumping by the acoustic resonant mode in a canted easy-plane antiferromagnet α-Fe_{2}O_{3} enabled by the Dzyaloshinskii-Moriya interaction. Systematic angle and frequency-dependent measurements demonstrate that the observed spin-pumping signals arise from resonance-induced spin injection and inverse spin Hall effect in α-Fe_{2}O_{3}-metal heterostructures, mimicking the behavior of spin pumping in conventional ferromagnet-nonmagnet systems. The pure spin current nature is further corroborated by reversal of the polarity of spin-pumping signals when the spin detector is switched from platinum to tungsten which has an opposite sign of the spin Hall angle. Our results reveal the intriguing physics underlying the low-frequency spin dynamics and transport in canted easy-plane antiferromagnet-based heterostructures.
Collapse
Affiliation(s)
- Hailong Wang
- Center for Memory and Recording Research, University of California, San Diego, La Jolla, California 92093, USA
| | - Yuxuan Xiao
- Center for Memory and Recording Research, University of California, San Diego, La Jolla, California 92093, USA
| | - Mingda Guo
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Eric Lee-Wong
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Gerald Q Yan
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Ran Cheng
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, USA
| | - Chunhui Rita Du
- Center for Memory and Recording Research, University of California, San Diego, La Jolla, California 92093, USA
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
15
|
Han J, Fan Y, McGoldrick BC, Finley J, Hou JT, Zhang P, Liu L. Nonreciprocal Transmission of Incoherent Magnons with Asymmetric Diffusion Length. NANO LETTERS 2021; 21:7037-7043. [PMID: 34374550 DOI: 10.1021/acs.nanolett.1c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Unequal transmissions of spin waves along opposite directions provide useful functions for signal processing. So far, the realization of such nonreciprocal spin waves has been mostly limited at a gigahertz frequency in the coherent regime via microwave excitation. Here we show that, in a magnetic bilayer stack with chiral coupling, tunable nonreciprocal propagation can be realized in spin Hall effect-excited incoherent magnons, whose frequencies cover the spectrum from a few gigahertz up to terahertz. The sign of nonreciprocity is controlled by the magnetic orientations of the bilayer in a nonvolatile manner. The nonreciprocity is further verified by measurements of the magnon diffusion length, which is unequal along opposite transmission directions. Our findings enrich the knowledge on magnetic relaxation and diffusive transport and can lead to the design of a passive directional signal isolation device in the diffusive regime.
Collapse
Affiliation(s)
- Jiahao Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yabin Fan
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Brooke C McGoldrick
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joseph Finley
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Justin T Hou
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Pengxiang Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Luqiao Liu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Chen J, Wang H, Hula T, Liu C, Liu S, Liu T, Jia H, Song Q, Guo C, Zhang Y, Zhang J, Han X, Yu D, Wu M, Schultheiss H, Yu H. Reconfigurable Spin-Wave Interferometer at the Nanoscale. NANO LETTERS 2021; 21:6237-6244. [PMID: 34270271 DOI: 10.1021/acs.nanolett.1c02010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spin waves can transfer information free of electron transport and are promising for wave-based computing technologies with low-power consumption as a solution to severe energy losses in modern electronics. Logic circuits based on the spin-wave interference have been proposed for more than a decade, while it has yet been realized at the nanoscale. Here, we demonstrate the interference of spin waves with wavelengths down to 50 nm in a low-damping magnetic insulator. The constructive and destructive interference of spin waves is detected in the frequency domain using propagating spin-wave spectroscopy, which is further confirmed by the Brillouin light scattering. The interference pattern is found to be highly sensitive to the distance between two magnetic nanowires acting as spin-wave emitters. By controlling the magnetic configurations, one can switch the spin-wave interferometer on and off. Our demonstrations are thus key to the realization of spin-wave computing system based on nonvolatile nanomagnets.
Collapse
Affiliation(s)
- Jilei Chen
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Hanchen Wang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Tobias Hula
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Chuanpu Liu
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Song Liu
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Tao Liu
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Hao Jia
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Qiuming Song
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chenyang Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuelin Zhang
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Jinxing Zhang
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Xiufeng Han
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Mingzhong Wu
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Helmut Schultheiss
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Haiming Yu
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
17
|
Adhikari K, Choudhury S, Barman S, Otani Y, Barman A. Observation of magnon-magnon coupling with high cooperativity in Ni 80Fe 20cross-shaped nanoring array. NANOTECHNOLOGY 2021; 32:395706. [PMID: 34161940 DOI: 10.1088/1361-6528/ac0ddc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
We report here an experimental observation of dynamic dipolar coupling induced magnon-magnon coupling and spin wave (SW) mode splitting in Ni80Fe20cross-shaped nanoring array. Remarkably, we observe an anticrossing feature with minimum frequency gap of 0.96 GHz and the corresponding high cooperativity value of 2.25. Interestingly, splitting of the highest frequency SW mode occurs due to the anisotropic dipolar interactions between the cross nanorings. Furthermore, using micromagnetic simulations we demonstrate that the coupled SW modes propagate longer as opposed to other modes present in this system. Our work paves the way towards integrated hybrid systems-based quantum magnonics and on-chip coherent information transfer.
Collapse
Affiliation(s)
- Kartik Adhikari
- Department of Condensed Matter Physics and Material Sciences, S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
- Department of Physics, New Alipore College, New Alipore, Kolkata 700053, India
| | - Samiran Choudhury
- Department of Condensed Matter Physics and Material Sciences, S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Saswati Barman
- Institute of Engineering and Management, Sector V, Salt Lake, Kolkata 700091, India
| | - Yoshichika Otani
- CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Anjan Barman
- Department of Condensed Matter Physics and Material Sciences, S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
18
|
Golovchanskiy IA, Abramov NN, Stolyarov VS, Weides M, Ryazanov VV, Golubov AA, Ustinov AV, Kupriyanov MY. Ultrastrong photon-to-magnon coupling in multilayered heterostructures involving superconducting coherence via ferromagnetic layers. SCIENCE ADVANCES 2021; 7:eabe8638. [PMID: 34144980 PMCID: PMC8213224 DOI: 10.1126/sciadv.abe8638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The critical step for future quantum industry demands realization of efficient information exchange between different-platform hybrid systems that can harvest advantages of distinct platforms. The major restraining factor for the progress in certain hybrids is weak coupling strength between the elemental particles. In particular, this restriction impedes a promising field of hybrid magnonics. In this work, we propose an approach for realization of on-chip hybrid magnonic systems with unprecedentedly strong coupling parameters. The approach is based on multilayered microstructures containing superconducting, insulating, and ferromagnetic layers with modified photon phase velocities and magnon eigenfrequencies. The enhanced coupling strength is provided by the radically reduced photon mode volume. Study of the microscopic mechanism of the photon-to-magnon coupling evidences formation of the long-range superconducting coherence via thick strong ferromagnetic layers in superconductor/ferromagnet/superconductor trilayer in the presence of magnetization precession. This discovery offers new opportunities in microwave superconducting spintronics for quantum technologies.
Collapse
Affiliation(s)
- Igor A Golovchanskiy
- Moscow Institute of Physics and Technology, State University, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia.
- National University of Science and Technology MISIS, 4 Leninsky prosp., Moscow 119049, Russia
| | - Nikolay N Abramov
- National University of Science and Technology MISIS, 4 Leninsky prosp., Moscow 119049, Russia
| | - Vasily S Stolyarov
- Moscow Institute of Physics and Technology, State University, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
- Dukhov Research Institute of Automatics (VNIIA), Sushchevskaya 22, Moscow 127055, Russia
| | - Martin Weides
- James Watt School of Engineering, Electronics and Nanoscale Engineering Division, University of Glasgow, Glasgow G12 8QQ, UK
| | - Valery V Ryazanov
- National University of Science and Technology MISIS, 4 Leninsky prosp., Moscow 119049, Russia
- Institute of Solid State Physics (ISSP RAS), Chernogolovka, Moscow Region 142432, Russia
| | - Alexander A Golubov
- Moscow Institute of Physics and Technology, State University, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
- Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, Netherlands
| | - Alexey V Ustinov
- National University of Science and Technology MISIS, 4 Leninsky prosp., Moscow 119049, Russia
- Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Russian Quantum Center, Skolkovo, 143025 Moscow Region, Russia
| | - Mikhail Yu Kupriyanov
- Moscow Institute of Physics and Technology, State University, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
- Skobeltsyn Institute of Nuclear Physics, MSU, Moscow 119991, Russia
| |
Collapse
|
19
|
Fan Y, Finley J, Han J, Holtz ME, Quarterman P, Zhang P, Safi TS, Hou JT, Grutter AJ, Liu L. Resonant Spin Transmission Mediated by Magnons in a Magnetic Insulator Multilayer Structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008555. [PMID: 33899284 DOI: 10.1002/adma.202008555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Indexed: 06/12/2023]
Abstract
While being electrically insulating, magnetic insulators can behave as good spin conductors by carrying spin current with excited spin waves. So far, magnetic insulators are utilized in multilayer heterostructures for optimizing spin transport or to form magnon spin valves for reaching controls over the spin flow. In these studies, it remains an intensively visited topic as to what the corresponding roles of coherent and incoherent magnons are in the spin transmission. Meanwhile, understanding the underlying mechanism associated with spin transmission in insulators can help to identify new mechanisms that can further improve the spin transport efficiency. Here, by studying spin transport in a magnetic-metal/magnetic-insulator/platinum multilayer, it is demonstrated that coherent magnons can transfer spins efficiently above the magnon bandgap of magnetic insulators. Particularly the standing spin-wave mode can greatly enhance the spin flow by inducing a resonant magnon transmission. Furthermore, within the magnon bandgap, a shutdown of spin transmission due to the blocking of coherent magnons is observed. The demonstrated magnon transmission enhancement and filtering effect provides an efficient method for modulating spin current in magnonic devices.
Collapse
Affiliation(s)
- Yabin Fan
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joseph Finley
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiahao Han
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Megan E Holtz
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Patrick Quarterman
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Pengxiang Zhang
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Taqiyyah S Safi
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Justin T Hou
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexander J Grutter
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Luqiao Liu
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
20
|
Wang H, Madami M, Chen J, Sheng L, Zhao M, Zhang Y, He W, Guo C, Jia H, Liu S, Song Q, Han X, Yu D, Gubbiotti G, Yu H. Tunable Damping in Magnetic Nanowires Induced by Chiral Pumping of Spin Waves. ACS NANO 2021; 15:9076-9083. [PMID: 33977721 DOI: 10.1021/acsnano.1c02250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spin-current and spin-wave-based devices have been considered as promising candidates for next-generation information transport and processing and wave-based computing technologies with low-power consumption. Spin pumping has attracted tremendous attention and has led to interesting phenomena, including the line width broadening, which indicates damping enhancement due to energy dissipation. Recently, chiral spin pumping of spin waves has been experimentally realized and theoretically studied in magnetic nanostructures. Here, we experimentally observe by Brillouin light scattering (BLS) microscopy the line width broadening sensitive to magnetization configuration in a hybrid metal-insulator nanostructure consisting of a Co nanowire grating dipolarly coupled to a planar continuous YIG film, consistent with the results of the measured hysteresis loop. Tunable line width broadening has been confirmed independently by propagating spin-wave spectroscopy, where unidirectional spin waves are detected. Position-dependent BLS measurement unravels an oscillating-like behavior of magnon populations in Co nanowire grating, which might result from the magnon trap effect. These results are thus attractive for reconfigurable nanomagnonics devices.
Collapse
Affiliation(s)
- Hanchen Wang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Marco Madami
- Dipartimento di Fisica e Geologia, Università di Perugia, Perugia I-06123, Italy
| | - Jilei Chen
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Lutong Sheng
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Mingkun Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenqing He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenyang Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Jia
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Song Liu
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Qiuming Song
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xiufeng Han
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Gianluca Gubbiotti
- Dipartimento di Fisica e Geologia, Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, Via A. Pascoli, Perugia I-06123, Italy
| | - Haiming Yu
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
21
|
Lendinez S, Kaffash MT, Jungfleisch MB. Emergent Spin Dynamics Enabled by Lattice Interactions in a Bicomponent Artificial Spin Ice. NANO LETTERS 2021; 21:1921-1927. [PMID: 33600721 DOI: 10.1021/acs.nanolett.0c03729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Artificial spin ice (ASI) networks are arrays of nanoscaled magnets that can serve both as models for frustration in atomic spin ice as well as for exploring new spin-wave-based strategies to transmit, process, and store information. Here, we exploit the intricate interplay of the magnetization dynamics of two dissimilar ferromagnetic metals arranged on complementary lattice sites in a square ASI to modulate the spin-wave properties effectively. We show that the interaction between the two sublattices results in unique spectra attributed to each sublattice, and we observe inter- and intralattice dynamics facilitated by the distinct magnetization properties of the two materials. The dynamic properties are systematically studied by angular-dependent broadband ferromagnetic resonance and confirmed by micromagnetic simulations. We show that combining materials with dissimilar magnetic properties enables the realization of a wide range of two-dimensional structures, potentially opening the door to new concepts in nanomagnonics.
Collapse
Affiliation(s)
- Sergi Lendinez
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Mojtaba T Kaffash
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - M Benjamin Jungfleisch
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
22
|
Li Y, Zhao C, Amin VP, Zhang Z, Vogel M, Xiong Y, Sklenar J, Divan R, Pearson J, Stiles MD, Zhang W, Hoffmann A, Novosad V. Phase-resolved electrical detection of hybrid magnonic devices. APPLIED PHYSICS LETTERS 2021; 118:10.1063/5.0042784. [PMID: 36452035 PMCID: PMC9706546 DOI: 10.1063/5.0042784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/03/2021] [Indexed: 06/17/2023]
Abstract
We demonstrate the electrical detection of magnon-magnon hybrid dynamics in yttrium iron garnet/permalloy (YIG/Py) thin film bilayer devices. Direct microwave current injection through the conductive Py layer excites the hybrid dynamics consisting of the uniform mode of Py and the first standing spin wave (n = 1) mode of YIG, which are coupled via interfacial exchange. Both the two hybrid modes, with Py or YIG dominated excitations, can be detected via the spin rectification signals from the conductive Py layer, providing phase resolution of the coupled dynamics. The phase characterization is also applied to a nonlocally excited Py device, revealing the additional phase shift due to the perpendicular Oersted field. Our results provide a device platform for exploring hybrid magnonic dynamics and probing their phases, which are crucial for implementing coherent information processing with magnon excitations.
Collapse
Affiliation(s)
- Yi Li
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
| | - Chenbo Zhao
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
| | - Vivek P. Amin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Zhizhi Zhang
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
| | - Michael Vogel
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, Kassel 34132, Germany
| | - Yuzan Xiong
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Joseph Sklenar
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202, USA
| | - Ralu Divan
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - John Pearson
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
| | - Mark D. Stiles
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Wei Zhang
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Axel Hoffmann
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Valentine Novosad
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA†
| |
Collapse
|
23
|
Xiong Y, Zhang Z, Li Y, Hammami M, Sklenar J, Alahmed L, Li P, Sebastian T, Qu H, Hoffmann A, Novosad V, Zhang W. Experimental parameters, combined dynamics, and nonlinearity of a magnonic-opto-electronic oscillator (MOEO). THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:125105. [PMID: 33379972 DOI: 10.1063/5.0023715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
We report the construction and characterization of a comprehensive magnonic-opto-electronic oscillator (MOEO) system based on 1550-nm photonics and yttrium iron garnet (YIG) magnonics. The system exhibits a rich and synergistic parameter space because of the ability to control individual photonic, electronic, and magnonic components. Taking advantage of the spin wave dispersion of YIG, the frequency self-generation as well as the related nonlinear processes becomes sensitive to the external magnetic field. Besides being known as a band-pass filter and a delay element, the YIG delay line possesses spin wave modes that can be controlled to mix with the optoelectronic modes to generate higher-order harmonic beating modes. With the high sensitivity and external tunability, the MOEO system may find usefulness in sensing applications in magnetism and spintronics beyond optoelectronics and photonics.
Collapse
Affiliation(s)
- Yuzan Xiong
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - Zhizhi Zhang
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Yi Li
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Mouhamad Hammami
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - Joseph Sklenar
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| | - Laith Alahmed
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, USA
| | - Peng Li
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, USA
| | - Thomas Sebastian
- THATec Innovation GmbH, Augustaanlage 23, 68165 Mannheim, Germany
| | - Hongwei Qu
- Department of Electronic and Computer Engineering, Oakland University, Rochester, Michigan 48309, USA
| | - Axel Hoffmann
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Valentine Novosad
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Wei Zhang
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| |
Collapse
|
24
|
Xiong Y, Li Y, Hammami M, Bidthanapally R, Sklenar J, Zhang X, Qu H, Srinivasan G, Pearson J, Hoffmann A, Novosad V, Zhang W. Probing magnon-magnon coupling in exchange coupled Y[Formula: see text]Fe[Formula: see text]O[Formula: see text]/Permalloy bilayers with magneto-optical effects. Sci Rep 2020; 10:12548. [PMID: 32724049 PMCID: PMC7387351 DOI: 10.1038/s41598-020-69364-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
We demonstrate the magnetically-induced transparency (MIT) effect in Y[Formula: see text]Fe[Formula: see text]O[Formula: see text](YIG)/Permalloy (Py) coupled bilayers. The measurement is achieved via a heterodyne detection of the coupled magnetization dynamics using a single wavelength that probes the magneto-optical Kerr and Faraday effects of Py and YIG, respectively. Clear features of the MIT effect are evident from the deeply modulated ferromagnetic resonance of Py due to the perpendicular-standing-spin-wave of YIG. We develop a phenomenological model that nicely reproduces the experimental results including the induced amplitude and phase evolution caused by the magnon-magnon coupling. Our work offers a new route towards studying phase-resolved spin dynamics and hybrid magnonic systems.
Collapse
Affiliation(s)
- Yuzan Xiong
- Department of Physics, Oakland University, Rochester, MI 48309 USA
- Department of Electronic and Computer Engineering, Oakland University, Rochester, MI 48309 USA
| | - Yi Li
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Mouhamad Hammami
- Department of Physics, Oakland University, Rochester, MI 48309 USA
| | | | - Joseph Sklenar
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 USA
| | - Xufeng Zhang
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Hongwei Qu
- Department of Electronic and Computer Engineering, Oakland University, Rochester, MI 48309 USA
| | | | - John Pearson
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Axel Hoffmann
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Valentine Novosad
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Wei Zhang
- Department of Physics, Oakland University, Rochester, MI 48309 USA
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 USA
| |
Collapse
|