1
|
Mohammadi R, Karimi B, Kieffer J, Hashemi D. A molecular dynamics simulation study of thermal conductivity of plumbene. Phys Chem Chem Phys 2024; 26:28133-28142. [PMID: 39495312 DOI: 10.1039/d4cp01480d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
We investigate the lattice thermal conductivity of plumbene using molecular dynamics simulations, overcoming existing limitations by optimizing the parameters of Tersoff and Stillinger-Weber potentials via artificial neural networks. Our findings indicate that at room temperature, the thermal conductivity of a 1050 Å × 300 Å plumbene sheet is approximately 8 W m-1 K-1, significantly lower (23%) than that of bulk lead. Our analysis elucidates that thermal conductivity is enhanced by increased sample length, while it is reduced by temperature. Moreover, plumbene samples with zigzag edges display superior thermal conductivity compared to those with armchair edges. In addition, the thermal conductivity of plumbene exhibits an increase at low tensile strains, whereas it decreases as the strains become larger. This investigation provides crucial insights into the thermal conductivity behavior of plumbene under varying conditions.
Collapse
Affiliation(s)
- Rafat Mohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran.
| | - Behrad Karimi
- Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran.
| | - John Kieffer
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel Hashemi
- Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, IN 47803, USA
| |
Collapse
|
2
|
Abidi KR, Koskinen P. Gentle tension stabilizes atomically thin metallenes. NANOSCALE 2024; 16:19649-19655. [PMID: 39370967 DOI: 10.1039/d4nr03266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Metallenes are atomically thin two-dimensional (2D) materials lacking a layered structure in the bulk form. They can be stabilized by nanoscale constrictions like pores in 2D covalent templates, but the isotropic metallic bonding makes stabilization difficult. A few metallenes have been stabilized but comparison with theory predictions has not always been clear. Here, we use density-functional theory calculations to explore the energetics and dynamic stabilities of 45 metallenes at six lattices (honeycomb, square, hexagonal, and their buckled counterparts) and varying atomic densities. We found that of the 270 different crystalline lattices, 128 were dynamically stable at sporadic densities, mostly under tensile strain. At the energy minima, lattices were often dynamically unstable against amorphization and the breaking down of metallene planarity. Consequently, the results imply that crystalline metallenes should be seen through a novel paradigm: they should be considered not as membranes with fixed structures and lattice constants but as yielding membranes that can be stabilized better under tensile strain and low atomic density. Following this paradigm, we rank the most promising metallenes for 2D stability and hope that the paradigm will help develop new strategies to synthesize larger and more stable metallene samples for plasmonic, optical, and catalytic applications.
Collapse
Affiliation(s)
- Kameyab Raza Abidi
- Nanoscience Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä, Finland.
| | - Pekka Koskinen
- Nanoscience Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä, Finland.
| |
Collapse
|
3
|
Chen X, Deng J, Jin S, Ying T, Fei G, Ren H, Yang Y, Ma K, Yang M, Wang J, Li Y, Chen X, Liu X, Du S, Guo JG, Chen X. Two-Dimensional Pb Square Nets from Bulk ( RO) nPb ( R = Rare Earth Metals, n = 1,2). J Am Chem Soc 2023; 145:17435-17442. [PMID: 37524115 DOI: 10.1021/jacs.3c05807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
All two-dimensional (2D) materials of group IV elements from Si to Pb are stabilized by carrier doping and interface bonding from substrates except graphene which can be free-standing. The involvement of strong hybrid of bonds, adsorption of exotic atomic species, and the high concentration of crystalline defects are often unavoidable, complicating the measurement of the intrinsic properties. In this work, we report the discovery of seven kinds of hitherto unreported bulk compounds (RO)nPb (R = rare earth metals, n = 1,2), which consist of quasi-2D Pb square nets that are spatially and electronically detached from the [RO]δ+ blocking layers. The band structures of these compounds near Fermi levels are relatively clean and dominantly contributed by Pb, resembling the electron-doped free-standing Pb monolayer. The R2O2Pb compounds are metallic at ambient pressure and become superconductors under high pressures with much enhanced critical fields. In particular, Gd2O2Pb (9.1 μB/Gd) exhibits an interesting bulk response of lattice distortion in conjunction with the emergence of superconductivity and magnetic anomalies at a critical pressure of 10 GPa. Our findings reveal the unexpected facets of 2D Pb sheets that are considerably different from their bulk counterparts and provide an alternative route for exploring 2D properties in bulk materials.
Collapse
Affiliation(s)
- Xu Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Deng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shifeng Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianping Ying
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ge Fei
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China
| | - Huifen Ren
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunfan Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Ma
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanchun Li
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chen
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China
| | - Xiaobing Liu
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China
| | - Shixuan Du
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian-Gang Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xiaolong Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
4
|
Chen CJ, Chao YC, Lin YH, Zhuang YH, Lai YM, Huang ST, MacDonald AH, Shih CK, Wang BY, Su JJ, Hsu PJ. Single-Atomic-Layer Stanene on Ferromagnetic Co Nanoislands with Topological Band Structures. ACS NANO 2023; 17:7456-7465. [PMID: 37014733 DOI: 10.1021/acsnano.2c12144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Introducing magnetism to two-dimensional topological insulators is a central issue in the pursuit of magnetic topological materials in low dimensionality. By means of low-temperature growth at 80 K, we succeeded in fabricating a monolayer stanene on Co/Cu(111) and resolving ferromagnetic spin contrast by field-dependent spin-polarized scanning tunneling microscopy (SP-STM). Increases of both remanence to saturation magnetization ratio (Mr/Ms) and coercive field (Hc) due to an enhanced perpendicular magnetic anisotropy (PMA) are further identified by out-of-plane magneto-optical Kerr effect (MOKE). In addition to ultraflat stanene fully relaxed on bilayer Co/Cu(111) from density functional theory (DFT), characteristic topological properties including an in-plane s-p band inversion and a spin-orbit coupling (SOC) induced gap about 0.25 eV at the Γ̅ point have also been verified in the Sn-projected band structure. Interfacial coupling of single-atomic-layer stanene with ferromagnetic Co biatomic layers allows topological band features to coexist with ferromagnetism, facilitating a conceptual design of atomically thin magnetic topological heterostructures.
Collapse
Affiliation(s)
- Chia-Ju Chen
- Department of Physics, National Tsing Hua University, 300044 Hsinchu, Taiwan
| | - Yung-Chun Chao
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Yen-Hui Lin
- Department of Physics, National Tsing Hua University, 300044 Hsinchu, Taiwan
| | - Yi-Hao Zhuang
- Department of Physics, National Tsing Hua University, 300044 Hsinchu, Taiwan
| | - Yen-Ming Lai
- Department of Physics, National Changhua University of Education, Changhua 500, Taiwan
| | - Shih-Tang Huang
- Department of Physics, National Tsing Hua University, 300044 Hsinchu, Taiwan
| | - Allan H MacDonald
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chih-Kang Shih
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Bo-Yao Wang
- Department of Physics, National Changhua University of Education, Changhua 500, Taiwan
| | - Jung-Jung Su
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Pin-Jui Hsu
- Department of Physics, National Tsing Hua University, 300044 Hsinchu, Taiwan
- Center for Quantum Technology, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
5
|
Chen J, Wang C, Li H, Xu X, Yang J, Huo Z, Wang L, Zhang W, Xiao X, Ma Y. Recent Advances in Surface Modifications of Elemental Two-Dimensional Materials: Structures, Properties, and Applications. Molecules 2022; 28:200. [PMID: 36615394 PMCID: PMC9822514 DOI: 10.3390/molecules28010200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The advent of graphene opens up the research into two-dimensional (2D) materials, which are considered revolutionary materials. Due to its unique geometric structure, graphene exhibits a series of exotic physical and chemical properties. In addition, single-element-based 2D materials (Xenes) have garnered tremendous interest. At present, 16 kinds of Xenes (silicene, borophene, germanene, phosphorene, tellurene, etc.) have been explored, mainly distributed in the third, fourth, fifth, and sixth main groups. The current methods to prepare monolayers or few-layer 2D materials include epitaxy growth, mechanical exfoliation, and liquid phase exfoliation. Although two Xenes (aluminene and indiene) have not been synthesized due to the limitations of synthetic methods and the stability of Xenes, other Xenes have been successfully created via elaborate artificial design and synthesis. Focusing on elemental 2D materials, this review mainly summarizes the recently reported work about tuning the electronic, optical, mechanical, and chemical properties of Xenes via surface modifications, achieved using controllable approaches (doping, adsorption, strain, intercalation, phase transition, etc.) to broaden their applications in various fields, including spintronics, electronics, optoelectronics, superconducting, photovoltaics, sensors, catalysis, and biomedicines. These advances in the surface modification of Xenes have laid a theoretical and experimental foundation for the development of 2D materials and their practical applications in diverse fields.
Collapse
Affiliation(s)
- Junbo Chen
- Key Laboratory of Quantum Matt Science, Henan Key Laboratory of Photovoltaic Materials, Henan University, Zhengzhou 450046, China
| | - Chenhui Wang
- Key Laboratory of Quantum Matt Science, Henan Key Laboratory of Photovoltaic Materials, Henan University, Zhengzhou 450046, China
| | - Hao Li
- School of Physical Science and Technology, Wuhan University, Wuhan 430072, China
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xin Xu
- State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiangang Yang
- School of Physical Science and Technology, Wuhan University, Wuhan 430072, China
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Zhe Huo
- Key Laboratory of Quantum Matt Science, Henan Key Laboratory of Photovoltaic Materials, Henan University, Zhengzhou 450046, China
| | - Lixia Wang
- Key Laboratory of Quantum Matt Science, Henan Key Laboratory of Photovoltaic Materials, Henan University, Zhengzhou 450046, China
| | - Weifeng Zhang
- Key Laboratory of Quantum Matt Science, Henan Key Laboratory of Photovoltaic Materials, Henan University, Zhengzhou 450046, China
| | - Xudong Xiao
- School of Physical Science and Technology, Wuhan University, Wuhan 430072, China
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yaping Ma
- Key Laboratory of Quantum Matt Science, Henan Key Laboratory of Photovoltaic Materials, Henan University, Zhengzhou 450046, China
| |
Collapse
|
6
|
Ghosal C, Gruschwitz M, Koch J, Gemming S, Tegenkamp C. Proximity-Induced Gap Opening by Twisted Plumbene in Epitaxial Graphene. PHYSICAL REVIEW LETTERS 2022; 129:116802. [PMID: 36154419 DOI: 10.1103/physrevlett.129.116802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Besides graphene, further honeycomb 2D structures were successfully synthesized on various surfaces. However, almost flat plumbene hosting topologically protected edge states could not yet be realized. In this Letter, we investigated the intercalation of Pb on buffer layers on SiC(0001). Thereby, suspended and charge neutral graphene emerged, and the intercalated Pb formed plumbene honeycomb lattices, which are rotated by ±7.5° with respect to graphene. Along with this twist, a proximity-induced modulation of the hopping parameter in graphene opens a band gap of around 30 meV at the Fermi energy, giving rise to a metal-insulator transition. Moreover, the edges of the intercalated plumbene layers revealed edge states within the gap of the conduction bands at around 1 eV as expected for charge neutral plumbene.
Collapse
Affiliation(s)
- Chitran Ghosal
- Institut für Physik,Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany
| | - Markus Gruschwitz
- Institut für Physik,Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany
| | - Julian Koch
- Institut für Physik,Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany
| | - Sibylle Gemming
- Institut für Physik,Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany
| | - Christoph Tegenkamp
- Institut für Physik,Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany
| |
Collapse
|
7
|
Lozovoy KA, Izhnin II, Kokhanenko AP, Dirko VV, Vinarskiy VP, Voitsekhovskii AV, Fitsych OI, Akimenko NY. Single-Element 2D Materials beyond Graphene: Methods of Epitaxial Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2221. [PMID: 35808055 PMCID: PMC9268513 DOI: 10.3390/nano12132221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023]
Abstract
Today, two-dimensional materials are one of the key research topics for scientists around the world. Interest in 2D materials is not surprising because, thanks to their remarkable mechanical, thermal, electrical, magnetic, and optical properties, they promise to revolutionize electronics. The unique properties of graphene-like 2D materials give them the potential to create completely new types of devices for functional electronics, nanophotonics, and quantum technologies. This paper considers epitaxially grown two-dimensional allotropic modifications of single elements: graphene (C) and its analogs (transgraphenes) borophene (B), aluminene (Al), gallenene (Ga), indiene (In), thallene (Tl), silicene (Si), germanene (Ge), stanene (Sn), plumbene (Pb), phosphorene (P), arsenene (As), antimonene (Sb), bismuthene (Bi), selenene (Se), and tellurene (Te). The emphasis is put on their structural parameters and technological modes in the method of molecular beam epitaxy, which ensure the production of high-quality defect-free single-element two-dimensional structures of a large area for promising device applications.
Collapse
Affiliation(s)
- Kirill A. Lozovoy
- Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (A.P.K.); (V.V.D.); (V.P.V.); (A.V.V.)
| | - Ihor I. Izhnin
- Scientific Research Company “Electron-Carat”, Stryjska St. 202, 79031 Lviv, Ukraine;
| | - Andrey P. Kokhanenko
- Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (A.P.K.); (V.V.D.); (V.P.V.); (A.V.V.)
| | - Vladimir V. Dirko
- Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (A.P.K.); (V.V.D.); (V.P.V.); (A.V.V.)
| | - Vladimir P. Vinarskiy
- Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (A.P.K.); (V.V.D.); (V.P.V.); (A.V.V.)
| | - Alexander V. Voitsekhovskii
- Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (A.P.K.); (V.V.D.); (V.P.V.); (A.V.V.)
| | - Olena I. Fitsych
- P. Sagaidachny National Army Academy, Gvardijska St. 32, 79012 Lviv, Ukraine;
| | - Nataliya Yu. Akimenko
- Department of Engineering Systems and Technosphere Safety, Pacific National University, Tihookeanskaya St. 136, 680035 Khabarovsk, Russia;
| |
Collapse
|
8
|
Hess P. Bonding, structure, and mechanical stability of 2D materials: the predictive power of the periodic table. NANOSCALE HORIZONS 2021; 6:856-892. [PMID: 34494064 DOI: 10.1039/d1nh00113b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This tutorial review describes the ongoing effort to convert main-group elements of the periodic table and their combinations into stable 2D materials, which is sometimes called modern 'alchemy'. Theory is successfully approaching this goal, whereas experimental verification is lagging far behind in the synergistic interplay between theory and experiment. The data collected here gives a clear picture of the bonding, structure, and mechanical performance of the main-group elements and their binary compounds. This ranges from group II elements, with two valence electrons, to group VI elements with six valence electrons, which form not only 1D structures but also, owing to their variable oxidation states, low-symmetry 2D networks. Outside of these main groups reviewed here, predominantly ionic bonding may be observed, for example in group II-VII compounds. Besides high-symmetry graphene with its shortest and strongest bonds and outstanding mechanical properties, low-symmetry 2D structures such as various borophene and tellurene phases with intriguing properties are receiving increasing attention. The comprehensive discussion of data also includes bonding and structure of few-layer assemblies, because the electronic properties, e.g., the band gap, of these heterostructures vary with interlayer layer separation and interaction energy. The available data allows the identification of general relationships between bonding, structure, and mechanical stability. This enables the extraction of periodic trends and fundamental rules governing the 2D world, which help to clear up deviating results and to estimate unknown properties. For example, the observed change of the bond length by a factor of two alters the cohesive energy by a factor of four and the extremely sensitive Young's modulus and ultimate strength by more than a factor of 60. Since the stiffness and strength decrease with increasing atom size on going down the columns of the periodic table, it is important to look for suitable allotropes of elements and binaries in the upper rows of the periodic table when mechanical stability and robustness are issues. On the other hand, the heavy compounds are of particular interest because of their low-symmetry structures with exotic electronic properties.
Collapse
Affiliation(s)
- Peter Hess
- Institute of Physical Chemistry, INF 253, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Zhang H, Wang Y, Yang W, Zhang J, Xu X, Liu F. Selective Substrate-Orbital-Filtering Effect to Realize the Large-Gap Quantum Spin Hall Effect. NANO LETTERS 2021; 21:5828-5833. [PMID: 34156241 DOI: 10.1021/acs.nanolett.1c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although Pb harbors a strong spin-orbit coupling effect, pristine plumbene (the last group-IV cousin of graphene) hosts topologically trivial states. Based on first-principles calculations, we demonstrate that epitaxial growth of plumbene on the BaTe(111) surface converts the trivial Pb lattice into a quantum spin Hall (QSH) phase with a large gap of ∼0.3 eV via a selective substrate-orbital-filtering effect. Tight-binding model analyses show the pz orbital in half of the Pb overlayer is selectively removed by the BaTe substrate, leaving behind a pz-px,y band inversion. Based on the same working principle, the gap can be further increased to ∼0.5-0.6 eV by surface adsorption of H or halogen atoms that filters out the other half of the Pb pz orbitals. The mechanism of selective substrate-orbital-filtering is general, opening an avenue to explore large-gap QSH insulators in heavy-metal-based materials. It is worth noting that plumbene has already been widely grown on various substrates experimentally.
Collapse
Affiliation(s)
- Huisheng Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education and Research Institute of Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Yingying Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education and Research Institute of Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Wenjia Yang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education and Research Institute of Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Jingjing Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education and Research Institute of Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Xiaohong Xu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education and Research Institute of Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Lodge MS, Yang SA, Mukherjee S, Weber B. Atomically Thin Quantum Spin Hall Insulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008029. [PMID: 33893669 DOI: 10.1002/adma.202008029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Atomically thin topological materials are attracting growing attention for their potential to radically transform classical and quantum electronic device concepts. Among them is the quantum spin Hall (QSH) insulator-a 2D state of matter that arises from interplay of topological band inversion and strong spin-orbit coupling, with large tunable bulk bandgaps up to 800 meV and gapless, 1D edge states. Reviewing recent advances in materials science and engineering alongside theoretical description, the QSH materials library is surveyed with focus on the prospects for QSH-based device applications. In particular, theoretical predictions of nontrivial superconducting pairing in the QSH state toward Majorana-based topological quantum computing are discussed, which are the next frontier in QSH materials research.
Collapse
Affiliation(s)
- Michael S Lodge
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Shantanu Mukherjee
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
- Quantum Centres in Diamond and Emergent Materials (QCenDiem)-Group, IIT Madras, Chennai, Tamil Nadu, 600036, India
- Computational Materials Science Group, IIT Madras, Chennai, Tamil Nadu, 600036, India
| | - Bent Weber
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Australian Research Council (ARC) Centre of Excellence in Future Low-Energy Electronics Techonologies (FLEET), School of Physics, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|