1
|
Ding S, Zhu L, Zhang X, Liu Y, Zhou XF, Yang G. Superconductivity in Diamond-Like BC 15. Inorg Chem 2024; 63:18781-18787. [PMID: 39320923 DOI: 10.1021/acs.inorgchem.4c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Advancing the compositional space of a compound class can result in intriguing superconductors, such as LaH10. Herein, we performed a comprehensive first-principles structural search on a binary B-C system with various chemical compositions. The identified diamond-like BC15, named d-BC15, is thermodynamically superior to the synthesized BC3 and BC5. Interestingly, d-BC15 shows anisotropic superconductivity resulting from three distinct Fermi surfaces. Its predicted critical temperature (Tc) is 43.6 K at ambient pressure, beyond the McMillan limit. d-BC15 reaches a maximum of around 75 K at 0.43% hole doping due to the substantially enhanced density of states at the Fermi level. Additionally, d-BC15 demonstrates superhard characteristics with a Vickers hardness of 75 GPa. The calculated tensile and shear stresses are 72 and 73 GPa, respectively. The combination of high superconductivity and superhardness in d-BC15 offers new insights into the design of multifunctional materials.
Collapse
Affiliation(s)
- Shicong Ding
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Li Zhu
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Xiaohua Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xiang-Feng Zhou
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
2
|
Cui J, Yang Y, Yang M, Yang G, Chen G, Zhang L, Lin CT, Liu S, Tang C, Ke P, Lu Y, Nishimura K, Jiang N. Picometer-Scale Atomic Shifts Governing Subdisordered Structures in Diamond. NANO LETTERS 2024; 24:7108-7115. [PMID: 38722094 DOI: 10.1021/acs.nanolett.4c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Diamond is considered the most promising next-generation semiconductor material due to its excellent physical characteristics. It has been more than three decades since the discovery of a special structure named n-diamond. However, despite extensive efforts, its crystallographic structure and properties are still unclear. Here, we show that subdisordered structures in diamond provide an explanation for the structural feature of n-diamond. Monocrystalline diamond with subdisordered structures is synthesized via the chemical vapor deposition method. Atomic-resolution scanning transmission electron microscopy characterizations combined with the picometer-precision peak finder technology and diffraction simulations reveal that picometer-scale shifts of atoms within cells of diamond govern the subdisordered structures. First-principles calculations indicate that the bandgap of diamond decreases rapidly with increasing shifting distance, in accordance with experimental results. These findings clarify the crystallographic structure and electronic properties of n-diamond and provide new insights into the bandgap adjustment in diamond.
Collapse
Affiliation(s)
- Junfeng Cui
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Public Technology Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yingying Yang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Mingyang Yang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Guoyong Yang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Guoxin Chen
- Public Technology Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Lei Zhang
- Public Technology Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Cheng-Te Lin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Sha Liu
- State Key Lab of Metastable Materials Science & Technology, College of Materials Science & Engineering, Hebei Key Lab for Optimizing Metal Product Technology and Performance, Yanshan University, Qinhuangdao 066004, China
| | - Chun Tang
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
| | - Peiling Ke
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Public Technology Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kazuhito Nishimura
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Nan Jiang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
3
|
Su Z, Duan Y, Tian Y, Guo S, Li P, Wang L, Bu Y, Nie A, Wang H, Tian Y, Yang W. Mechanical quenching phenomenon in diamond. Proc Natl Acad Sci U S A 2024; 121:e2319663121. [PMID: 38547059 PMCID: PMC10998609 DOI: 10.1073/pnas.2319663121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/09/2024] [Indexed: 04/08/2024] Open
Abstract
The structure of dislocation cores, the fundamental knowledge on crystal plasticity, remains largely unexplored in covalent crystals. Here, we conducted atomically resolved characterizations of dislocation core structures in a plastically deformed diamond anvil cell tip that was unloaded from an exceptionally high pressure of 360 GPa. Our observations unveiled a series of nonequilibrium dislocation cores that deviate from the commonly accepted "five-seven-membered ring" dislocation core model found in FCC-structured covalent crystals. The nonequilibrium dislocation cores were generated through a process known as "mechanical quenching," analogous to the quenching process where a high-energy state is rapidly frozen. The density functional theory-based molecular dynamic simulations reveal that the phenomenon of mechanical quenching in diamond arises from the challenging relaxation of the nonequilibrium configuration, necessitating a large critical strain of 25% that is difficult to maintain. Further electronic-scale analysis suggested that such large critical strain is spent on the excitation of valance electrons for bond breaking and rebonding during relaxation. These findings establish a foundation for the plasticity theory of covalent materials and provide insights into the design of electrical and luminescent properties in diamond, which are intimately linked to the dislocation core structure.
Collapse
Affiliation(s)
- Zhengping Su
- Center for X-mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou310027, China
- Suzhou Laboratory, Suzhou215100, China
| | - Yu Duan
- Center for X-mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou310027, China
- Suzhou Laboratory, Suzhou215100, China
| | - Yusong Tian
- Center for X-mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou310027, China
| | - Shukuan Guo
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311200, China
| | - Penghui Li
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao066004, China
| | - Lin Wang
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao066004, China
| | - Yeqiang Bu
- Center for X-mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou310027, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao066004, China
| | - Hongtao Wang
- Center for X-mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou310027, China
- Suzhou Laboratory, Suzhou215100, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311200, China
| | - Yongjun Tian
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao066004, China
| | - Wei Yang
- Center for X-mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou310027, China
| |
Collapse
|
4
|
Min N, Wang D, Liu Z, Song X, Meng X, Li Q. Theoretical Design of Strengthened Nanotwinned γ*-Boron. J Phys Chem Lett 2024:2904-2910. [PMID: 38449075 DOI: 10.1021/acs.jpclett.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The distinctive electron deficiency and unusual multicenter bonding situations of boron give rise to fascinating chemical complexity and imaginative structural polymorphism. Herein, we employ an independently developed method to construct the new twinned γ*-boron based on the well-known hardest elemental boron, γ-B28. Notably, the newly propounded γ*-boron phases exhibit considerably close energy levels with γ-B28 under ambient conditions. The simulated X-ray diffraction patterns of stable twinned structure present excellent agreement with experimental data. First-principles calculations reveal a 7.5% increase in the ideal Vickers shear strength of γ*-boron compared to γ-B28, attributed to diverse bond responses within the twinned slabs. The evaluated hardness of nanotwinned γ*-B reaches 59 GPa in consideration of the size hardening effect. Our research presents an efficient strategy for constructing new polymorphs of boron with improved mechanical properties and expands the knowledge about twinning structures of boron.
Collapse
Affiliation(s)
- Nan Min
- State Key Lab of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Di Wang
- State Key Lab of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Zikai Liu
- State Key Lab of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Xianqi Song
- State Key Lab of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Xing Meng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Quan Li
- State Key Lab of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Liang H, Wang D, Song X, Guo Q, Li Q. Structural and Stress Response of Nanotwinned B 13CN under Large Strains. J Phys Chem Lett 2023; 14:10475-10481. [PMID: 37967198 DOI: 10.1021/acs.jpclett.3c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Boron-rich carbides with icosahedral cages as pivotal structural units, which exhibit high hardness and low density, have promising industrial applications. However, the insufficient fracture toughness of these materials hinders their engineering applications. A recent first-principles study revealed that single-crystal B13CN (sc-B13CN) exhibits interesting structural deformation modes and superior mechanical properties to boron-rich carbides, prompting us to further explore this intriguing material. Herein, we adopted sc-B13CN as an archetypal system owing to its excellent structural and mechanical properties to construct nanotwinned B13CN (nt-B13CN) and explore its mechanical properties and structural deformation modes under large strains. We unraveled the specific stress-strain relationship of nt-B13CN and the considerable effect of twinning on its structural deformation modes under diverse loading conditions. Our results indicate that twinning leads to interesting structural deformation patterns and is extremely beneficial to improving the structural stability and mechanical properties of boron-rich materials. The current results provide an improved understanding of the theoretical design for various nanotwinned boron-rich materials with intricate bonding configurations.
Collapse
Affiliation(s)
- Hui Liang
- State Key Lab of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Di Wang
- State Key Lab of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Xianqi Song
- State Key Lab of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Qing Guo
- State Key Lab of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Quan Li
- State Key Lab of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Hai Y, Jiang M, Tian H, Zhong G, Li W, Yang C, Chen X, Lin H. Superconductivity Above 100 K Predicted in Carbon-Cage Network. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303639. [PMID: 37807820 PMCID: PMC10667821 DOI: 10.1002/advs.202303639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/22/2023] [Indexed: 10/10/2023]
Abstract
To explore carbide superconductors with higher transition temperature, two novel carbon structures of cage-network are designed and their superconductivity is studied by doping metals. MC6 and MC10 are respectively identified as C24 and C32 cage-network structures. This study finds that both carbon structures drive strong electron-phonon interaction and can exhibit superconductivity above liquid nitrogen temperature. Importantly, the superconducting transition temperatures above 100 K are predicted to be achieved in C24 -cage-network systems doped by Na, Mg, Al, In, and Tl at ambient pressure, which is far higher than those in graphite, fullerene, and other carbides. Meanwhile, the superconductivity of cage-network carbides is also found to be sensitive to the electronegativity and concentration of dopant M. The result indicates that the higher transition temperatures can be obtained by optimizing the carbon-cage-network structures and the doping conditions. The study suggests that the carbon-cage-network structure is a direction to explore high-temperature superconducting carbides.
Collapse
Affiliation(s)
- Yu‐Long Hai
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Nano Science and Technology InstituteUniversity of Science and Technology of ChinaSuzhou215123China
| | - Meng‐Jing Jiang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Nano Science and Technology InstituteUniversity of Science and Technology of ChinaSuzhou215123China
| | - Hui‐Li Tian
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Nano Science and Technology InstituteUniversity of Science and Technology of ChinaSuzhou215123China
| | - Guo‐Hua Zhong
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wen‐Jie Li
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chun‐Lei Yang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiao‐Jia Chen
- School of ScienceHarbin Institute of TechnologyShenzhen518055China
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
| | - Hai‐Qing Lin
- School of PhysicsZhejiang UniversityHangzhou310058China
| |
Collapse
|
7
|
Xing X, Wang C, Yu L, Xu J, Zhang C, Zhang M, Huang S, Zhang X, Liu Y, Yang B, Chen X, Zhang Y, Guo J, Shi Z, Ma Y, Chen C, Liu X. Observation of non-superconducting phase changes in nitrogen doped lutetium hydrides. Nat Commun 2023; 14:5991. [PMID: 37752133 PMCID: PMC10522599 DOI: 10.1038/s41467-023-41777-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The recent report of near-ambient superconductivity and associated color changes in pressurized nitrogen doped lutetium hydride has triggered worldwide interest and raised major questions about the nature and underlying physics of these latest claims. Here we report synthesis and characterization of high-purity nitrogen doped lutetium hydride LuH2±xNy. We find that pressure conditions have notable effects on Lu-N and Lu-NH chemical bonding and the color changes likely stem from pressure-induced electron redistribution of nitrogen/vacancies and interaction with the LuH2 framework. No superconducting transition is found in all the phases at temperatures 1.8-300 K and pressures 0-38 GPa. Instead, we identify a notable temperature-induced resistance anomaly of electronic origin in LuH2±xNy, which is most pronounced in the pink phase and may have been erroneously interpreted as a sign of superconducting transition. This work establishes key benchmarks for nitrogen doped lutetium hydrides, allowing an in-depth understanding of its novel pressure-induced phase changes.
Collapse
Affiliation(s)
- Xiangzhuo Xing
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
- Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu, 273165, China
| | - Chao Wang
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
- Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu, 273165, China
| | - Linchao Yu
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Jie Xu
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Chutong Zhang
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Mengge Zhang
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Song Huang
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xiaoran Zhang
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Yunxian Liu
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
- Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu, 273165, China
| | - Bingchao Yang
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
- Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xin Chen
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
- Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yongsheng Zhang
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
- Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu, 273165, China
| | - Jiangang Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhixiang Shi
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Yanming Ma
- Innovation Center for Computational Methods & Software, College of Physics, Jilin University, Changchun, 130012, China
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV, 89154, USA
| | - Xiaobing Liu
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China.
- Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
8
|
Qi Y, Sadi MA, Hu D, Zheng M, Wu Z, Jiang Y, Chen YP. Recent Progress in Strain Engineering on Van der Waals 2D Materials: Tunable Electrical, Electrochemical, Magnetic, and Optical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205714. [PMID: 35950446 DOI: 10.1002/adma.202205714] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Strain engineering is a promising way to tune the electrical, electrochemical, magnetic, and optical properties of 2D materials, with the potential to achieve high-performance 2D-material-based devices ultimately. This review discusses the experimental and theoretical results from recent advances in the strain engineering of 2D materials. Some novel methods to induce strain are summarized and then the tunable electrical and optical/optoelectronic properties of 2D materials via strain engineering are highlighted, including particularly the previously less-discussed strain tuning of superconducting, magnetic, and electrochemical properties. Also, future perspectives of strain engineering are given for its potential applications in functional devices. The state of the survey presents the ever-increasing advantages and popularity of strain engineering for tuning properties of 2D materials. Suggestions and insights for further research and applications in optical, electronic, and spintronic devices are provided.
Collapse
Affiliation(s)
- Yaping Qi
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Av. Wai Long, Macao SAR, China
| | - Mohammad A Sadi
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Dan Hu
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Av. Wai Long, Macao SAR, China
| | - Ming Zheng
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhenping Wu
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Yucheng Jiang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Yong P Chen
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Av. Wai Long, Macao SAR, China
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Physics and Astronomy and Birck Nanotechnology Center and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA
- Institute of Physics and Astronomy and Villum Center for Hybrid Quantum Materials and Devices, Aarhus University, Aarhus-C, 8000, Denmark
| |
Collapse
|
9
|
Liao M, Wang Y, Wang F, Zhu J, Liu ZK. Unexpected low thermal expansion coefficients of pentadiamond. Phys Chem Chem Phys 2022; 24:23561-23569. [PMID: 36129304 DOI: 10.1039/d2cp03031d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new carbon allotrope, pentadiamond, was recently reported in the literature. Herein, we investigate its thermal expansion and thermoelastic properties by first principles. It is observed that the bulk modulus and hardness of pentadiamond are far less than those of diamond, but the thermal expansion of pentadiamond is lower than that of diamond in the range of 0 K to 2000 K, and even negative in the temperature range of 0-190 K. The negative thermal expansion at low temperature originates from the transverse vibrations of the edge-shared atoms in the coplanar double-pentagon. The low thermal expansion at high temperature is contributed by the strong bonds in pentadiamond. Benefiting from the low thermal expansion, the elastic constants of pentadiamond decrease very slowly with respect to temperature compared with those of diamond. The low sensitivity of thermodynamic and thermoelastic properties to temperature makes pentadiamond a promising material for high anti-thermal-shock and accurate electronic device applications.
Collapse
Affiliation(s)
- Mingqing Liao
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China. .,Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yi Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fengjiang Wang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Jingchuan Zhu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Zi-Kui Liu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
10
|
Shock-formed carbon materials with intergrown sp 3- and sp 2-bonded nanostructured units. Proc Natl Acad Sci U S A 2022; 119:e2203672119. [PMID: 35867827 PMCID: PMC9335297 DOI: 10.1073/pnas.2203672119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Studies of dense carbon materials formed by bolide impacts or produced by laboratory compression provide key information on the high-pressure behavior of carbon and for identifying and designing unique structures for technological applications. However, a major obstacle to studying and designing these materials is an incomplete understanding of their fundamental structures. Here, we report the remarkable structural diversity of cubic/hexagonally (c/h) stacked diamond and their association with diamond-graphite nanocomposites containing sp3-/sp2-bonding patterns, i.e., diaphites, from hard carbon materials formed by shock impact of graphite in the Canyon Diablo iron meteorite. We show evidence for a range of intergrowth types and nanostructures containing unusually short (0.31 nm) graphene spacings and demonstrate that previously neglected or misinterpreted Raman bands can be associated with diaphite structures. Our study provides a structural understanding of the material known as lonsdaleite, previously described as hexagonal diamond, and extends this understanding to other natural and synthetic ultrahard carbon phases. The unique three-dimensional carbon architectures encountered in shock-formed samples can place constraints on the pressure-temperature conditions experienced during an impact and provide exceptional opportunities to engineer the properties of carbon nanocomposite materials and phase assemblages.
Collapse
|
11
|
Miao Y, Zhao Y, Zhang S, Shi R, Zhang T. Strain Engineering: A Boosting Strategy for Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200868. [PMID: 35304927 DOI: 10.1002/adma.202200868] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Whilst the photocatalytic technique is considered to be one of the most significant routes to address the energy crisis and global environmental challenges, the solar-to-chemical conversion efficiency is still far from satisfying practical industrial requirements, which can be traced to the suboptimal bandgap and electronic structure of photocatalysts. Strain engineering is a universal scheme that can finely tailor the bandgap and electronic structure of materials, hence supplying a novel avenue to boost their photocatalytic performance. Accordingly, to explore promising directions for certain breakthroughs in strained photocatalysts, an overview on the recent advances of strain engineering from the basics of strain effect, creations of strained materials, as well as characterizations and simulations of strain level is provided. Besides, the potential applications of strain engineering in photocatalysis are summarized, and a vision for the future controllable-electronic-structure photocatalysts by strain engineering is also given. Finally, perspectives on the challenges for future strain-promoted photocatalysis are discussed, placing emphasis on the creation and decoupling of strain effect, and the modification of theoretical frameworks.
Collapse
Affiliation(s)
- Yingxuan Miao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuai Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Wang J, Liu C, Miao K, Zhang K, Zheng W, Chen C. Macroscale Robust Superlubricity on Metallic NbB 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103815. [PMID: 35266647 PMCID: PMC9069360 DOI: 10.1002/advs.202103815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/13/2021] [Indexed: 06/14/2023]
Abstract
Robust superlubricity (RSL), defined by concurrent superlow friction and wear, holds great promise for reducing material and energy loss in vast industrial and technological operations. Despite recent advances, challenges remain in finding materials that exhibit RSL on macrolength and time scales and possess vigorous electrical conduction ability. Here, the discovery of RSL is reported on hydrated NbB2 films that exhibit vanishingly small coefficient of friction (0.001-0.006) and superlow wear rate (≈10-17 m3 N-1 m-1 ) on large length scales reaching millimeter range and prolonged time scales lasting through extensive loading durations. Moreover, the measured low resistivity (≈10-6 Ω m) of the synthesized NbB2 film indicates ample capability for electrical conduction, extending macroscale RSL to hitherto largely untapped metallic materials. Pertinent microscopic mechanisms are elucidated by deciphering the intricate load-driven chemical reactions that generate and sustain the observed superlubricating state and assessing the strong stress responses under diverse strains that produce the superior durability.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Superhard MaterialsDepartment of Materials Science and Key Laboratory of Automobile MaterialsMOEJilin UniversityChangchun130012China
- Department of Materials Science and EngineeringJilin Jianzhu UniversityChangchun130118China
| | - Chang Liu
- International Center for Computational Methods and SoftwareCollege of PhysicsJilin UniversityChangchun130012China
| | - Kaifei Miao
- State Key Laboratory of Superhard MaterialsDepartment of Materials Science and Key Laboratory of Automobile MaterialsMOEJilin UniversityChangchun130012China
| | - Kan Zhang
- State Key Laboratory of Superhard MaterialsDepartment of Materials Science and Key Laboratory of Automobile MaterialsMOEJilin UniversityChangchun130012China
| | - Weitao Zheng
- State Key Laboratory of Superhard MaterialsDepartment of Materials Science and Key Laboratory of Automobile MaterialsMOEJilin UniversityChangchun130012China
| | - Changfeng Chen
- Department of Physics and AstronomyUniversity of Nevada, Las VegasLas VegasNV89154USA
| |
Collapse
|
13
|
Lu C, Chen C. Indentation Strengths of Zirconium Diboride: Intrinsic versus Extrinsic Mechanisms. J Phys Chem Lett 2021; 12:2848-2853. [PMID: 33720728 DOI: 10.1021/acs.jpclett.1c00434] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zirconium diboride (ZrB2) is an important ultra-high-temperature ceramic, which exhibits outstanding mechanical properties and is widely used in extreme environments. Extensive experimental studies, however, have found that synthesized ZrB2 specimens show widely scattered indentation hardness values ranging from 8.7 to 26 GPa. We have performed comprehensive stress-strain calculations of ZrB2 to explore its structural and stress responses and found that ZrB2 possesses an intrinsic indentation strength of 32.7 GPa, which is on par with those of other transition-metal borides that exhibit higher indentation hardness values of ∼30 GPa. This result suggests that large variations in measured hardness are driven by extrinsic factors, and an analysis of available experimental data indicates that the quality of the crystallinity of specimens holds the key to realizing improved hardness corresponding to the predicted intrinsic indentation strength. These findings offer insights into the origin of the previously reported lower hardness values of ZrB2 and raise the prospects of achieving superior strengths in well-crystallized ZrB2 that approach or match those of other ultrahard transition-metal compounds.
Collapse
Affiliation(s)
- Cheng Lu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| |
Collapse
|
14
|
Ju M, Liang H, Zhu Y, Yeung YY, Yuan H, Zhong M, Dai W, Lu C. Insights into the Microstructures and Energy Levels of Pr 3+-Doped YAlO 3 Scintillating Crystals. Inorg Chem 2021; 60:5107-5113. [PMID: 33739095 DOI: 10.1021/acs.inorgchem.1c00021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trivalent praseodymium (Pr3+)-doped materials have been extensively used in high-resolution laser spectroscopy, owing to their outstanding conversion efficiencies of plentiful transitions in the visible laser region. However, to clarify the microstructure and energy transfer mechanism of Pr3+-doped host crystals is a challenging topic. In this work, the stable structures of Pr3+-doped yttrium orthoaluminate (YAlO3) have been widely searched based on the CALYPSO method. A novel monoclinic structure with the Pm group symmetry is successfully identified. The Pr3+ impurity can precisely occupy the Y3+ position and get incorporated into the YAlO3 (YAP) host crystal with a Pr3+ concentration of 6.25%. The result of the electronic band structure reveals a 3.62 eV band gap, which suggests a semiconductor character of YAP:Pr. Using our developed well-established parametrization matrix diagonalization (WEPMD) method, we have systematically analyzed the energy level scheme and proposed a set of newly improved parameters. Additionally, the energy transfer mechanism of YAP:Pr is clarified by deciphering the numerical electric dipole and magnetic dipole transitions. The popular red emission at 653 nm is assigned to the transition 3P0 → 3F2, while the transition 3P0 → 3H4 with a large branching ratio is predicted to be a good laser channel. Many promising emission lines for laser actions are also obtained in the visible light region. Our results not only provide important insights into the energy transfer mechanisms of rare-earth ion-doped materials but also pave the way for the implementation of new types of laser devices.
Collapse
Affiliation(s)
- Meng Ju
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Hao Liang
- School of Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yongsheng Zhu
- College of Physics and Electronic Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Yau-Yuen Yeung
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China
| | - Hongkuan Yuan
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Mingmin Zhong
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Wei Dai
- School of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan 430205, China
| | - Cheng Lu
- School of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan 430205, China
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
| |
Collapse
|
15
|
Liu H, Liu C, Li Q, Ma Y, Chen C. Pressure-Induced Evolution of Crystal and Electronic Structure of Ammonia Borane. J Phys Chem Lett 2021; 12:2036-2043. [PMID: 33606543 DOI: 10.1021/acs.jpclett.1c00109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ammonia borane (NH3BH3) has long attracted considerable interest for its high hydrogen content and easy dehydrogenation conditions which make it a promising hydrogen storage material. Here, we report on a computational study of the structural stability and phase transition sequence of NH3BH3 and associated lattice dynamics and electronic properties in a wide pressure range up to 300 GPa. The results confirm previously reported structures, including the experimentally observed orthorhombic Pmn21 structure at low temperature and ambient pressure, and predict the phase transition sequence Pmn21 → Pc → P21 → P1̅ for NH3BH3. Our calculations also reveal systematic trends of monotonically decreasing band gap with rising pressure in the three high-pressure NH3BH3 phases, which nevertheless all remain nonconducting up to the highest pressure of 300 GPa examined in this work. The present findings elucidate structural and electronic properties of NH3BH3 over an extensive pressure range, providing knowledge essential to further study of NH3BH3 in an expanded pressure-temperature phase space.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Superhard Materials and International Center for Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
| | - Chang Liu
- State Key Laboratory of Superhard Materials and International Center for Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Quan Li
- State Key Laboratory of Superhard Materials and International Center for Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Yanming Ma
- State Key Laboratory of Superhard Materials and International Center for Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States
| |
Collapse
|
16
|
Lu W, Zhai H, Li Q, Chen C. Pronounced Enhancement of Superconductivity in ZrN via Strain Engineering. J Phys Chem Lett 2021; 12:1985-1990. [PMID: 33596080 DOI: 10.1021/acs.jpclett.1c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zirconium nitride (ZrN) exhibits excellent mechanical and electronic properties and hosts a superconducting transition temperature (Tc) of 10.0 K that is on the high end among transition-metal nitrides. Here, we report on a first-principles study of tuning superconductivity of ZrN via strain engineering under extensive tensile and shear deformation modes. Our results reveal strikingly effective strain-induced enhancement of Tc up to 17.1 K, which is achieved under tensile strains along the high-symmetry crystallographic [001] deformation path. A systematic analysis of the calculated results indicates that such pronounced strain modulation of superconductivity stems from simultaneous increase of electronic density of states and softening of lattice vibration in the strain-deformed ZrN crystal. The present findings show that strain engineering offers an effective tool for optimizing superconductivity in transition-metal compounds, opening a fresh avenue for improving a major functionality of this class of materials that may find applications in advanced devices.
Collapse
Affiliation(s)
- Weixue Lu
- International Center for Computational Method and Software, State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, and Department of Materials Science, Jilin University, Changchun 130012, China
| | - Hang Zhai
- International Center for Computational Method and Software, State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, and Department of Materials Science, Jilin University, Changchun 130012, China
| | - Quan Li
- International Center for Computational Method and Software, State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, and Department of Materials Science, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States
| |
Collapse
|
17
|
Kapcia KJ, Lemański R, Zygmunt MJ. Extended Falicov-Kimball model: Hartree-Fock vs DMFT approach. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:065602. [PMID: 32717728 DOI: 10.1088/1361-648x/aba981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we study the extended Falicov-Kimball model at half-filling within the Hartree-Fock approach (HFA) (for various crystal lattices) and compare the results obtained with the rigorous ones derived within the dynamical mean field theory (DMFT). The model describes a system, where electrons with spin-↓ are itinerant (with hopping amplitude t), whereas those with spin-↑ are localized. The particles interact via on-site U and intersite V density-density Coulomb interactions. We show that the HFA description of the ground state properties of the model is equivalent to the exact DMFT solution and provides a qualitatively correct picture also for a range of small temperatures. It does capture the discontinuous transition between ordered phases at U = 2V for small temperatures as well as correct features of the continuous order-disorder transition. However, the HFA predicts that the discontinuous boundary ends at the isolated-critical point (of the liquid-gas type) and it does not merge with the continuous boundary. This approach cannot also describe properly a change of order of the continuous transition for large V as well as various metal-insulator transitions found within the DMFT.
Collapse
Affiliation(s)
- Konrad Jerzy Kapcia
- Institute of Nuclear Physics, Polish Academy of Sciences, ulica W. E. Radzikowskiego 152, PL-31342 Kraków, Poland
| | - Romuald Lemański
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ulica Okólna 2, PL-50422 Wrocław, Poland
| | - Marcin Jakub Zygmunt
- Institute of Mathematics, University of Silesia, ulica Bankowa 14, PL-40007 Katowice, Poland
| |
Collapse
|
18
|
Liang H, Li Q, Chen C. Atomistic Mechanisms for Contrasting Stress-Strain Relations of B 13CN and B 13C 2. J Phys Chem Lett 2020; 11:10454-10462. [PMID: 33269938 DOI: 10.1021/acs.jpclett.0c03143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Boron-rich compounds comprise intricate bonding structures and possess excellent mechanical properties. Here, we report on a comparative study of B13CN and B13C2, which are isostructural but differ in electron fillings, with the former being electron-precise and the latter electron-deficient. Our results show that the different electron fillings in B13CN and B13C2 have profound effects on the bonding features despite their shared crystal structure, generating distinct structural deformation modes and the accompanying stress responses under diverse loading strain conditions. The most striking phenomena include a creeplike stress response under a tensile strain and superior strength under the vast majority of loading conditions for B13CN compared to B13C2. Such enhanced stability of the B12 icosahedra in B13CN by N-induced electron compensation may be effective for structural and mechanical enhancement of other boron-rich compounds and offers improved understanding of a broader class of covalent crystals with complex bonding networks.
Collapse
Affiliation(s)
- Hui Liang
- International Center for Computational Method and Software, State Key Laboratory of Superhard Materials, International Center of Future Science, Key Laboratory of Automobile Materials of MOE, and Department of Materials Science, Jilin University, Changchun 130012, China
| | - Quan Li
- International Center for Computational Method and Software, State Key Laboratory of Superhard Materials, International Center of Future Science, Key Laboratory of Automobile Materials of MOE, and Department of Materials Science, Jilin University, Changchun 130012, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States
| |
Collapse
|
19
|
Lu C, Gong W, Li Q, Chen C. Elucidating Stress-Strain Relations of ZrB 12 from First-Principles Studies. J Phys Chem Lett 2020; 11:9165-9170. [PMID: 33054239 DOI: 10.1021/acs.jpclett.0c02656] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transition-metal boron-rich compounds exhibit favorable synthesis conditions and mechanical properties that hold great promise for wide-ranging applications. However, the complex bonding networks of these compounds produce diverse structural and mechanical behaviors that require in-depth studies. A notable case is ZrB12, which has been reported to possess high Vickers hardness comparable to those of ReB2 and WB4. Surprisingly, first-principles calculations of stress-strain relations reveal unexpected low indentation strengths of ZrB12 well below those of ReB2 and WB4. Such contrasting results are reconciled by noting that the additional presence of a boron-rich phase of ZrB50 in the experimental synthesis process likely plays a key role in the extrinsic strengthening. These findings uncover mechanisms for the higher measured strength of ZrB12 and offer insights for elucidating extrinsic hardening phenomena that may exist in other transition-metal compounds.
Collapse
Affiliation(s)
- Cheng Lu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Weiguang Gong
- International Center for Computational Method & Software, State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Quan Li
- International Center for Computational Method & Software, State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States
| |
Collapse
|
20
|
Abstract
Experimental discovery of ultralarge elastic deformation in nanoscale diamond and machine learning of its electronic and phonon structures have created opportunities to address new scientific questions. Can diamond, with an ultrawide bandgap of 5.6 eV, be completely metallized, solely under mechanical strain without phonon instability, so that its electronic bandgap fully vanishes? Through first-principles calculations, finite-element simulations validated by experiments, and neural network learning, we show here that metallization/demetallization as well as indirect-to-direct bandgap transitions can be achieved reversibly in diamond below threshold strain levels for phonon instability. We identify the pathway to metallization within six-dimensional strain space for different sample geometries. We also explore phonon-instability conditions that promote phase transition to graphite. These findings offer opportunities for tailoring properties of diamond via strain engineering for electronic, photonic, and quantum applications.
Collapse
Affiliation(s)
- Zhe Shi
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | | | | | - Ju Li
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Subra Suresh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Nanyang Technological University, 639798 Singapore, Republic of Singapore
| |
Collapse
|