1
|
Scalesi A, Duguet T, Demol P, Frosini M, Somà V, Tichai A. Impact of correlations on nuclear binding energies: Ab initio calculations of singly and doubly open-shell nuclei. THE EUROPEAN PHYSICAL JOURNAL. A, HADRONS AND NUCLEI 2024; 60:209. [PMID: 39445330 PMCID: PMC11494632 DOI: 10.1140/epja/s10050-024-01424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/07/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
A strong effort will be dedicated in the coming years to extend the reach of ab initio nuclear-structure calculations to heavy doubly open-shell nuclei. In order to do so, the most efficient strategies to incorporate dominant many-body correlations at play in such nuclei must be identified. With this motivation in mind, the present work analyses the step-by-step inclusion of many-body correlations and their impact on binding energies of Calcium and Chromium isotopes. Employing an empirically-optimal Hamiltonian built from chiral effective field theory, binding energies along both isotopic chains are studied via a hierarchy of approximations based on polynomially-scaling expansion many-body methods. More specifically, calculations are performed based on (i) the spherical Hartree-Fock-Bogoliubov mean-field approximation plus correlations from second-order Bogoliubov many-body perturbation theory or Bogoliubov coupled cluster with singles and doubles on top of it, along with (ii) the axially-deformed Hartree-Fock-Bogoliubov mean-field approximation plus correlations from second-order Bogoliubov many-body perturbation theory built on it. The corresponding results are compared to experimental data and to those obtained via valence-space in-medium similarity renormalization group calculations at the normal-ordered two-body level that act as a reference in the present study. The spherical mean-field approximation is shown to display specific shortcomings in Ca isotopes that can be understood analytically and that are efficiently corrected via the consistent addition of low-order dynamical correlations on top of it. While the same setting cannot appropriately reproduce binding energies in doubly open-shell Cr isotopes, allowing the unperturbed mean-field state to break rotational symmetry permits to efficiently capture the static correlations responsible for the phenomenological differences observed between the two isotopic chains. Eventually, the present work demonstrates that polynomially-scaling expansion methods based on unperturbed states that possibly break (and restore) symmetries constitute an optimal route to extend ab initio calculations to heavy closed- and open-shell nuclei.
Collapse
Affiliation(s)
- A. Scalesi
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - T. Duguet
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- Department of Physics and Astronomy, Instituut voor Kern- en Stralingsfysica, KU Leuven, 3001 Leuven, Belgium
| | - P. Demol
- Department of Physics and Astronomy, Instituut voor Kern- en Stralingsfysica, KU Leuven, 3001 Leuven, Belgium
| | - M. Frosini
- CEA, DES, IRESNE, DER, SPRC, LEPh, 13115 Saint-Paul-lez-Durance, France
| | - V. Somà
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - A. Tichai
- Department of Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Parno DS, Poon AWP, Singh V. Experimental neutrino physics in a nuclear landscape. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230122. [PMID: 38910396 PMCID: PMC11343210 DOI: 10.1098/rsta.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 06/25/2024]
Abstract
There are profound connections between neutrino physics and nuclear experiments. Exceptionally precise measurements of single and double beta-decay spectra illuminate the scale and nature of neutrino mass and may finally answer the question of whether neutrinos are their own anti-matter counterparts. Neutrino-nucleus scattering underpins oscillation experiments and probes nuclear structure, neutrinos offer a rare vantage point into collapsing stars and nuclear fission reactors and techniques pioneered in neutrino nuclear physics experiments are advancing quantum sensing technologies. In this article, we review current and planned efforts at the intersection of neutrino and nuclear experiments. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.
Collapse
Affiliation(s)
- D. S. Parno
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA15213, USA
| | - A. W. P. Poon
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
| | - V. Singh
- Department of Physics, University of California, Berkeley, CA94720, USA
| |
Collapse
|
3
|
Arrowsmith-Kron G, Athanasakis-Kaklamanakis M, Au M, Ballof J, Berger R, Borschevsky A, Breier AA, Buchinger F, Budker D, Caldwell L, Charles C, Dattani N, de Groote RP, DeMille D, Dickel T, Dobaczewski J, Düllmann CE, Eliav E, Engel J, Fan M, Flambaum V, Flanagan KT, Gaiser AN, Garcia Ruiz RF, Gaul K, Giesen TF, Ginges JSM, Gottberg A, Gwinner G, Heinke R, Hoekstra S, Holt JD, Hutzler NR, Jayich A, Karthein J, Leach KG, Madison KW, Malbrunot-Ettenauer S, Miyagi T, Moore ID, Moroch S, Navratil P, Nazarewicz W, Neyens G, Norrgard EB, Nusgart N, Pašteka LF, N Petrov A, Plaß WR, Ready RA, Pascal Reiter M, Reponen M, Rothe S, Safronova MS, Scheidenerger C, Shindler A, Singh JT, Skripnikov LV, Titov AV, Udrescu SM, Wilkins SG, Yang X. Opportunities for fundamental physics research with radioactive molecules. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:084301. [PMID: 38215499 DOI: 10.1088/1361-6633/ad1e39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/10/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.
Collapse
Affiliation(s)
- Gordon Arrowsmith-Kron
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
| | - Michail Athanasakis-Kaklamanakis
- Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
- KU Leuven, Department of Physics and Astronomy, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - Mia Au
- CERN, Geneva, Switzerland
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Jochen Ballof
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
- Accelerator Systems Department, CERN, 1211 Geneva 23, Switzerland
| | - Robert Berger
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Anastasia Borschevsky
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
| | - Alexander A Breier
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | | | - Dmitry Budker
- Helmholtz-Institut, GSI Helmholtzzentrum fur Schwerionenforschung and Johannes Gutenberg University, Mainz 55128, Germany
- Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, United States of America
| | - Luke Caldwell
- JILA, NIST and University of Colorado, Boulder, CO 80309, United States of America
- Department of Physics, University of Colorado, Boulder, CO 80309, United States of America
| | - Christopher Charles
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- University of Western Ontario, 1151 Richmond St. N., London, Ontario N6A 5B7, Canada
| | - Nike Dattani
- HPQC Labs, Waterloo, Ontario, Canada
- HPQC College, Waterloo, Ontario, Canada
| | - Ruben P de Groote
- Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | - David DeMille
- University of Chicago, Chicago, IL, United States of America
- Argonne National Laboratory, Lemont, IL, United States of America
| | - Timo Dickel
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Jacek Dobaczewski
- School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, United Kingdom
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland
| | - Christoph E Düllmann
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany
- Helmholtz Institute Mainz, Staudingerweg 18, 55128 Mainz, Germany
| | - Ephraim Eliav
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Jonathan Engel
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, United States of America
| | - Mingyu Fan
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | | | - Kieran T Flanagan
- Photon Science Institute, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alyssa N Gaiser
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
| | - Ronald F Garcia Ruiz
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Konstantin Gaul
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Thomas F Giesen
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Jacinda S M Ginges
- School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia
| | | | - Gerald Gwinner
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 3M9, Canada
| | | | - Steven Hoekstra
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
- Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands
| | - Jason D Holt
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada
| | - Nicholas R Hutzler
- California Institute of Technology, Pasadena, CA 91125, United States of America
| | - Andrew Jayich
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Jonas Karthein
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Kyle G Leach
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
- Colorado School of Mines, Golden, CO 80401, United States of America
| | - Kirk W Madison
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T1Z1, Canada
| | - Stephan Malbrunot-Ettenauer
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics, University of Toronto, 60 St. George St., Toronto, Ontario, Canada
| | | | - Iain D Moore
- Accelerator Laboratory, Department of Physics, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Scott Moroch
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Petr Navratil
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Witold Nazarewicz
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, United States of America
| | - Gerda Neyens
- KU Leuven, Department of Physics and Astronomy, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - Eric B Norrgard
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Nicholas Nusgart
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
| | - Lukáš F Pašteka
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Alexander N Petrov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center 'Kurchatov Institute' (NRC 'Kurchatov Institute'-PNPI), 1 Orlova roscha mcr., Gatchina 188300, Leningrad Region, Russia
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Wolfgang R Plaß
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Roy A Ready
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Moritz Pascal Reiter
- School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD Edinburgh, United Kingdom
| | - Mikael Reponen
- Accelerator Laboratory, Department of Physics, University of Jyväskylä, Jyväskylä 40014, Finland
| | | | - Marianna S Safronova
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, United States of America
- Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, MD 20742, United States of America
| | - Christoph Scheidenerger
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF), Campus Gießen, Gießen, Germany
| | - Andrea Shindler
- Facility for Rare Isotope Beams & Physics Department, Michigan State University, East Lansing, MI 48824, United States of America
| | - Jaideep T Singh
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, United States of America
| | - Leonid V Skripnikov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center 'Kurchatov Institute' (NRC 'Kurchatov Institute'-PNPI), 1 Orlova roscha mcr., Gatchina 188300, Leningrad Region, Russia
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Anatoly V Titov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center 'Kurchatov Institute' (NRC 'Kurchatov Institute'-PNPI), 1 Orlova roscha mcr., Gatchina 188300, Leningrad Region, Russia
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Silviu-Marian Udrescu
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Shane G Wilkins
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Xiaofei Yang
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
4
|
Belley A, Yao JM, Bally B, Pitcher J, Engel J, Hergert H, Holt JD, Miyagi T, Rodríguez TR, Romero AM, Stroberg SR, Zhang X. Ab Initio Uncertainty Quantification of Neutrinoless Double-Beta Decay in ^{76}Ge. PHYSICAL REVIEW LETTERS 2024; 132:182502. [PMID: 38759198 DOI: 10.1103/physrevlett.132.182502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/16/2023] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 05/19/2024]
Abstract
The observation of neutrinoless double-beta (0νββ) decay would offer proof of lepton number violation, demonstrating that neutrinos are Majorana particles, while also helping us understand why there is more matter than antimatter in the Universe. If the decay is driven by the exchange of the three known light neutrinos, a discovery would, in addition, link the observed decay rate to the neutrino mass scale through a theoretical quantity known as the nuclear matrix element (NME). Accurate values of the NMEs for all nuclei considered for use in 0νββ experiments are therefore crucial for designing and interpreting those experiments. Here, we report the first comprehensive ab initio uncertainty quantification of the 0νββ-decay NME, in the key nucleus ^{76}Ge. Our method employs nuclear strong and weak interactions derived within chiral effective field theory and recently developed many-body emulators. Our result, with a conservative treatment of uncertainty, is an NME of 2.60_{-1.36}^{+1.28}, which, together with the best-existing half-life sensitivity and phase-space factor, sets an upper limit for effective neutrino mass of 187_{-62}^{+205} meV. The result is important for designing next-generation germanium detectors aiming to cover the entire inverted hierarchy region of neutrino masses.
Collapse
Affiliation(s)
- A Belley
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - J M Yao
- School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
| | - B Bally
- ESNT, IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - J Pitcher
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Engel
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA
| | - H Hergert
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
- Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824-1321, USA
| | - J D Holt
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics, McGill University, Montréal, Quebec, Canada
| | - T Miyagi
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - T R Rodríguez
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
- Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Centro de Investigación Avanzada en Física Fundamental-CIAFF-UAM, E-28049 Madrid, Spain
| | - A M Romero
- Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028 Barcelona, Spain
- Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028 Barcelona, Spain
| | - S R Stroberg
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - X Zhang
- School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
| |
Collapse
|
5
|
|
6
|
Hoferichter M. Interplay of nuclear physics, effective field theories, phenomenology, and lattice QCD in neutrino physics. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227401010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
Experiments in neutrino physics cover a wide range—from deep inelastic scattering, over long base-line oscillation experiments and low-energy coherent neutrino–nucleus scattering (CEνNS), to searches for neutrinoless double β decay (0νββ)—yet in all cases a key aspect in interpreting the results concerns understanding neutrino–nucleus interactions. If the neutrino energy is sufficiently low, the required matrix elements can be constrained in a systematic way by the interplay of effective field theories, phenomenology, and lattice QCD. In these proceedings, we illustrate this strategy focusing on the CEνNS and 0νββ processes.
Collapse
|
7
|
Wirth R, Yao JM, Hergert H. Ab Initio Calculation of the Contact Operator Contribution in the Standard Mechanism for Neutrinoless Double Beta Decay. PHYSICAL REVIEW LETTERS 2021; 127:242502. [PMID: 34951798 DOI: 10.1103/physrevlett.127.242502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/17/2021] [Revised: 09/27/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Starting from chiral nuclear interactions, we evaluate the contribution of the leading-order contact transition operator to the nuclear matrix element (NME) of neutrinoless double-beta decay, assuming a light Majorana neutrino-exchange mechanism. The corresponding low-energy constant (LEC) is determined by fitting the transition amplitude of the nn→ppe^{-}e^{-} process to a recently proposed synthetic datum. We examine the dependence of the amplitude on similarity renormalization group scale and chiral expansion order of the nuclear interaction, finding that both dependences can be compensated to a large extent by readjusting the LEC. We evaluate the contribution of both the leading-order contact operator and standard long-range operator to the neutrinoless double-beta decays in the light nuclei ^{6,8}He and the candidate nucleus ^{48}Ca. Our results provide the first clear demonstration that the contact term enhances the NME in calculations with commonly used chiral two- plus three-nucleon interactions. In the case of ^{48}Ca, for example, the NME obtained with the EM(1.8/2.0) interaction is enhanced from 0.61 to 0.87(4), where the uncertainty is propagated from the synthetic datum.
Collapse
Affiliation(s)
- R Wirth
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
| | - J M Yao
- School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
| | - H Hergert
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
- Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824-1321, USA
| |
Collapse
|
8
|
Novario S, Gysbers P, Engel J, Hagen G, Jansen GR, Morris TD, Navrátil P, Papenbrock T, Quaglioni S. Coupled-Cluster Calculations of Neutrinoless Double-β Decay in ^{48}Ca. PHYSICAL REVIEW LETTERS 2021; 126:182502. [PMID: 34018796 DOI: 10.1103/physrevlett.126.182502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/23/2020] [Revised: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
We use coupled-cluster theory and nuclear interactions from chiral effective field theory to compute the nuclear matrix element for the neutrinoless double-β decay of ^{48}Ca. Benchmarks with the no-core shell model in several light nuclei inform us about the accuracy of our approach. For ^{48}Ca we find a relatively small matrix element. We also compute the nuclear matrix element for the two-neutrino double-β decay of ^{48}Ca with a quenching factor deduced from two-body currents in recent ab initio calculation of the Ikeda sum rule in ^{48}Ca [Gysbers et al., Nat. Phys. 15, 428 (2019)NPAHAX1745-247310.1038/s41567-019-0450-7].
Collapse
Affiliation(s)
- S Novario
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - P Gysbers
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - J Engel
- Department of Physics, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - G Hagen
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - G R Jansen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - T D Morris
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - P Navrátil
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - T Papenbrock
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - S Quaglioni
- Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA
| |
Collapse
|
9
|
Cirigliano V, Dekens W, de Vries J, Hoferichter M, Mereghetti E. Toward Complete Leading-Order Predictions for Neutrinoless Double β Decay. PHYSICAL REVIEW LETTERS 2021; 126:172002. [PMID: 33988430 DOI: 10.1103/physrevlett.126.172002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/23/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The amplitude for the neutrinoless double β (0νββ) decay of the two-neutron system nn→ppe^{-}e^{-} constitutes a key building block for nuclear-structure calculations of heavy nuclei employed in large-scale 0νββ searches. Assuming that the 0νββ process is mediated by a light-Majorana-neutrino exchange, a systematic analysis in chiral effective field theory shows that already at leading order a contact operator is required to ensure renormalizability. In this Letter, we develop a method to estimate the numerical value of its coefficient (in analogy to the Cottingham formula for electromagnetic contributions to hadron masses) and validate the result by reproducing the charge-independence-breaking contribution to the nucleon-nucleon scattering lengths. Our central result, while derived in dimensional regularization, is given in terms of the renormalized amplitude A_{ν}(|p|,|p^{'}|), matching to which will allow one to determine the contact-term contribution in regularization schemes employed in nuclear-structure calculations. Our results thus greatly reduce a crucial uncertainty in the interpretation of searches for 0νββ decay.
Collapse
Affiliation(s)
- Vincenzo Cirigliano
- Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico 87545, USA
| | - Wouter Dekens
- Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
| | - Jordy de Vries
- Department of Physics, Amherst Center for Fundamental Interactions, University of Massachusetts, Amherst, Massachusetts 01003, USA
- RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
- Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands
| | - Martin Hoferichter
- Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Emanuele Mereghetti
- Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
10
|
Carlsson BG, Rotureau J. New and Practical Formulation for Overlaps of Bogoliubov Vacua. PHYSICAL REVIEW LETTERS 2021; 126:172501. [PMID: 33988438 DOI: 10.1103/physrevlett.126.172501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/16/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
In this Letter, we present a new expression for the overlaps of wave functions in Hartree-Fock-Bogoliubov based theories. Starting from the Pfaffian formula by Bertsch et al. [1], an exact and computationally stable formula for overlaps is derived. We illustrate the convenience of this new formulation with a numerical application in the context of the particle-number projection method. This new formula allows for substantially increased precision and versatility in chemical, atomic, and nuclear physics applications, particularly for methods dealing with superfluidity, symmetry restoration, and uses of nonorthogonal many-body basis states.
Collapse
Affiliation(s)
- B G Carlsson
- Mathematical Physics, Lund University, S-221 00 Lund, Sweden
| | - J Rotureau
- Mathematical Physics, Lund University, S-221 00 Lund, Sweden
| |
Collapse
|
11
|
Davoudi Z, Kadam SV. Path from Lattice QCD to the Short-Distance Contribution to 0νββ Decay with a Light Majorana Neutrino. PHYSICAL REVIEW LETTERS 2021; 126:152003. [PMID: 33929257 DOI: 10.1103/physrevlett.126.152003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Neutrinoless double-β (0νββ) decay of certain atomic isotopes, if observed, will have significant implications for physics of neutrinos and models of physics beyond the standard model. In the simplest scenario, if the mass of the light neutrino of the standard model has a Majorana component, it can mediate the decay. Systematic theoretical studies of the decay rate in this scenario, through effective field theories matched to ab initio nuclear many-body calculations, are needed to draw conclusions about the hierarchy of neutrino masses, and to plan the design of future experiments. However, a recently identified short-distance contribution at leading order in the effective field theory amplitude of the subprocess nn→pp(ee) remains unknown, and only lattice quantum chromodynamics (QCD) can directly and reliably determine the associated low-energy constant. While the numerical computations of the correlation function for this process are underway with lattice QCD, the connection to the physical amplitude, and hence this short-distance contribution, is missing. A complete framework that enables this complex matching is developed in this Letter. The complications arising from the Euclidean and finite-volume nature of the corresponding correlation function are fully resolved, and the value of the formalism is demonstrated through a simple example. The result of this work, therefore, fills the gap between first-principles studies of the nn→pp(ee) amplitude from lattice QCD and those from effective field theory, and can be readily employed in the ongoing lattice-QCD studies of this process.
Collapse
Affiliation(s)
- Zohreh Davoudi
- Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
- RIKEN Center for Accelerator-based Sciences, Wako 351-0198, Japan
| | - Saurabh V Kadam
- Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
12
|
Belley A, Payne CG, Stroberg SR, Miyagi T, Holt JD. Ab Initio Neutrinoless Double-Beta Decay Matrix Elements for ^{48}Ca, ^{76}Ge, and ^{82}Se. PHYSICAL REVIEW LETTERS 2021; 126:042502. [PMID: 33576665 DOI: 10.1103/physrevlett.126.042502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
We calculate basis-space converged neutrinoless ββ-decay nuclear matrix elements for the lightest candidates: ^{48}Ca, ^{76}Ge, and ^{82}Se. Starting from initial two- and three-nucleon forces, we apply the ab initio in-medium similarity renormalization group to construct valence-space Hamiltonians and consistently transformed ββ-decay operators. We find that the tensor component is non-negligible in ^{76}Ge and ^{82}Se, and the resulting nuclear matrix elements are overall 25%-45% smaller than those obtained from the phenomenological shell model. While a final matrix element with uncertainties still requires substantial developments, this work nevertheless opens a path toward a true first-principles calculation of neutrinoless ββ decay in all nuclei relevant for ongoing large-scale searches.
Collapse
Affiliation(s)
- A Belley
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics, McGill University, 3600 Rue University, Montréal, Quebec City H3A 2T8, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - C G Payne
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - S R Stroberg
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - T Miyagi
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - J D Holt
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics, McGill University, 3600 Rue University, Montréal, Quebec City H3A 2T8, Canada
| |
Collapse
|
13
|
Affiliation(s)
- Jiangming Yao
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA.
| |
Collapse
|
14
|
Abstract
Neutrinoless double beta (0νββ) decay searches are currently among the major foci of experimental physics. The observation of such a decay will have important implications in our understanding of the intrinsic nature of neutrinos and shed light on the limitations of the Standard Model. The rate of this process depends on both the unknown neutrino effective mass and the nuclear matrix element (M0ν) associated with the given 0νββ transition. The latter can only be provided by theoretical calculations, hence the need of accurate theoretical predictions of M0ν for the success of the experimental programs. This need drives the theoretical nuclear physics community to provide the most reliable calculations of M0ν. Among the various computational models adopted to solve the many-body nuclear problem, the shell model is widely considered as the basic framework of the microscopic description of the nucleus. Here, we review the most recent and advanced shell-model calculations of M0ν considering the light-neutrino-exchange channel for nuclei of experimental interest. We report the sensitivity of the theoretical calculations with respect to variations in the model spaces and the shell-model nuclear Hamiltonians.
Collapse
|
15
|
Gambacurta D, Grasso M, Engel J. Gamow-Teller Strength in ^{48}Ca and ^{78}Ni with the Charge-Exchange Subtracted Second Random-Phase Approximation. PHYSICAL REVIEW LETTERS 2020; 125:212501. [PMID: 33274967 DOI: 10.1103/physrevlett.125.212501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
We develop a fully self-consistent subtracted second random-phase approximation for charge-exchange processes with Skyrme energy-density functionals. As a first application, we study Gamow-Teller excitations in the doubly magic nucleus ^{48}Ca, the lightest double-β emitter that could be used in an experiment, and in ^{78}Ni, the single-beta-decay rate of which is known. The amount of Gamow-Teller strength below 20 or 30 MeV is considerably smaller than in other energy-density-functional calculations and agrees better with experiment in ^{48}Ca, as does the beta-decay rate in ^{78}Ni. These important results, obtained without ad hoc quenching factors, are due to the presence of two-particle-two-hole configurations. Their density progressively increases with excitation energy, leading to a long high-energy tail in the spectrum, a fact that may have implications for the computation of nuclear matrix elements for neutrinoless double-β decay in the same framework.
Collapse
Affiliation(s)
- D Gambacurta
- INFN-LNS, Laboratori Nazionali del Sud, 95123 Catania, Italy
| | - M Grasso
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
| | - J Engel
- Department of Physics and Astronomy, CB 3255, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
| |
Collapse
|