1
|
Chen H, Dzhigaev D, Björling A, Westermeier F, Lyubomirskiy M, Stuckelberger M, Wallentin J. Correcting angular distortions in Bragg coherent X-ray diffraction imaging. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1308-1316. [PMID: 39116009 PMCID: PMC11371051 DOI: 10.1107/s1600577524006507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Bragg coherent X-ray diffraction imaging (BCDI) has emerged as a powerful technique for strain imaging and morphology reconstruction of nanometre-scale crystals. However, BCDI often suffers from angular distortions that appear during data acquisition, caused by radiation pressure, heating or imperfect scanning stages. This limits the applicability of BCDI, in particular for small crystals and high-flux X-ray beams. Here, we present a pre-processing algorithm that recovers the 3D datasets from the BCDI dataset measured under the impact of large angular distortions. We systematically investigate the performance of this method for different levels of distortion and find that the algorithm recovers the correct angles for distortions up to 16.4× (1640%) the angular step size dθ = 0.004°. We also show that the angles in a continuous scan can be recovered with high accuracy. As expected, the correction provides marked improvements in the subsequent phase retrieval.
Collapse
Affiliation(s)
- Huaiyu Chen
- Synchrotron Radiation Research and NanoLund, Department of PhysicsLund University22100LundSweden
| | - Dmitry Dzhigaev
- Synchrotron Radiation Research and NanoLund, Department of PhysicsLund University22100LundSweden
| | | | | | | | | | - Jesper Wallentin
- Synchrotron Radiation Research and NanoLund, Department of PhysicsLund University22100LundSweden
| |
Collapse
|
2
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Vicente RA, Raju SP, Gomes HVN, Neckel IT, Tolentino HCN, Fernández PS. Development of Electrochemical Cells and Their Application for Spatially Resolved Analysis Using a Multitechnique Approach: From Conventional Experiments to X-Ray Nanoprobe Beamlines. Anal Chem 2023; 95:16144-16152. [PMID: 37883715 DOI: 10.1021/acs.analchem.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Real (electro)catalysts are often heterogeneous, and their activity and selectivity depend on the properties of specific active sites. Therefore, unveiling the so-called structure-activity relationship is essential for a rational search for better materials and, consequently, for the development of the field of (electro-)catalysis. Thus, spatially resolved techniques are powerful tools as they allow us to characterize and/or measure the activity and selectivity of different regions of heterogeneous catalysts. To take full advantage of that, we have developed spectroelectrochemical cells to perform spatially resolved analysis using X-ray nanoprobe synchrotron beamlines and conventional pieces of equipment. Here, we describe the techniques available at the Carnaúba beamline at the Sirius-LNLS storage ring, and then we show how our cells enable obtaining X-ray (XRF, XRD, XAS, etc.) and vibrational spectroscopy (FTIR and Raman) contrast images. Through some proof-of-concept experiments, we demonstrate how using a multi-technique approach could render a complete and detailed analysis of an (electro)catalyst overall performance.
Collapse
Affiliation(s)
- Rafael Alcides Vicente
- Department of Physical-Chemistry, Universidade Estadual de Campinas (UNICAMP), R. Josué de Castro, s/n, Cidade Universitária, Campinas 13083-872, Brazil
- Center for Innovation on New Energies (CINE), R. Michel Debrun, s/n, Prédio Amarelo, Campinas 13083-084, Brazil
| | - Swathi Patchaiammal Raju
- Department of Physical-Chemistry, Universidade Estadual de Campinas (UNICAMP), R. Josué de Castro, s/n, Cidade Universitária, Campinas 13083-872, Brazil
- Center for Innovation on New Energies (CINE), R. Michel Debrun, s/n, Prédio Amarelo, Campinas 13083-084, Brazil
| | - Heloisa Vampré Nascimento Gomes
- Department of Physical-Chemistry, Universidade Estadual de Campinas (UNICAMP), R. Josué de Castro, s/n, Cidade Universitária, Campinas 13083-872, Brazil
- Center for Innovation on New Energies (CINE), R. Michel Debrun, s/n, Prédio Amarelo, Campinas 13083-084, Brazil
| | - Itamar Tomio Neckel
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), R. Giuseppe Máximo Scolfaro, 10000 - Bosque das Palmeiras, Campinas 13083-970, Brazil
| | - Hélio Cesar Nogueira Tolentino
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), R. Giuseppe Máximo Scolfaro, 10000 - Bosque das Palmeiras, Campinas 13083-970, Brazil
| | - Pablo Sebastián Fernández
- Department of Physical-Chemistry, Universidade Estadual de Campinas (UNICAMP), R. Josué de Castro, s/n, Cidade Universitária, Campinas 13083-872, Brazil
- Center for Innovation on New Energies (CINE), R. Michel Debrun, s/n, Prédio Amarelo, Campinas 13083-084, Brazil
| |
Collapse
|
4
|
Richard MI, Labat S, Dupraz M, Li N, Bellec E, Boesecke P, Djazouli H, Eymery J, Thomas O, Schülli TU, Santala MK, Leake SJ. Bragg coherent diffraction imaging of single 20 nm Pt particles at the ID01-EBS beamline of ESRF. J Appl Crystallogr 2022; 55:621-625. [PMID: 35719306 PMCID: PMC9172036 DOI: 10.1107/s1600576722002886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Electronic or catalytic properties can be modified at the nanoscale level. Engineering efficient and specific nanomaterials requires the ability to study their complex structure-property relationships. Here, Bragg coherent diffraction imaging was used to measure the three-dimensional shape and strain of platinum nanoparticles with a diameter smaller than 30 nm, i.e. significantly smaller than any previous study. This was made possible by the realization of the Extremely Brilliant Source of ESRF, The European Synchrotron. This work demonstrates the feasibility of imaging the complex structure of very small particles in three dimensions and paves the way towards the observation of realistic catalytic particles.
Collapse
Affiliation(s)
- M.-I. Richard
- Université Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, 17 rue des Martyrs, 38000 Grenoble, France
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - S. Labat
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - M. Dupraz
- Université Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, 17 rue des Martyrs, 38000 Grenoble, France
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - N. Li
- Université Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, 17 rue des Martyrs, 38000 Grenoble, France
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - E. Bellec
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - P. Boesecke
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - H. Djazouli
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - J. Eymery
- Université Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, 17 rue des Martyrs, 38000 Grenoble, France
| | - O. Thomas
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - T. U. Schülli
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - M. K. Santala
- Department of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, Oregon, USA
| | - S. J. Leake
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
5
|
Carbone D, Kalbfleisch S, Johansson U, Björling A, Kahnt M, Sala S, Stankevic T, Rodriguez-Fernandez A, Bring B, Matej Z, Bell P, Erb D, Hardion V, Weninger C, Al-Sallami H, Lidon-Simon J, Carlson S, Jerrebo A, Norsk Jensen B, Bjermo A, Åhnberg K, Roslund L. Design and performance of a dedicated coherent X-ray scanning diffraction instrument at beamline NanoMAX of MAX IV. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:876-887. [PMID: 35511021 PMCID: PMC9070697 DOI: 10.1107/s1600577522001333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
The diffraction endstation of the NanoMAX beamline is designed to provide high-flux coherent X-ray nano-beams for experiments requiring many degrees of freedom for sample and detector. The endstation is equipped with high-efficiency Kirkpatrick-Baez mirror focusing optics and a two-circle goniometer supporting a positioning and scanning device, designed to carry a compact sample environment. A robot is used as a detector arm. The endstation, in continued development, has been in user operation since summer 2017.
Collapse
Affiliation(s)
- Dina Carbone
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | | | - Ulf Johansson
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | | | - Maik Kahnt
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Simone Sala
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Tomas Stankevic
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
- Microsoft Danmark ApS, Tuborg Boulevard 12, 2900 Hellerup, Denmark
| | - Angel Rodriguez-Fernandez
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Björn Bring
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
- Axis Communications, Gränden 1, 22369 Lund, Sweden
| | - Zdenek Matej
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Paul Bell
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - David Erb
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | | | | | | | | | | | | | | | - Anders Bjermo
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Karl Åhnberg
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Linus Roslund
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| |
Collapse
|
6
|
Johansson U, Carbone D, Kalbfleisch S, Björling A, Kahnt M, Sala S, Stankevic T, Liebi M, Rodriguez Fernandez A, Bring B, Paterson D, Thånell K, Bell P, Erb D, Weninger C, Matej Z, Roslund L, Åhnberg K, Norsk Jensen B, Tarawneh H, Mikkelsen A, Vogt U. NanoMAX: the hard X-ray nanoprobe beamline at the MAX IV Laboratory. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1935-1947. [PMID: 34738949 PMCID: PMC8570223 DOI: 10.1107/s1600577521008213] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 06/01/2023]
Abstract
NanoMAX is the first hard X-ray nanoprobe beamline at the MAX IV laboratory. It utilizes the unique properties of the world's first operational multi-bend achromat storage ring to provide an intense and coherent focused beam for experiments with several methods. In this paper we present the beamline optics design in detail, show the performance figures, and give an overview of the surrounding infrastructure and the operational diffraction endstation.
Collapse
Affiliation(s)
- Ulf Johansson
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - Dina Carbone
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | | | | | - Maik Kahnt
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - Simone Sala
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - Tomas Stankevic
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - Marianne Liebi
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | | | - Björn Bring
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - David Paterson
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Karina Thånell
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - Paul Bell
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - David Erb
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - Clemens Weninger
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - Zdenek Matej
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - Linus Roslund
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - Karl Åhnberg
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | | | - Hamed Tarawneh
- MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - Anders Mikkelsen
- Lund University, Synchrotron Radiation Research, 22100 Lund, Sweden
| | - Ulrich Vogt
- KTH Royal Institute of Technology, Department of Applied Physics, Biomedical and X-ray Physics, Albanova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
7
|
Vicente R, Neckel IT, Sankaranarayanan SKS, Solla-Gullon J, Fernández PS. Bragg Coherent Diffraction Imaging for In Situ Studies in Electrocatalysis. ACS NANO 2021; 15:6129-6146. [PMID: 33793205 PMCID: PMC8155327 DOI: 10.1021/acsnano.1c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
Electrocatalysis is at the heart of a broad range of physicochemical applications that play an important role in the present and future of a sustainable economy. Among the myriad of different electrocatalysts used in this field, nanomaterials are of ubiquitous importance. An increased surface area/volume ratio compared to bulk makes nanoscale catalysts the preferred choice to perform electrocatalytic reactions. Bragg coherent diffraction imaging (BCDI) was introduced in 2006 and since has been applied to obtain 3D images of crystalline nanomaterials. BCDI provides information about the displacement field, which is directly related to strain. Lattice strain in the catalysts impacts their electronic configuration and, consequently, their binding energy with reaction intermediates. Even though there have been significant improvements since its birth, the fact that the experiments can only be performed at synchrotron facilities and its relatively low resolution to date (∼10 nm spatial resolution) have prevented the popularization of this technique. Herein, we will briefly describe the fundamentals of the technique, including the electrocatalysis relevant information that we can extract from it. Subsequently, we review some of the computational experiments that complement the BCDI data for enhanced information extraction and improved understanding of the underlying nanoscale electrocatalytic processes. We next highlight success stories of BCDI applied to different electrochemical systems and in heterogeneous catalysis to show how the technique can contribute to future studies in electrocatalysis. Finally, we outline current challenges in spatiotemporal resolution limits of BCDI and provide our perspectives on recent developments in synchrotron facilities as well as the role of machine learning and artificial intelligence in addressing them.
Collapse
Affiliation(s)
- Rafael
A. Vicente
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| | - Itamar T. Neckel
- Brazilian
Synchrotron Light Laboratory, Brazilian
Center for Research in Energy and Materials, 13083-970, Campinas, São Paulo, Brazil
| | - Subramanian K.
R. S. Sankaranarayanan
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center
for Nanoscale Materials, Argonne National
Laboratory, Argonne, Illinois 60439, United
States
| | - José Solla-Gullon
- Institute
of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante, Spain
| | - Pablo S. Fernández
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| |
Collapse
|