1
|
Chen T, Zhang C, Cheng L, Ng KB, Malbrunot-Ettenauer S, Flambaum VV, Lasner Z, Doyle JM, Yu P, Conn CJ, Zhang C, Hutzler NR, Jayich AM, Augenbraun B, DeMille D. Relativistic Exact Two-Component Coupled-Cluster Study of Molecular Sensitivity Factors for Nuclear Schiff Moments. J Phys Chem A 2024. [PMID: 39047199 DOI: 10.1021/acs.jpca.4c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Relativistic exact two-component coupled-cluster calculations of molecular sensitivity factors for nuclear Schiff moments (NSMs) are reported. We focus on molecules containing heavy nuclei, especially octupole-deformed nuclei. Analytic relativistic coupled-cluster gradient techniques are used and serve as useful tools for identifying candidate molecules that sensitively probe for physics beyond the Standard Model in the hadronic sector. Notably, these tools enable straightforward "black-box" calculations. Two competing chemical mechanisms that contribute to the NSM are analyzed, illuminating the physics of ligand effects on NSM sensitivity factors.
Collapse
Affiliation(s)
- Tianxiang Chen
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kia Boon Ng
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Stephan Malbrunot-Ettenauer
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics, University of Toronto, Toronto M5S 1A7, Canada
| | - Victor V Flambaum
- School of Physics, University of New South Wales, Sydney 2052, Australia
| | - Zack Lasner
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, United States
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, United States
| | - Phelan Yu
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, United States
| | - Chandler J Conn
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, United States
| | - Chi Zhang
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, United States
| | - Nicholas R Hutzler
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, United States
| | - Andrew M Jayich
- Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Benjamin Augenbraun
- Department of Chemistry, Williams College, 47 Lab Campus Drive, Williamstown, Massachusetts 01267, United States
| | - David DeMille
- Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Arrowsmith-Kron G, Athanasakis-Kaklamanakis M, Au M, Ballof J, Berger R, Borschevsky A, Breier AA, Buchinger F, Budker D, Caldwell L, Charles C, Dattani N, de Groote RP, DeMille D, Dickel T, Dobaczewski J, Düllmann CE, Eliav E, Engel J, Fan M, Flambaum V, Flanagan KT, Gaiser AN, Garcia Ruiz RF, Gaul K, Giesen TF, Ginges JSM, Gottberg A, Gwinner G, Heinke R, Hoekstra S, Holt JD, Hutzler NR, Jayich A, Karthein J, Leach KG, Madison KW, Malbrunot-Ettenauer S, Miyagi T, Moore ID, Moroch S, Navratil P, Nazarewicz W, Neyens G, Norrgard EB, Nusgart N, Pašteka LF, N Petrov A, Plaß WR, Ready RA, Pascal Reiter M, Reponen M, Rothe S, Safronova MS, Scheidenerger C, Shindler A, Singh JT, Skripnikov LV, Titov AV, Udrescu SM, Wilkins SG, Yang X. Opportunities for fundamental physics research with radioactive molecules. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:084301. [PMID: 38215499 DOI: 10.1088/1361-6633/ad1e39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.
Collapse
Affiliation(s)
- Gordon Arrowsmith-Kron
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
| | - Michail Athanasakis-Kaklamanakis
- Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
- KU Leuven, Department of Physics and Astronomy, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - Mia Au
- CERN, Geneva, Switzerland
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Jochen Ballof
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
- Accelerator Systems Department, CERN, 1211 Geneva 23, Switzerland
| | - Robert Berger
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Anastasia Borschevsky
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
| | - Alexander A Breier
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | | | - Dmitry Budker
- Helmholtz-Institut, GSI Helmholtzzentrum fur Schwerionenforschung and Johannes Gutenberg University, Mainz 55128, Germany
- Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, United States of America
| | - Luke Caldwell
- JILA, NIST and University of Colorado, Boulder, CO 80309, United States of America
- Department of Physics, University of Colorado, Boulder, CO 80309, United States of America
| | - Christopher Charles
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- University of Western Ontario, 1151 Richmond St. N., London, Ontario N6A 5B7, Canada
| | - Nike Dattani
- HPQC Labs, Waterloo, Ontario, Canada
- HPQC College, Waterloo, Ontario, Canada
| | - Ruben P de Groote
- Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | - David DeMille
- University of Chicago, Chicago, IL, United States of America
- Argonne National Laboratory, Lemont, IL, United States of America
| | - Timo Dickel
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Jacek Dobaczewski
- School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, United Kingdom
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland
| | - Christoph E Düllmann
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany
- Helmholtz Institute Mainz, Staudingerweg 18, 55128 Mainz, Germany
| | - Ephraim Eliav
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Jonathan Engel
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, United States of America
| | - Mingyu Fan
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | | | - Kieran T Flanagan
- Photon Science Institute, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alyssa N Gaiser
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
| | - Ronald F Garcia Ruiz
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Konstantin Gaul
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Thomas F Giesen
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Jacinda S M Ginges
- School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia
| | | | - Gerald Gwinner
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 3M9, Canada
| | | | - Steven Hoekstra
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
- Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands
| | - Jason D Holt
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada
| | - Nicholas R Hutzler
- California Institute of Technology, Pasadena, CA 91125, United States of America
| | - Andrew Jayich
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Jonas Karthein
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Kyle G Leach
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
- Colorado School of Mines, Golden, CO 80401, United States of America
| | - Kirk W Madison
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T1Z1, Canada
| | - Stephan Malbrunot-Ettenauer
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics, University of Toronto, 60 St. George St., Toronto, Ontario, Canada
| | | | - Iain D Moore
- Accelerator Laboratory, Department of Physics, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Scott Moroch
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Petr Navratil
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Witold Nazarewicz
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, United States of America
| | - Gerda Neyens
- KU Leuven, Department of Physics and Astronomy, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - Eric B Norrgard
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Nicholas Nusgart
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, United States of America
| | - Lukáš F Pašteka
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Alexander N Petrov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center 'Kurchatov Institute' (NRC 'Kurchatov Institute'-PNPI), 1 Orlova roscha mcr., Gatchina 188300, Leningrad Region, Russia
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Wolfgang R Plaß
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Roy A Ready
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Moritz Pascal Reiter
- School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD Edinburgh, United Kingdom
| | - Mikael Reponen
- Accelerator Laboratory, Department of Physics, University of Jyväskylä, Jyväskylä 40014, Finland
| | | | - Marianna S Safronova
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, United States of America
- Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, MD 20742, United States of America
| | - Christoph Scheidenerger
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF), Campus Gießen, Gießen, Germany
| | - Andrea Shindler
- Facility for Rare Isotope Beams & Physics Department, Michigan State University, East Lansing, MI 48824, United States of America
| | - Jaideep T Singh
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, United States of America
| | - Leonid V Skripnikov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center 'Kurchatov Institute' (NRC 'Kurchatov Institute'-PNPI), 1 Orlova roscha mcr., Gatchina 188300, Leningrad Region, Russia
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Anatoly V Titov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center 'Kurchatov Institute' (NRC 'Kurchatov Institute'-PNPI), 1 Orlova roscha mcr., Gatchina 188300, Leningrad Region, Russia
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Silviu-Marian Udrescu
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Shane G Wilkins
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Xiaofei Yang
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Cao J, Wang BY, Yang H, Fan ZJ, Su Z, Rui J, Zhao B, Pan JW. Observation of Photoassociation Resonances in Ultracold Atom-Molecule Collisions. PHYSICAL REVIEW LETTERS 2024; 132:093403. [PMID: 38489622 DOI: 10.1103/physrevlett.132.093403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/01/2024] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
We report on the observation of photoassociation resonances in ultracold collisions between ^{23}Na^{40}K molecules and ^{40}K atoms. We perform photoassociation in a long-wavelength optical dipole trap to form deeply bound triatomic molecules in electronically excited states. The atom-molecule Feshbach resonance is used to enhance the free-bound Franck-Condon overlap. The photoassociation into well-defined quantum states of excited triatomic molecules is identified by observing resonantly enhanced loss features. These loss features depend on the polarization of the photoassociation lasers, allowing us to assign rotational quantum numbers. The observation of ultracold atom-molecule photoassociation resonances paves the way toward preparing ground-state triatomic molecules, provides a new high-resolution spectroscopy technique for polyatomic molecules, and is also important to atom-molecule Feshbach resonances.
Collapse
Affiliation(s)
- Jin Cao
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Bo-Yuan Wang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Huan Yang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Zhi-Jie Fan
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Zhen Su
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Jun Rui
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bo Zhao
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jian-Wei Pan
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
4
|
Comparat D, Malbrunot C, Malbrunot-Ettenauer S, Widmann E, Yzombard P. Experimental perspectives on the matter-antimatter asymmetry puzzle: developments in electron EDM and [Formula: see text] experiments. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230089. [PMID: 38104615 DOI: 10.1098/rsta.2023.0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/15/2023] [Indexed: 12/19/2023]
Abstract
In the search for clues to the matter-antimatter puzzle, experiments with atoms or molecules play a particular role. These systems allow measurements with very high precision, as demonstrated by the unprecedented limits down to [Formula: see text] e cm on electron EDM using molecular ions, and relative measurements at the level of [Formula: see text] in spectroscopy of antihydrogen atoms. Building on these impressive measurements, new experimental directions offer potential for drastic improvements. We review here some of the new perspectives in those fields and their associated prospects for new physics searches. This article is part of the theme issue 'The particle-gravity frontier'.
Collapse
Affiliation(s)
- D Comparat
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris Saclay, Université Paris-Saclay, Bâtiment 505, 91405 Orsay, France
| | - C Malbrunot
- Physical Science Division, TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
- Department of Physics, McGill University, Montréal, Québec, Canada H3A 2T8
| | - S Malbrunot-Ettenauer
- Physical Science Division, TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
- Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7
| | - E Widmann
- Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - P Yzombard
- Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Université, Collège de France, Paris 75252, France
| |
Collapse
|
5
|
Zhang C, Yu P, Conn CJ, Hutzler NR, Cheng L. Relativistic coupled-cluster calculations of RaOH pertinent to spectroscopic detection and laser cooling. Phys Chem Chem Phys 2023; 25:32613-32621. [PMID: 38009218 DOI: 10.1039/d3cp04040b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
A relativistic coupled-cluster study of the low-lying electronic states in the radium monohydroxide molecule (RaOH), a radioactive polyatomic molecule of interest to laser cooling and to the search of new physics beyond the Standard Model, is reported. The level positions of the A2Π1/2 and C2Σ states have been computed with an accuracy of around 200 cm-1 to facilitate spectroscopic observation of RaOH using laser induced fluorescence spectroscopy, thereby exploiting the systematic convergence of electron-correlation and basis-set effects in relativistic coupled-cluster calculations. The energy level for the B2Δ3/2 state has also been calculated accurately to conclude that the B2Δ3/2 state lies above the A2Π1/2 state. This confirms X2Σ ↔ A2Π1/2 as a promising optical cycling transition for laser cooling RaOH.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Phelan Yu
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Chandler J Conn
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Nicholas R Hutzler
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
6
|
Zhang C, Yu P, Jadbabaie A, Hutzler NR. Quantum-Enhanced Metrology for Molecular Symmetry Violation Using Decoherence-Free Subspaces. PHYSICAL REVIEW LETTERS 2023; 131:193602. [PMID: 38000409 DOI: 10.1103/physrevlett.131.193602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/12/2023] [Indexed: 11/26/2023]
Abstract
We propose a method to measure time-reversal symmetry violation in molecules that overcomes the standard quantum limit while leveraging decoherence-free subspaces to mitigate sensitivity to classical noise. The protocol does not require an external electric field, and the entangled states have no first-order sensitivity to static electromagnetic fields as they involve superpositions with zero average lab-frame projection of spins and dipoles. This protocol can be applied with trapped neutral or ionic species, and can be implemented using methods that have been demonstrated experimentally.
Collapse
Affiliation(s)
- Chi Zhang
- California Institute of Technology, Division of Physics, Mathematics, and Astronomy, Pasadena, California 91125, USA
| | - Phelan Yu
- California Institute of Technology, Division of Physics, Mathematics, and Astronomy, Pasadena, California 91125, USA
| | - Arian Jadbabaie
- California Institute of Technology, Division of Physics, Mathematics, and Astronomy, Pasadena, California 91125, USA
| | - Nicholas R Hutzler
- California Institute of Technology, Division of Physics, Mathematics, and Astronomy, Pasadena, California 91125, USA
| |
Collapse
|
7
|
Zhang C, Hutzler NR, Cheng L. Intensity-Borrowing Mechanisms Pertinent to Laser Cooling of Linear Polyatomic Molecules. J Chem Theory Comput 2023. [PMID: 37384588 DOI: 10.1021/acs.jctc.3c00408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
A study of the intensity-borrowing mechanisms important to optical cycling transitions in laser-coolable polyatomic molecules arising from non-adiabatic coupling, contributions beyond the Franck-Condon approximation, and Fermi resonances is reported. It has been shown to be necessary to include non-adiabatic coupling to obtain computational accuracy that is sufficient to be useful for laser cooling of molecules. The predicted vibronic branching ratios using perturbation theory based on the non-adiabatic mechanisms have been demonstrated to agree well with those obtained from variational discrete variable representation calculations for representative molecules including CaOH, SrOH, and YbOH. The electron-correlation and basis-set effects on the calculated transition properties, including the vibronic coupling constants, the spin-orbit coupling matrix elements, and the transition dipole moments, and on the calculated branching ratios have been thoroughly studied. The vibronic branching ratios predicted using the present methodologies demonstrate that RaOH is a promising radioactive molecule candidate for laser cooling.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Nicholas R Hutzler
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Augenbraun BL, Burchesky S, Winnicki A, Doyle JM. High-Resolution Laser Spectroscopy of a Functionalized Aromatic Molecule. J Phys Chem Lett 2022; 13:10771-10777. [PMID: 36374523 DOI: 10.1021/acs.jpclett.2c03041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present a high-resolution laser spectroscopic study of the Ã2B2-X̃2A1 and B̃2B1-X̃2A1 transitions of calcium(I) phenoxide, CaOPh (CaOC6H5). The rotationally resolved band systems are analyzed using an effective Hamiltonian model and are accurately modeled as independent perpendicular (b- or c-type) transitions. The structure of calcium monophenoxide is compared to previously observed Ca-containing radicals, and implications for direct laser cooling are discussed. This work demonstrates that functionalization of aromatic molecules with optical cycling centers can preserve many of the properties needed for laser-based control.
Collapse
Affiliation(s)
- Benjamin L Augenbraun
- Department of Physics, Harvard University, Cambridge, Massachusetts02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts02138, United States
| | - Sean Burchesky
- Department of Physics, Harvard University, Cambridge, Massachusetts02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts02138, United States
| | - Andrew Winnicki
- Department of Physics, Harvard University, Cambridge, Massachusetts02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts02138, United States
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts02138, United States
| |
Collapse
|
9
|
D'Agnolo RT, Teresi D. Sliding Naturalness: New Solution to the Strong-CP and Electroweak-Hierarchy Problems. PHYSICAL REVIEW LETTERS 2022; 128:021803. [PMID: 35089766 DOI: 10.1103/physrevlett.128.021803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
We present a novel framework to solve simultaneously the electroweak-hierarchy problem and the strong-CP problem. A small but finite Higgs vacuum expectation value and a small θ angle are selected after the QCD phase transition, without relying on the Peccei-Quinn mechanism or other traditional solutions. We predict a distinctive pattern of correlated signals at hadronic EDM, fuzzy dark matter, and axion experiments.
Collapse
Affiliation(s)
- Raffaele Tito D'Agnolo
- Institut de Physique Théorique, Université Paris Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Daniele Teresi
- CERN, Theoretical Physics Department, 1211 Geneva 23, Switzerland
| |
Collapse
|
10
|
Augenbraun BL, Frenett A, Sawaoka H, Hallas C, Vilas NB, Nasir A, Lasner ZD, Doyle JM. Zeeman-Sisyphus Deceleration of Molecular Beams. PHYSICAL REVIEW LETTERS 2021; 127:263002. [PMID: 35029484 DOI: 10.1103/physrevlett.127.263002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
We present a robust, continuous molecular decelerator that employs high magnetic fields and few optical pumping steps. CaOH molecules are slowed, accumulating at low velocities in a range sufficient for loading both magnetic and magneto-optical traps. During the slowing, the molecules scatter only seven photons, removing around 8 K of energy. Because large energies can be removed with only a few spontaneous radiative decays, this method can in principle be applied to nearly any paramagnetic atomic or molecular species, opening a general path to trapping of complex molecules.
Collapse
Affiliation(s)
- Benjamin L Augenbraun
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Alexander Frenett
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Hiromitsu Sawaoka
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Christian Hallas
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Nathaniel B Vilas
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Abdullah Nasir
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Zack D Lasner
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
11
|
Wichmann G, Seyfang G, Quack M. Time-dependent dynamics of nuclear spin symmetry and parity violation in dichlorodisulfane (ClSSCl) during and after coherent radiative excitation. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1959073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | - Martin Quack
- Physical Chemistry, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
12
|
Abstract
Narrow linewidth visible light lasers are critical for atomic, molecular and optical (AMO) physics including atomic clocks, quantum computing, atomic and molecular spectroscopy, and sensing. Stimulated Brillouin scattering (SBS) is a promising approach to realize highly coherent on-chip visible light laser emission. Here we report demonstration of a visible light photonic integrated Brillouin laser, with emission at 674 nm, a 14.7 mW optical threshold, corresponding to a threshold density of 4.92 mW μm-2, and a 269 Hz linewidth. Significant advances in visible light silicon nitride/silica all-waveguide resonators are achieved to overcome barriers to SBS in the visible, including 1 dB/meter waveguide losses, 55.4 million quality factor (Q), and measurement of the 25.110 GHz Stokes frequency shift and 290 MHz gain bandwidth. This advancement in integrated ultra-narrow linewidth visible wavelength SBS lasers opens the door to compact quantum and atomic systems and implementation of increasingly complex AMO based physics and experiments.
Collapse
|
13
|
Udrescu SM, Brinson AJ, Ruiz RFG, Gaul K, Berger R, Billowes J, Binnersley CL, Bissell ML, Breier AA, Chrysalidis K, Cocolios TE, Cooper BS, Flanagan KT, Giesen TF, de Groote RP, Franchoo S, Gustafsson FP, Isaev TA, Koszorús Á, Neyens G, Perrett HA, Ricketts CM, Rothe S, Vernon AR, Wendt KDA, Wienholtz F, Wilkins SG, Yang XF. Isotope Shifts of Radium Monofluoride Molecules. PHYSICAL REVIEW LETTERS 2021; 127:033001. [PMID: 34328758 DOI: 10.1103/physrevlett.127.033001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Isotope shifts of ^{223-226,228}Ra^{19}F were measured for different vibrational levels in the electronic transition A^{2}Π_{1/2}←X^{2}Σ^{+}. The observed isotope shifts demonstrate the particularly high sensitivity of radium monofluoride to nuclear size effects, offering a stringent test of models describing the electronic density within the radium nucleus. Ab initio quantum chemical calculations are in excellent agreement with experimental observations. These results highlight some of the unique opportunities that short-lived molecules could offer in nuclear structure and in fundamental symmetry studies.
Collapse
Affiliation(s)
- S M Udrescu
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A J Brinson
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R F Garcia Ruiz
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- CERN, CH-1211 Geneva 23, Switzerland
| | - K Gaul
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - R Berger
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - J Billowes
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - C L Binnersley
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - M L Bissell
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - A A Breier
- Laboratory for Astrophysics, Institute of Physics, University of Kassel, 34132 Kassel, Germany
| | | | - T E Cocolios
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - B S Cooper
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - K T Flanagan
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
- Photon Science Institute, The University of Manchester, Manchester M13 9PY, United Kingdom
| | - T F Giesen
- Laboratory for Astrophysics, Institute of Physics, University of Kassel, 34132 Kassel, Germany
| | - R P de Groote
- Department of Physics, University of Jyväskylä, Survontie 9, Jyväskylä FI-40014, Finland
| | - S Franchoo
- Institut de Physique Nucleaire d'Orsay, F-91406 Orsay, France
| | - F P Gustafsson
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - T A Isaev
- NRC Kurchatov Institute-PNPI, Gatchina, Leningrad district 188300, Russia
| | - Á Koszorús
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - G Neyens
- CERN, CH-1211 Geneva 23, Switzerland
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - H A Perrett
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - C M Ricketts
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - S Rothe
- CERN, CH-1211 Geneva 23, Switzerland
| | - A R Vernon
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - K D A Wendt
- Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - F Wienholtz
- CERN, CH-1211 Geneva 23, Switzerland
- Institut für Physik, Universität Greifswald, D-17487 Greifswald, Germany
| | - S G Wilkins
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- CERN, CH-1211 Geneva 23, Switzerland
| | - X F Yang
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100971, China
| |
Collapse
|
14
|
Paul AC, Sharma K, Telfah H, Miller TA, Liu J. Electronic spectroscopy of the A 1̃ 2A ''/A 2̃ 2A '-X̃ 2A ' transitions of jet-cooled calcium ethoxide radicals: Vibronic structure of alkaline earth monoalkoxide radicals of C s symmetry. J Chem Phys 2021; 155:024301. [PMID: 34266255 DOI: 10.1063/5.0056550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Laser-induced fluorescence/dispersed fluorescence (LIF/DF) and cavity ring-down spectra of the A1̃2A''/A2̃2A'-X̃2A' electronic transition of the calcium ethoxide (CaOC2H5) radical have been obtained under jet-cooled conditions. An essentially constant Ã2-Ã1 energy separation for different vibronic levels is observed in the LIF spectrum, which is attributed to both the spin-orbit (SO) interaction and non-relativistic effects. Electronic transition energies, vibrational frequencies, and spin-vibrational eigenfunctions calculated using the coupled-cluster method, along with results from previous complete active space self-consistent field calculations, have been used to predict the vibronic energy level structure and simulate the recorded LIF/DF spectra. Although the vibrational frequencies and Franck-Condon (FC) factors calculated under the Born-Oppenheimer approximation and the harmonic oscillator approximation reproduce the dominant spectral features well, the inclusion of the pseudo-Jahn-Teller (pJT) and SO interactions, especially those between the A1̃2A″/A2̃2A' and the B̃2A' states, induces additional vibronic transitions and significantly improves the accuracy of the spectral simulations. Notably, the spin-vibronic interactions couple vibronic levels and alter transition intensities. The calculated FC matrix for the A1̃2A''/A2̃2A'-X̃2A' transition contains a number of off-diagonal matrix elements that connect the vibrational ground levels to the levels of the ν8 (CO stretch), ν11 (OCC bending), ν12 (CaO stretch), ν13 (in-plane CaOC bending), and ν21 (out-of-plane CaOC bending) modes, which are used for vibrational assignments. Transitions to the ν21(a″) levels are allowed due to the pJT effect. Furthermore, when LIF transitions to the Ã-state levels of the CaOC-bending modes, ν13 and ν21, are pumped, A1̃2A''/A2̃2A'→X̃2A' transitions to the combination levels of these two modes with the ν8, ν11, and ν12 modes are also observed in the DF spectra due to the Duschinsky mixing. Implications of the present spectroscopic investigation to laser cooling of asymmetric-top molecules are discussed.
Collapse
Affiliation(s)
- Anam C Paul
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| | - Ketan Sharma
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hamzeh Telfah
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| | - Terry A Miller
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jinjun Liu
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
15
|
Fan M, Holliman CA, Shi X, Zhang H, Straus MW, Li X, Buechele SW, Jayich AM. Optical Mass Spectrometry of Cold RaOH^{+} and RaOCH_{3}^{+}. PHYSICAL REVIEW LETTERS 2021; 126:023002. [PMID: 33512224 DOI: 10.1103/physrevlett.126.023002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
We present an all-optical mass spectrometry technique to identify trapped ions. The new method uses laser-cooled ions to determine the mass of a cotrapped dark ion with a sub-dalton resolution within a few seconds. We apply the method to identify the first controlled synthesis of cold, trapped RaOH^{+} and RaOCH_{3}^{+}. These molecules are promising for their sensitivity to time and parity violations that could constrain sources of new physics beyond the standard model. The nondestructive nature of the mass spectrometry technique may help identify molecular ions or highly charged ions prior to optical spectroscopy. Unlike previous mass spectrometry techniques for small ion crystals that rely on scanning, the method uses a Fourier transform that is inherently broadband and comparatively fast. The technique's speed provides new opportunities for studying state-resolved chemical reactions in ion traps.
Collapse
Affiliation(s)
- M Fan
- Department of Physics, University of California, Santa Barbara, California 93106, USA
- California Institute for Quantum Entanglement, Santa Barbara, California 93106, USA
| | - C A Holliman
- Department of Physics, University of California, Santa Barbara, California 93106, USA
- California Institute for Quantum Entanglement, Santa Barbara, California 93106, USA
| | - X Shi
- Department of Physics, University of California, Santa Barbara, California 93106, USA
- California Institute for Quantum Entanglement, Santa Barbara, California 93106, USA
| | - H Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
| | - M W Straus
- Department of Physics, University of California, Santa Barbara, California 93106, USA
- California Institute for Quantum Entanglement, Santa Barbara, California 93106, USA
| | - X Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, Xi' an Jiaotong University, Xi' an 710049, China
| | - S W Buechele
- Department of Physics, University of California, Santa Barbara, California 93106, USA
- California Institute for Quantum Entanglement, Santa Barbara, California 93106, USA
| | - A M Jayich
- Department of Physics, University of California, Santa Barbara, California 93106, USA
- California Institute for Quantum Entanglement, Santa Barbara, California 93106, USA
| |
Collapse
|