1
|
Serha RO, Voronov AA, Schmoll D, Verba R, Levchenko KO, Koraltan S, Davídková K, Budinská B, Wang Q, Dobrovolskiy OV, Urbánek M, Lindner M, Reimann T, Dubs C, Gonzalez-Ballestero C, Abert C, Suess D, Bozhko DA, Knauer S, Chumak AV. Magnetic anisotropy and GGG substrate stray field in YIG films down to millikelvin temperatures. NPJ SPINTRONICS 2024; 2:29. [PMID: 38966324 PMCID: PMC11219280 DOI: 10.1038/s44306-024-00030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/09/2024] [Indexed: 07/06/2024]
Abstract
Quantum magnonics investigates the quantum-mechanical properties of magnons, such as quantum coherence or entanglement for solid-state quantum information technologies at the nanoscale. The most promising material for quantum magnonics is the ferrimagnetic yttrium iron garnet (YIG), which hosts magnons with the longest lifetimes. YIG films of the highest quality are grown on a paramagnetic gadolinium gallium garnet (GGG) substrate. The literature has reported that ferromagnetic resonance (FMR) frequencies of YIG/GGG decrease at temperatures below 50 K despite the increase in YIG magnetization. We investigated a 97 nm-thick YIG film grown on 500 μm-thick GGG substrate through a series of experiments conducted at temperatures as low as 30 mK, and using both analytical and numerical methods. Our findings suggest that the primary factor contributing to the FMR frequency shift is the stray magnetic field created by the partially magnetized GGG substrate. This stray field is antiparallel to the applied external field and is highly inhomogeneous, reaching up to 40 mT in the center of the sample. At temperatures below 500 mK, the GGG field exhibits a saturation that cannot be described by the standard Brillouin function for a paramagnet. Including the calculated GGG field in the analysis of the FMR frequency versus temperature dependence allowed the determination of the cubic and uniaxial anisotropies. We find that the total crystallographic anisotropy increases more than three times with the decrease in temperature down to 2 K. Our findings enable accurate predictions of the YIG/GGG magnetic systems behavior at low and ultralow millikelvin temperatures, crucial for developing quantum magnonic devices.
Collapse
Affiliation(s)
- Rostyslav O. Serha
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Physics, University of Vienna, 1090 Vienna, Austria
| | - Andrey A. Voronov
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Physics, University of Vienna, 1090 Vienna, Austria
| | - David Schmoll
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Physics, University of Vienna, 1090 Vienna, Austria
| | | | | | - Sabri Koraltan
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Physics, University of Vienna, 1090 Vienna, Austria
- Research Platform MMM Mathematics - Magnetism - Materials, University of Vienna, Vienna, Austria
| | - Kristýna Davídková
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Physics, University of Vienna, 1090 Vienna, Austria
| | - Barbora Budinská
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Physics, University of Vienna, 1090 Vienna, Austria
| | - Qi Wang
- Huazhong University of Science and Technology, Wuhan, China
| | | | - Michal Urbánek
- CEITEC BUT, Brno University of Technology, 61200 Brno, Czech Republic
| | - Morris Lindner
- INNOVENT e.V. Technologieentwicklung, 07745 Jena, Germany
| | - Timmy Reimann
- INNOVENT e.V. Technologieentwicklung, 07745 Jena, Germany
| | - Carsten Dubs
- INNOVENT e.V. Technologieentwicklung, 07745 Jena, Germany
| | | | - Claas Abert
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
- Research Platform MMM Mathematics - Magnetism - Materials, University of Vienna, Vienna, Austria
| | - Dieter Suess
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
- Research Platform MMM Mathematics - Magnetism - Materials, University of Vienna, Vienna, Austria
| | - Dmytro A. Bozhko
- Department of Physics and Energy Science, University of Colorado Colorado Springs, Colorado Springs, CO 80918 USA
| | | | | |
Collapse
|
2
|
Yang Y, Yao J, Xiao Y, Fong PT, Lau HK, Hu CM. Anomalous Long-Distance Coherence in Critically Driven Cavity Magnonics. PHYSICAL REVIEW LETTERS 2024; 132:206902. [PMID: 38829101 DOI: 10.1103/physrevlett.132.206902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/08/2024] [Accepted: 04/19/2024] [Indexed: 06/05/2024]
Abstract
Developing quantum networks necessitates coherently connecting distant systems via remote strong coupling. Here, we demonstrate long-distance coherence in cavity magnonics operating in the linear regime. By locally setting the cavity near critical coupling with traveling photons, nonlocal magnon-photon coherence is established via strong coupling over a 2-m distance. We observe two anomalies in this long-distance coherence: first, the coupling strength oscillates twice the period of conventional photon-mediated couplings; second, clear mode splitting is observed within the cavity linewidth. Both effects cannot be explained by conventional coupled-mode theory, which reveals the tip of an iceberg of photon-mediated coupling in systems under critical driving. Our Letter shows the potential of using critical phenomena for harnessing long-distance coherence in distributed systems.
Collapse
Affiliation(s)
- Ying Yang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Jiguang Yao
- Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Yang Xiao
- Department of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Pak-Tik Fong
- Department of Physics, Simon Fraser University, Burnaby V5A 1S6, Canada
| | - Hoi-Kwan Lau
- Department of Physics, Simon Fraser University, Burnaby V5A 1S6, Canada
- Quantum Algorithms Institute, Surrey, British Columbia V3T 5X3, Canada
| | - C-M Hu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada
| |
Collapse
|
3
|
Xu X, Zhang Y, Tang J, Chen P, Zeng L, Xia Z, Xing W, Zhou Q, Wang Y, Song H, Guo G, Deng G. Optomechanical Microwave-to-Optical Photon Transducer Chips: Empowering the Quantum Internet Revolution. MICROMACHINES 2024; 15:485. [PMID: 38675296 PMCID: PMC11052314 DOI: 10.3390/mi15040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The first quantum revolution has brought us the classical Internet and information technology. Today, as technology advances rapidly, the second quantum revolution quietly arrives, with a crucial moment for quantum technology to establish large-scale quantum networks. However, solid-state quantum bits (such as superconducting and semiconductor qubits) typically operate in the microwave frequency range, making it challenging to transmit signals over long distances. Therefore, there is an urgent need to develop quantum transducer chips capable of converting microwaves into optical photons in the communication band, since the thermal noise of optical photons at room temperature is negligible, rendering them an ideal information carrier for large-scale spatial communication. Such devices are important for connecting different physical platforms and efficiently transmitting quantum information. This paper focuses on the fast-developing field of optomechanical quantum transducers, which has flourished over the past decade, yielding numerous advanced achievements. We categorize transducers based on various mechanical resonators and discuss their principles of operation and their achievements. Based on existing research on optomechanical transducers, we compare the parameters of several mechanical resonators and analyze their advantages and limitations, as well as provide prospects for the future development of quantum transducers.
Collapse
Affiliation(s)
- Xinyao Xu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Yifei Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Jindao Tang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Peiqin Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Liping Zeng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Ziwei Xia
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Wenbo Xing
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Qiang Zhou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - You Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
- Southwest Institute of Technical Physics, Chengdu 610054, China
| | - Haizhi Song
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
- Southwest Institute of Technical Physics, Chengdu 610054, China
| | - Guangcan Guo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
| | - Guangwei Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
- Institute of Electronics and Information Industry Technology of Kash, Kash 844000, China
| |
Collapse
|
4
|
Bejarano M, Goncalves FJT, Hache T, Hollenbach M, Heins C, Hula T, Körber L, Heinze J, Berencén Y, Helm M, Fassbender J, Astakhov GV, Schultheiss H. Parametric magnon transduction to spin qubits. SCIENCE ADVANCES 2024; 10:eadi2042. [PMID: 38507479 PMCID: PMC10954226 DOI: 10.1126/sciadv.adi2042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
The integration of heterogeneous modular units for building large-scale quantum networks requires engineering mechanisms that allow suitable transduction of quantum information. Magnon-based transducers are especially attractive due to their wide range of interactions and rich nonlinear dynamics, but most of the work to date has focused on linear magnon transduction in the traditional system composed of yttrium iron garnet and diamond, two materials with difficult integrability into wafer-scale quantum circuits. In this work, we present a different approach by using wafer-compatible materials to engineer a hybrid transducer that exploits magnon nonlinearities in a magnetic microdisc to address quantum spin defects in silicon carbide. The resulting interaction scheme points to the unique transduction behavior that can be obtained when complementing quantum systems with nonlinear magnonics.
Collapse
Affiliation(s)
- Mauricio Bejarano
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, 01328 Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technical University of Dresden, 01062 Dresden, Germany
| | - Francisco J. T. Goncalves
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Toni Hache
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, 01328 Dresden, Germany
- Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Michael Hollenbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, 01328 Dresden, Germany
- Faculty of Physics, Technical University of Dresden, 01062 Dresden, Germany
| | - Christopher Heins
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Tobias Hula
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, 01328 Dresden, Germany
- Institute of Physics, Technical University of Chemnitz, 09107 Chemnitz, Germany
| | - Lukas Körber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, 01328 Dresden, Germany
- Faculty of Physics, Technical University of Dresden, 01062 Dresden, Germany
| | - Jakob Heinze
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Yonder Berencén
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Manfred Helm
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, 01328 Dresden, Germany
- Faculty of Physics, Technical University of Dresden, 01062 Dresden, Germany
| | - Jürgen Fassbender
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, 01328 Dresden, Germany
- Faculty of Physics, Technical University of Dresden, 01062 Dresden, Germany
| | - Georgy V. Astakhov
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Helmut Schultheiss
- Helmholtz-Zentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| |
Collapse
|
5
|
Xu J, Zhong C, Zhuang S, Qian C, Jiang Y, Pishehvar A, Han X, Jin D, Jornet JM, Zhen B, Hu J, Jiang L, Zhang X. Slow-Wave Hybrid Magnonics. PHYSICAL REVIEW LETTERS 2024; 132:116701. [PMID: 38563939 DOI: 10.1103/physrevlett.132.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/14/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
Cavity magnonics is an emerging research area focusing on the coupling between magnons and photons. Despite its great potential for coherent information processing, it has been long restricted by the narrow interaction bandwidth. In this Letter, we theoretically propose and experimentally demonstrate a novel approach to achieve broadband photon-magnon coupling by adopting slow waves on engineered microwave waveguides. To the best of our knowledge, this is the first time that slow wave is combined with hybrid magnonics. Its unique properties promise great potentials for both fundamental research and practical applications, for instance, by deepening our understanding of the light-matter interaction in the slow wave regime and providing high-efficiency spin wave transducers. The device concept can be extended to other systems such as optomagnonics and magnomechanics, opening up new directions for hybrid magnonics.
Collapse
Affiliation(s)
- Jing Xu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Changchun Zhong
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Shihao Zhuang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Chen Qian
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yu Jiang
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Amin Pishehvar
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Xu Han
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Dafei Jin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Josep M Jornet
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Bo Zhen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jiamian Hu
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Liang Jiang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Xufeng Zhang
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
González-Gutiérrez C, García-Pons D, Zueco D, Martínez-Pérez MJ. Scanning Spin Probe Based on Magnonic Vortex Quantum Cavities. ACS NANO 2024; 18:4717-4725. [PMID: 38271997 PMCID: PMC10867890 DOI: 10.1021/acsnano.3c06704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Performing nanoscale scanning electron paramagnetic resonance (EPR) requires three essential ingredients: First, a static magnetic field together with field gradients to Zeeman split the electronic energy levels with spatial resolution; second, a radio frequency (rf) magnetic field capable of inducing spin transitions; finally, a sensitive detection method to quantify the energy absorbed by spins. This is usually achieved by combining externally applied magnetic fields with inductive coils or cavities, fluorescent defects, or scanning probes. Here, we theoretically propose the realization of an EPR scanning sensor merging all three characteristics into a single device: the vortex core stabilized in ferromagnetic thin-film discs. On one hand, the vortex ground state generates a significant static magnetic field and field gradients. On the other hand, the precessional motion of the vortex core around its equilibrium position produces a circularly polarized oscillating magnetic field, which is enough to produce spin transitions. Finally, the spin-magnon coupling broadens the vortex gyrotropic frequency, suggesting a direct measure of the presence of unpaired electrons. Moreover, the vortex core can be displaced by simply using external magnetic fields of a few mT, enabling EPR scanning microscopy with large spatial resolution. Our numerical simulations show that, by using low damping magnets, it is theoretically possible to detect single spins located on the disc's surface. Vortex nanocavities could also attain strong coupling to individual spin molecular qubits with potential applications to mediate qubit-qubit interactions or to implement qubit readout protocols.
Collapse
Affiliation(s)
- Carlos
A. González-Gutiérrez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza ES-50009, Spain
- Department
of Physics and Applied Physics, University
of Massachusetts, Lowell, Massachusetts 01854, United States
- Instituto
de Ciencias Físicas, Universidad
Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos 62210, México
| | - David García-Pons
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza ES-50009, Spain
| | - David Zueco
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza ES-50009, Spain
| | - María José Martínez-Pérez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza ES-50009, Spain
| |
Collapse
|
7
|
Rao J, Wang CY, Yao B, Chen ZJ, Zhao KX, Lu W. Meterscale Strong Coupling between Magnons and Photons. PHYSICAL REVIEW LETTERS 2023; 131:106702. [PMID: 37739385 DOI: 10.1103/physrevlett.131.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
We experimentally realize a meterscale strong coupling effect between magnons and photons at room temperature, with a coherent coupling of ∼20 m and a dissipative coupling of ∼7.6 m. To this end, we integrate a saturable gain into a microwave cavity and then couple this active cavity to a magnon mode via a long coaxial cable. The gain compensates for the cavity dissipation, but preserves the cavity radiation that mediates the indirect photon-magnon coupling. It thus enables the long-range strong photon-magnon coupling. With full access to traveling waves, we demonstrate a remote control of photon-magnon coupling by modulating the phase and amplitude of traveling waves, rather than reconfiguring subsystems themselves. Our method for realizing long-range strong coupling in cavity magnonics provides a general idea for other physical systems. Our experimental achievements may promote the construction of information networks based on cavity magnonics.
Collapse
Affiliation(s)
- Jinwei Rao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - C Y Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bimu Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Z J Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - K X Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| |
Collapse
|
8
|
Guo S, Russell D, Lanier J, Da H, Hammel PC, Yang F. Strong on-Chip Microwave Photon-Magnon Coupling Using Ultralow-Damping Epitaxial Y 3Fe 5O 12 Films at 2 K. NANO LETTERS 2023. [PMID: 37235476 DOI: 10.1021/acs.nanolett.3c00959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Y3Fe5O12 is arguably the best magnetic material for magnonic quantum information science (QIS) because of its extremely low damping. We report ultralow damping at 2 K in epitaxial Y3Fe5O12 thin films grown on a diamagnetic Y3Sc2Ga3O12 substrate that contains no rare-earth elements. Using these ultralow damping YIG films, we demonstrate for the first time strong coupling between magnons in patterned YIG thin films and microwave photons in a superconducting Nb resonator. This result paves the road toward scalable hybrid quantum systems that integrate superconducting microwave resonators, YIG film magnon conduits, and superconducting qubits into on-chip QIS devices.
Collapse
Affiliation(s)
- Side Guo
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States of America
| | - Daniel Russell
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States of America
| | - Joseph Lanier
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States of America
| | - Haotian Da
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States of America
| | - P Chris Hammel
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States of America
| | - Fengyuan Yang
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States of America
| |
Collapse
|
9
|
Rao JW, Yao B, Wang CY, Zhang C, Yu T, Lu W. Unveiling a Pump-Induced Magnon Mode via Its Strong Interaction with Walker Modes. PHYSICAL REVIEW LETTERS 2023; 130:046705. [PMID: 36763434 DOI: 10.1103/physrevlett.130.046705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/16/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
We observe a power-dependent anticrossing of Walker spin-wave modes under microwave pumping when a ferrimagnet is placed in a microwave waveguide that does not support any discrete photon mode. We interpret this unexpected anticrossing as the generation of a pump-induced magnon mode that couples strongly to the Walker modes of the ferrimagnet. This anticrossing inherits an excellent tunability from the pump, which allows us to control the anticrossing via the pump power, frequency, and waveform. Further, we realize a remarkable functionality of this anticrossing, namely, a microwave frequency comb, in terms of the nonlinear interaction that mixes the pump and probe frequencies. Such a frequency comb originates from the magnetic dynamics and thereby does not suffer from the charge noise. The unveiled hybrid magnonics driven away from its equilibrium enriches the utilization of anticrossing for coherent information processing.
Collapse
Affiliation(s)
- J W Rao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bimu Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - C Y Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - C Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tao Yu
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| |
Collapse
|
10
|
Giant spin ensembles in waveguide magnonics. Nat Commun 2022; 13:7580. [PMID: 36481617 PMCID: PMC9732049 DOI: 10.1038/s41467-022-35174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
The dipole approximation is usually employed to describe light-matter interactions under ordinary conditions. With the development of artificial atomic systems, 'giant atom' physics is possible, where the scale of atoms is comparable to or even greater than the wavelength of the light they interact with, and the dipole approximation is no longer valid. It reveals interesting physics impossible in small atoms and may offer useful applications. Here, we experimentally demonstrate the giant spin ensemble (GSE), where a ferromagnetic spin ensemble interacts twice with the meandering waveguide, and the coupling strength between them can be continuously tuned from finite (coupled) to zero (decoupled) by varying the frequency. In the nested configuration, we investigate the collective behavior of two GSEs and find extraordinary phenomena that cannot be observed in conventional systems. Our experiment offers a new platform for 'giant atom' physics.
Collapse
|
11
|
Dreyer R, Schäffer AF, Bauer HG, Liebing N, Berakdar J, Woltersdorf G. Imaging and phase-locking of non-linear spin waves. Nat Commun 2022; 13:4939. [PMID: 35999206 PMCID: PMC9399154 DOI: 10.1038/s41467-022-32224-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
Non-linear processes are a key feature in the emerging field of spin-wave based information processing and allow to convert uniform spin-wave excitations into propagating modes at different frequencies. Recently, the existence of non-linear magnons at half-integer multiples of the driving frequency has been predicted for Ni80Fe20 at low bias fields. However, it is an open question under which conditions such non-linear spin waves emerge coherently and how they may be used in device structures. Usually non-linear processes are explored in the small modulation regime and result in the well known three and four magnon scattering processes. Here we demonstrate and image a class of spin waves oscillating at half-integer harmonics that have only recently been proposed for the strong modulation regime. The direct imaging of these parametrically generated magnons in Ni80Fe20 elements allows to visualize their wave vectors. In addition, we demonstrate the presence of two degenerate phase states that may be selected by external phase-locking. These results open new possibilities for applications such as spin-wave sources, amplifiers and phase-encoded information processing with magnons.
Collapse
Affiliation(s)
- Rouven Dreyer
- Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120, Halle, Germany
| | - Alexander F Schäffer
- Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120, Halle, Germany
| | | | - Niklas Liebing
- Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120, Halle, Germany
| | - Jamal Berakdar
- Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120, Halle, Germany
| | - Georg Woltersdorf
- Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120, Halle, Germany.
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
| |
Collapse
|