1
|
Sahib H, Raji A, Rosa F, Merzoni G, Ghiringhelli G, Salluzzo M, Gloter A, Viart N, Preziosi D. Superconductivity in PrNiO 2 Infinite-Layer Nickelates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416187. [PMID: 40059509 PMCID: PMC12016738 DOI: 10.1002/adma.202416187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/24/2025] [Indexed: 04/24/2025]
Abstract
Several reports about infinite-layer nickelate thin films suggest that the superconducting critical temperature versus chemical doping phase diagram has a dome-like shape, similar to cuprates. Here, a highly reproducible superconducting state in undoped PrNiO2 thin films grown on SrTiO3 are demonstrated. Scanning transmission electron microscopy measurements show coherent infinite-layer phase with no visible stacking-fault defects, an overall high structural quality where possible unintentional chemical doping or interstitial oxygen, if present, sum well below the measurable threshold of the technique. X-ray absorption measurements show very sharp features at the Ni L3,2-edges with a large linear dichroism, indicating the preferential hole occupation of Ni1+-3d x 2 - y 2 ${\rm d}_{x^2-y^2}$ orbitals in a square planar geometry. Resonant inelastic X-ray scattering measurements reveal sharp magnon excitations of 200 meV energy at the magnetic Brillouin zone boundary, highly resonant at the Ni1 + absorption peak. The results indicate that, when properly stabilized, infinite-layer nickelate thin films are superconducting without chemical doping.
Collapse
Affiliation(s)
- Hoshang Sahib
- Universitè de Strasbourg, CNRSIPCMS UMR 7504StrasbourgF‐67034France
| | - Aravind Raji
- Laboratoire de Physique des Solides, CNRSUniversite Paris‐SaclayOrsay91405France
- Synchrotron SOLEILL'Orme des MerisiersBP 48 St AubinGif sur Yvette91192France
| | - Francesco Rosa
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32MilanoI‐20133Italy
| | - Giacomo Merzoni
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32MilanoI‐20133Italy
- European XFELHolzkoppel 4D‐22869SchenefeldGermany
| | - Giacomo Ghiringhelli
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32MilanoI‐20133Italy
| | - Marco Salluzzo
- CNR‐SPIN Complesso di Monte S. Angelovia Cinthia ‐ I‐80126NapoliItaly
| | - Alexandre Gloter
- Laboratoire de Physique des Solides, CNRSUniversite Paris‐SaclayOrsay91405France
| | - Nathalie Viart
- Universitè de Strasbourg, CNRSIPCMS UMR 7504StrasbourgF‐67034France
| | - Daniele Preziosi
- Universitè de Strasbourg, CNRSIPCMS UMR 7504StrasbourgF‐67034France
| |
Collapse
|
2
|
Chow SLE, Luo Z, Ariando A. Bulk superconductivity near 40 K in hole-doped SmNiO 2 at ambient pressure. Nature 2025:10.1038/s41586-025-08893-4. [PMID: 40112883 DOI: 10.1038/s41586-025-08893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
The discovery of superconductivity in the Ba-La-Cu-O system (the cuprate) in the 30 K range marked a significant breakthrough, which inspired extensive exploration of oxide-based, layered superconductors to identify electron pairing with higher critical temperatures (Tc)1. Despite recent observations of superconductivity in nickel oxide-based compounds (the nickelates), evidence of Cooper pairing above 30 K in a system that is isostructural to the cuprates, but without copper, at ambient pressure and without lattice compression has remained elusive2-5. Here we report superconductivity with a Tc approaching 40 K under ambient pressure in d9-x hole-doped, late rare earth, infinite-layer nickel oxide (Sm-Eu-Ca-Sr)NiO2 thin films with negligible lattice compression, supported by observations of a zero-resistance state at 31 K and the Meissner effect. The material can be synthesized with essentially no Ruddlesden-Popper-type structural defects, exhibiting ultralow resistivity of approximately 0.01 mΩ cm, and with a residual resistivity ratio of up to 10. Our findings demonstrate the potential for achieving high-temperature superconductivity using strongly correlated d-electron metal oxides beyond copper as the building blocks for superconductivity, and offering a promising platform for further exploration and understanding of high-temperature Cooper pairing.
Collapse
Affiliation(s)
- S Lin Er Chow
- Department of Physics, Faculty of Science, National University of Singapore, Singapore, Singapore.
| | - Zhaoyang Luo
- Department of Physics, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - A Ariando
- Department of Physics, Faculty of Science, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Sheth A, Lacroix C, Burdin S. Emergence and tunability of Fermi-pocket and electronic instabilities in layered Nickelates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:125703. [PMID: 39793189 DOI: 10.1088/1361-648x/ada908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Layered Nickelates have gained intensive attention as potential high-temperature superconductors, showing similarities and subtle differences to well-known Cuprates. This study introduces a modelling framework to analyze the tunability of electronic structures by focusing on effective orbitals and additional Fermi pockets, mimicking doping or external pressure qualitatively. It investigates the role of the3dz2orbital in interlayer hybridization, which leads to the formation of a second pocket in the Fermi surface. The resulting effective model also predicts specific charge and spin susceptibility in the form of Lindhard susceptibility at wave vectorq0=(π,π), which can be tuned by doping or pressure. These results provide valuable insights into tunable orbital contributions and their influence on potential ordering and electronic instabilities in Layered Nickelates.
Collapse
Affiliation(s)
- Alpesh Sheth
- Université de Bordeaux, CNRS, LOMA, UMR 5798, 33400 Talence, France
| | - Claudine Lacroix
- Institut Néel, CNRS and Université Grenoble-Alpes, BP 166, Grenoble Cedex 09 38042, France
| | - Sébastien Burdin
- Université de Bordeaux, CNRS, LOMA, UMR 5798, 33400 Talence, France
| |
Collapse
|
4
|
Dong Z, Hadjimichael M, Mundet B, Choi J, Tam CC, Garcia-Fernandez M, Agrestini S, Domínguez C, Bhatta R, Yu Y, Liang Y, Wu Z, Triscone JM, Jia C, Zhou KJ, Li D. Topochemical Synthesis and Electronic Structure of High-Crystallinity Infinite-Layer Nickelates on an Orthorhombic Substrate. NANO LETTERS 2025; 25:1233-1241. [PMID: 39783860 PMCID: PMC11760177 DOI: 10.1021/acs.nanolett.4c06557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Superconductivity in infinite-layer nickelates has stirred much research interest, to which questions regarding the nature of superconductivity remain elusive. A critical leap forward to address these intricate questions is through the growth of high-crystallinity infinite-layer nickelates, including the "parent" phase. Here, we report the synthesis of a high-quality thin-film nickelate, NdNiO2. This is achieved through the growth of a perovskite precursor phase (NdNiO3) of superior crystallinity on the NdGaO3 substrate by off-axis RF magnetron sputtering and a low-temperature topochemical reduction using NaH. We observe a nonlinear Hall effect at low temperatures in this "non-doped" phase. We further study the electronic properties using advanced X-ray scattering and first-principles calculations. We observe spectroscopic indications of the enhanced two-dimensionality and a reduced hybridization of Nd 5d and Ni 3d orbitals. These findings unlock new pathways for preparing high-quality infinite-layer nickelates and provide new insights into the intrinsic features of these compounds.
Collapse
Affiliation(s)
- Zhengang Dong
- State
Key Laboratory of Information Photonics and Optical Communications,
School of Science, Beijing University of
Posts and Telecommunications, Beijing 100876, China
- Department
of Physics, Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City
University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Marios Hadjimichael
- Department
of Quantum Matter Physics, University of
Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
- Department
of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Bernat Mundet
- Department
of Quantum Matter Physics, University of
Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
- Electron
Spectrometry and Microscopy Laboratory (LSME), Institute of Physics
(IPHYS), École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Catalonia, Spain
| | - Jaewon Choi
- Diamond
Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Charles C. Tam
- Diamond
Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
- H.H. Wills
Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | | | - Stefano Agrestini
- Diamond
Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Claribel Domínguez
- Department
of Quantum Matter Physics, University of
Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Regan Bhatta
- Department
of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Yue Yu
- Department
of Computer Science, University of Florida, Gainesville, Florida 32611, United States
| | - Yufeng Liang
- The
Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhenping Wu
- State
Key Laboratory of Information Photonics and Optical Communications,
School of Science, Beijing University of
Posts and Telecommunications, Beijing 100876, China
| | - Jean-Marc Triscone
- Department
of Quantum Matter Physics, University of
Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Chunjing Jia
- Department
of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Ke-Jin Zhou
- Diamond
Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Danfeng Li
- Department
of Physics, Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City
University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
5
|
Oppliger J, Küspert J, Dippel AC, v. Zimmermann M, Gutowski O, Ren X, Zhou X, Zhu Z, Frison R, Wang Q, Martinelli L, Biało I, Chang J. Discovery of giant unit-cell super-structure in the infinite-layer nickelate PrNiO 2+x. COMMUNICATIONS MATERIALS 2025; 6:3. [PMID: 39780911 PMCID: PMC11703755 DOI: 10.1038/s43246-024-00729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
The discovery of unconventional superconductivity often triggers significant interest in associated electronic and structural symmetry breaking phenomena. For the infinite-layer nickelates, structural allotropes are investigated intensively. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO2+x (x ≈ 0) induces a giant superlattice structure. The annealing effect has a maximum well above room temperature. By covering a large scattering volume, we show a rare period-six in-plane (bi-axial) symmetry and a period-four symmetry in the out-of-plane direction. This giant unit-cell superstructure-likely stemming from ordering of diffusive oxygen-persists over a large temperature range and can be quenched. As such, the stability and controlled annealing process leading to the formation of this superlattice structure provides a pathway for novel nickelate chemistry.
Collapse
Affiliation(s)
- Jens Oppliger
- Physik-Institut, Universität Zürich, Zürich, Switzerland
| | - Julia Küspert
- Physik-Institut, Universität Zürich, Zürich, Switzerland
| | | | | | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Xiaolin Ren
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhihai Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ruggero Frison
- Physik-Institut, Universität Zürich, Zürich, Switzerland
| | - Qisi Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong China
| | | | - Izabela Biało
- Physik-Institut, Universität Zürich, Zürich, Switzerland
| | - Johan Chang
- Physik-Institut, Universität Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Yan X, Zheng H, Li Y, Cao H, Phelan DP, Zheng H, Zhang Z, Hong H, Wang G, Liu Y, Bhattacharya A, Zhou H, Fong DD. Superconductivity in an ultrathin multilayer nickelate. SCIENCE ADVANCES 2025; 11:eado4572. [PMID: 39742487 DOI: 10.1126/sciadv.ado4572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
We report the appearance of superconductivity in single-unit-cell Nd6Ni5O12, exhibiting a transition temperature similar to that of thicker films. In situ synchrotron x-ray scattering performed during growth of the parent phase, Nd6Ni5O16, shows that the necessary layer-by-layer deposition sequence does not follow the sequence of the formula unit but an alternate order due to the relative stability of the perovskite unit cell. We exploit this insight to grow ultrathin Nd6Ni5O16 heterostructures and conduct in situ studies of topotactic reduction, finding that formation of the square-planar phase occurs rapidly and is highly sensitive to reduction temperature, with small deviations from the optimum condition leading to inhomogeneity and the loss of superconductivity. The fluorite layer within the unit cell facilitates reduction by initially stabilizing the square-planar phase in the upper half of the unit cell. Our findings provide insight into growth of the Ruddlesden-Popper nickelates, highlighting the need for in situ studies of the metastable phases key to superconductivity.
Collapse
Affiliation(s)
- Xi Yan
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Hong Zheng
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yan Li
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Hui Cao
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | | | - Hao Zheng
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Zhan Zhang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Hawoong Hong
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Guanyi Wang
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Anand Bhattacharya
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
7
|
Stier F, Haghighirad AA, Garbarino G, Mishra S, Stilkerich N, Chen D, Shekhar C, Lacmann T, Felser C, Ritschel T, Geck J, Le Tacon M. Pressure-Dependent Electronic Superlattice in the Kagome Superconductor CsV_{3}Sb_{5}. PHYSICAL REVIEW LETTERS 2024; 133:236503. [PMID: 39714689 DOI: 10.1103/physrevlett.133.236503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/07/2024] [Indexed: 12/24/2024]
Abstract
We present a high-resolution single crystal x-ray diffraction study of kagome superconductor CsV_{3}Sb_{5}, exploring its response to variations in pressure and temperature. We discover that at low temperatures, the structural modulations of the electronic superlattice, commonly associated with charge-density-wave order, undergo a transformation around p∼0.7 GPa from the familiar 2×2 pattern to a long-range-ordered modulation at wave vector q=(0,3/8,1/2). Our observations align with inferred changes in the charge-density-wave pattern from prior transport and nuclear-magnetic-resonance studies, providing new insights into these transitions. Interestingly, the pressure-induced variations in the electronic superlattice correlate with two peaks in the superconducting transition temperature as pressure changes, hinting that fluctuations within the electronic superlattice could be key to stabilizing superconductivity. However, our findings contrast with the minimal pressure dependency anticipated by ab initio calculations of the electronic structure. They also challenge prevailing scenarios based on a Peierls-like nesting mechanism involving Van Hove singularities.
Collapse
Affiliation(s)
| | | | - G Garbarino
- ESRF, The European Synchrotron, 71, avenue des Martyrs, CS 40220 F-38043 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hsu YT, Lee K, Badoux S, Duffy C, Cuoghi A, Wang BY, Kool A, Haïk-Dunn I, Hwang HY, Hussey NE. Transport phase diagram and anomalous metallicity in superconducting infinite-layer nickelates. Nat Commun 2024; 15:9863. [PMID: 39543141 PMCID: PMC11564705 DOI: 10.1038/s41467-024-54135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Despite obvious similarities in their electronic and crystallographic structures, it remains unclear whether the interactions that shape the normal and superconducting (SC) state properties of high-Tc cuprates and infinite-layer nickelates (ILNs) have the same origin. This question has been brought into sharper focus with recent studies on ILNs of improved crystallinity that reveal a SC dome of comparable extent and similar transport properties above Tc as the hole-doped cuprates. The evolution of these properties in the magnetic-field-induced normal state, however, has yet to be determined. Here, we examine the magnetotransport properties of new-generation Nd1-xSrxNiO2 films in the T → 0 limit across the phase diagram in fields up to 54 T. This extensive study reveals that the limiting low-T form of the normal-state resistivity in ILNs exhibits non-Fermi-liquid behaviour over an extended doping range inside the SC dome, rather than at a singular quantum critical point. While there are clear differences in the charge dynamics of ILNs and cuprates, most notably in the magnetoresistance, our findings reveal that both systems exhibit anomalous metallicity characteristic of a quantum critical phase.
Collapse
Affiliation(s)
- Yu-Te Hsu
- High Field Magnet Laboratory (HFML-FELIX) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, Netherlands.
- Department of Physics, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan.
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan.
| | - Kyuho Lee
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, Stanford, CA, 94025, USA
| | - Sven Badoux
- High Field Magnet Laboratory (HFML-FELIX) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, Netherlands
- Laboratoire National des Champs Magnétiques Intenses (CNRS, EMFL, INSA, UGA, UPS), Toulouse, 31400, France
| | - Caitlin Duffy
- High Field Magnet Laboratory (HFML-FELIX) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, Netherlands
- Laboratoire National des Champs Magnétiques Intenses (CNRS, EMFL, INSA, UGA, UPS), Toulouse, 31400, France
| | - Alessandro Cuoghi
- High Field Magnet Laboratory (HFML-FELIX) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, Netherlands
| | - Bai Yang Wang
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, Stanford, CA, 94025, USA
| | - Arwin Kool
- High Field Magnet Laboratory (HFML-FELIX) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, Netherlands
| | - Isaac Haïk-Dunn
- Laboratoire National des Champs Magnétiques Intenses (CNRS, EMFL, INSA, UGA, UPS), Toulouse, 31400, France
| | - Harold Y Hwang
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, Stanford, CA, 94025, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Nigel E Hussey
- High Field Magnet Laboratory (HFML-FELIX) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, Netherlands.
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom.
| |
Collapse
|
9
|
Xu M, Zhao Y, Chen Y, Ding X, Leng H, Hu Z, Wu X, Yi J, Yu X, Breese MB, Xi S, Li M, Qiao L. Robust Superconductivity in Infinite-Layer Nickelates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305252. [PMID: 38685606 PMCID: PMC11462288 DOI: 10.1002/advs.202305252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/20/2024] [Indexed: 05/02/2024]
Abstract
The recent discovery of nickelate superconductivity represents an important step toward understanding the four-decade mastery of unconventional high-temperature superconductivity. However, the synthesis of the infinite-layer nickelate superconductors shows great challenges. Particularly, surface capping layers are usually unitized to facilitate the sample synthesis. This leads to an important question whether nickelate superconductors with d9 configuration and ultralow valence of Ni1+ are in metastable state and whether nickelate superconductivity can be robust? In this work, a series of redox cycling experiments are performed across the phase transition between perovskite Nd0.8Sr0.2NiO3 and infinite-layer Nd0.8Sr0.2NiO2. The infinite-layer Nd0.8Sr0.2NiO2 is quite robust in the redox environment and can survive the cycling experiments with unchanged crystallographic quality. However, as the cycling number goes on, the perovskite Nd0.8Sr0.2NiO3 shows structural degradation, suggesting stability of nickelate superconductivity is not restricted by the ultralow valence of Ni1+, but by the quality of its perovskite precursor. The observed robustness of infinite-layer Nd0.8Sr0.2NiO2 up to ten redox cycles further indicates that if an ideal high-quality perovskite precursor can be obtained, infinite-layer nickelate superconductivity can be very stable and sustainable under environmental conditions. This work provides important implications for potential device applications for nickelate superconductors.
Collapse
Affiliation(s)
- Minghui Xu
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yan Zhao
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yu Chen
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xiang Ding
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Huaqian Leng
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Zheng Hu
- Center for Microscopy and AnalysisNanjing University of Aeronautics and AstronauticsNanjing211100China
| | - Xiaoqiang Wu
- Institute for Advanced StudyChengdu UniversityChengdu610106China
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of EngineeringThe University of NewcastleCallaghanNSW2308Australia
| | - Xiaojiang Yu
- Singapore Synchrotron Light SourceNational University of SingaporeSingapore117603Singapore
| | - Mark B.H. Breese
- Singapore Synchrotron Light SourceNational University of SingaporeSingapore117603Singapore
| | - Shibo Xi
- Singapore Synchrotron Light SourceNational University of SingaporeSingapore117603Singapore
| | - Mengsha Li
- Center for Microscopy and AnalysisNanjing University of Aeronautics and AstronauticsNanjing211100China
| | - Liang Qiao
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
10
|
Li Z, Louie SG. Two-Gap Superconductivity and the Decisive Role of Rare-Earth d Electrons in Infinite-Layer Nickelates. PHYSICAL REVIEW LETTERS 2024; 133:126401. [PMID: 39373415 DOI: 10.1103/physrevlett.133.126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/29/2024] [Accepted: 08/20/2024] [Indexed: 10/08/2024]
Abstract
We present a theoretical prediction of a phonon-mediated two-gap superconductivity in infinite-layer nickelates Nd_{1-x}Sr_{x}NiO_{2} by performing ab initio GW and GW perturbation theory calculations. Electron GW self-energy effects significantly alter the characters of the two-band Fermi surface and enhance the electron-phonon coupling, compared with results based on density functional theory. Solutions of the fully k-dependent anisotropic Eliashberg equations yield two dominant s-wave superconducting gaps-a large gap on a band of rare-earth Nd d and interstitial orbital characters and a small gap on a band of transition-metal Ni d character. Increasing hole doping induces a non-rigid-band response in the electronic structure, leading to a rapid drop of the superconducting T_{c} in the overdoped regime in agreement with experiments.
Collapse
Affiliation(s)
- Zhenglu Li
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
11
|
Zhang R, Lane C, Nokelainen J, Singh B, Barbiellini B, Markiewicz RS, Bansil A, Sun J. Emergence of Competing Stripe Phases in Undoped Infinite-Layer Nickelates. PHYSICAL REVIEW LETTERS 2024; 133:066401. [PMID: 39178441 DOI: 10.1103/physrevlett.133.066401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 08/25/2024]
Abstract
Recent discovery of superconductivity in infinite-layer nickelates has ignited renewed theoretical and experimental interest in the role of electronic correlations in their properties. Here, using first-principles simulations, we show that the parent compound of the nickelate family, LaNiO_{2}, hosts competing low-energy stripe phases, similar to doped cuprates. The stripe states are shown to be driven by multiorbital electronic mechanisms and Peierls distortions. Our study indicates that both strong correlations and electron-phonon coupling effects play a key role in the physics of infinite-layer nickelates, and sheds light on the microscopic origin of electronic inhomogeneity and the lack of long-range order in the nickelates.
Collapse
Affiliation(s)
| | | | - Johannes Nokelainen
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Quantum Materials and Sensing Institute, Northeastern University, Burlington, Massachusetts 01803, USA
| | | | - Bernardo Barbiellini
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Quantum Materials and Sensing Institute, Northeastern University, Burlington, Massachusetts 01803, USA
| | | | | | | |
Collapse
|
12
|
Zeng S, Tang CS, Luo Z, Chow LE, Lim ZS, Prakash S, Yang P, Diao C, Yu X, Xing Z, Ji R, Yin X, Li C, Wang XR, He Q, Breese MBH, Ariando A, Liu H. Origin of a Topotactic Reduction Effect for Superconductivity in Infinite-Layer Nickelates. PHYSICAL REVIEW LETTERS 2024; 133:066503. [PMID: 39178458 DOI: 10.1103/physrevlett.133.066503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/25/2024] [Indexed: 08/25/2024]
Abstract
Topotactic reduction utilizing metal hydrides as reagents has emerged as an effective approach to achieve exceptionally low oxidization states of metal ions and unconventional coordination networks. This method opens avenues to the development of entirely new functional materials, with one notable example being the infinite-layer nickelate superconductors. However, the reduction effect on the atomic reconstruction and electronic structures-crucial for superconductivity-remains largely unresolved. We designed two sets of control Nd_{0.8}Sr_{0.2}NiO_{2} thin films and used secondary ion mass spectroscopy to highlight the absence of reduction-induced hydrogen intercalation. X-ray absorption spectroscopy revealed a significant linear dichroism with dominant Ni 3d_{x2-y2} orbitals on superconducting samples, indicating a Ni single-band nature of infinite-layer nickelates. Consistent with the superconducting T_{c}, the Ni 3d orbitals asymmetry manifests a domelike dependence on the reduction duration. Our results unveil the critical role of reduction in modulating the Ni-3d orbital polarization and its impact on the superconducting properties.
Collapse
|
13
|
Yan S, Mao W, Sun W, Li Y, Sun H, Yang J, Hao B, Guo W, Nian L, Gu Z, Wang P, Nie Y. Superconductivity in Freestanding Infinite-Layer Nickelate Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402916. [PMID: 38847344 DOI: 10.1002/adma.202402916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/01/2024] [Indexed: 06/19/2024]
Abstract
The observation of superconductivity in infinite-layer nickelates has attracted significant attention due to its potential as a new platform for exploring high-Tc superconductivity. However, thus far, superconductivity has only been observed in epitaxial thin films, which limits the manipulation capabilities and modulation methods compared to two-dimensional exfoliated materials. Given the exceptionally giant strain tunability and stacking capability of freestanding membranes, separating superconducting nickelates from the as-grown substrate is a novel way to engineer the superconductivity and uncover the underlying physics. Herein, this work reports the synthesis of the superconducting freestanding La0.8Sr0.2NiO2 membranes (T c zero = 10.6 K ${T}_{\mathrm{c}}^{\mathrm{zero}}\ =\ 10.6\ \mathrm{K}$ ), emphasizing the crucial roles of the interface engineering in the precursor phase film growth and the quick transfer process in achieving superconductivity. This work offers a new versatile platform for investigating superconductivity in nickelates, such as the pairing symmetry via constructing Josephson tunneling junctions and higher Tc values via high-pressure experiments.
Collapse
Affiliation(s)
- Shengjun Yan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Wei Mao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Wenjie Sun
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yueying Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Haoying Sun
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jiangfeng Yang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Bo Hao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Wei Guo
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Leyan Nian
- Suzhou Laboratory, Suzhou, 215125, P. R. China
| | - Zhengbin Gu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Peng Wang
- Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Yuefeng Nie
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
14
|
Zhao Q, Shao TN, Yang WL, Wang XY, Chen XY, Chen MH, Zhu FH, Chen CX, Dou RF, Xiong CM, Liu H, Nie JC. Isotropic Quantum Griffiths Singularity in Nd_{0.8}Sr_{0.2}NiO_{2} Infinite-Layer Superconducting Thin Films. PHYSICAL REVIEW LETTERS 2024; 133:036003. [PMID: 39094159 DOI: 10.1103/physrevlett.133.036003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
This work reports on the emergence of quantum Griffiths singularity (QGS) associated with the magnetic field induced superconductor-metal transition (SMT) in unconventional Nd_{0.8}Sr_{0.2}NiO_{2} infinite layer superconducting thin films. The system manifests isotropic SMT features under both in-plane and perpendicular magnetic fields. Importantly, after scaling analysis of the isothermal magnetoresistance curves, the obtained effective dynamic critical exponents demonstrate divergent behavior when approaching the zero-temperature critical point B_{c}^{*}, identifying the QGS characteristics. Moreover, the quantum fluctuation associated with the QGS can quantitatively explain the upturn of the upper critical field around zero temperature for both the in-plane and perpendicular magnetic fields in the phase boundary of SMT. These properties indicate that the QGS in the Nd_{0.8}Sr_{0.2}NiO_{2} superconducting thin film is isotropic. Moreover, a higher magnetic field gives rise to a metallic state with the resistance-temperature relation R(T) exhibiting lnT dependence among the 2-10 K range and T^{2} dependence of resistance below 1.5 K, which is significant evidence of Kondo scattering. The interplay between isotropic QGS and Kondo scattering in the unconventional Nd_{0.8}Sr_{0.2}NiO_{2} superconductor can illustrate the important role of rare region in QGS and help to uncover the exotic superconductivity mechanism in this system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Haiwen Liu
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, People's Republic of China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
- Interdisciplinary Center for Theoretical Physics and Information Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | |
Collapse
|
15
|
Gao Q, Fan S, Wang Q, Li J, Ren X, Biało I, Drewanowski A, Rothenbühler P, Choi J, Sutarto R, Wang Y, Xiang T, Hu J, Zhou KJ, Bisogni V, Comin R, Chang J, Pelliciari J, Zhou XJ, Zhu Z. Magnetic excitations in strained infinite-layer nickelate PrNiO 2 films. Nat Commun 2024; 15:5576. [PMID: 38956078 PMCID: PMC11220032 DOI: 10.1038/s41467-024-49940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Strongly correlated materials respond sensitively to external perturbations such as strain, pressure, and doping. In the recently discovered superconducting infinite-layer nickelates, the superconducting transition temperature can be enhanced via only ~ 1% compressive strain-tuning with the root of such enhancement still being elusive. Using resonant inelastic x-ray scattering (RIXS), we investigate the magnetic excitations in infinite-layer PrNiO2 thin films grown on two different substrates, namely SrTiO3 (STO) and (LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) enforcing different strain on the nickelates films. The magnon bandwidth of PrNiO2 shows only marginal response to strain-tuning, in sharp contrast to the enhancement of the superconducting transition temperature Tc in the doped superconducting samples. These results suggest the bandwidth of spin excitations of the parent compounds is similar under strain while Tc in the doped ones is not, and thus provide important empirics for the understanding of superconductivity in infinite-layer nickelates.
Collapse
Affiliation(s)
- Qiang Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shiyu Fan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, NY, 11973, USA
| | - Qisi Wang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jiarui Li
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xiaolin Ren
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Izabela Biało
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059, Kraków, Poland
| | - Annabella Drewanowski
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Pascal Rothenbühler
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Jaewon Choi
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - Ronny Sutarto
- Canadian Light Source, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Yao Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29631, USA
| | - Tao Xiang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Jiangping Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - Valentina Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, NY, 11973, USA
| | - Riccardo Comin
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - J Chang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| | - Jonathan Pelliciari
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, NY, 11973, USA.
| | - X J Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, China.
| | - Zhihai Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, China.
| |
Collapse
|
16
|
Parzyck CT, Gupta NK, Wu Y, Anil V, Bhatt L, Bouliane M, Gong R, Gregory BZ, Luo A, Sutarto R, He F, Chuang YD, Zhou T, Herranz G, Kourkoutis LF, Singer A, Schlom DG, Hawthorn DG, Shen KM. Absence of 3a 0 charge density wave order in the infinite-layer nickelate NdNiO 2. NATURE MATERIALS 2024; 23:486-491. [PMID: 38278983 PMCID: PMC10990928 DOI: 10.1038/s41563-024-01797-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
A hallmark of many unconventional superconductors is the presence of many-body interactions that give rise to broken-symmetry states intertwined with superconductivity. Recent resonant soft X-ray scattering experiments report commensurate 3a0 charge density wave order in infinite-layer nickelates, which has important implications regarding the universal interplay between charge order and superconductivity in both cuprates and nickelates. Here we present X-ray scattering and spectroscopy measurements on a series of NdNiO2+x samples, which reveal that the signatures of charge density wave order are absent in fully reduced, single-phase NdNiO2. The 3a0 superlattice peak instead originates from a partially reduced impurity phase where excess apical oxygens form ordered rows with three-unit-cell periodicity. The absence of any observable charge density wave order in NdNiO2 highlights a crucial difference between the phase diagrams of cuprate and nickelate superconductors.
Collapse
Grants
- DE-SC0019414 U.S. Department of Energy (DOE)
- DE-AC02-05CH11231 U.S. Department of Energy (DOE)
- DE-AC02-06CH11357 U.S. Department of Energy (DOE)
- FA9550-21-1-0168 United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
- DMR-2104427 National Science Foundation (NSF)
- NNCI-2025233 National Science Foundation (NSF)
- GBMF3850 Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
- GBMF9073 Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
- Part of the research described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC), the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan.
- The microscopy work at Cornell was supported by the NSF PARADIM, with additional support from Cornell University, the Weill Institute, the Kavli Institute at Cornell, and the Packard Foundation.
- G.H. acknowledges support from Severo Ochoa FUNFUTURE (No. CEX2019-000917-S) of the Spanish Ministry of Science and Innovation and by the Generalitat de Catalunya (2021 SGR 00445).
Collapse
Affiliation(s)
- C T Parzyck
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY, USA
| | - N K Gupta
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Y Wu
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY, USA
| | - V Anil
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY, USA
| | - L Bhatt
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - M Bouliane
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - R Gong
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - B Z Gregory
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - A Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - R Sutarto
- Canadian Light Source, Saskatoon, Saskatchewan, Canada
| | - F He
- Canadian Light Source, Saskatoon, Saskatchewan, Canada
| | - Y-D Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - T Zhou
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - G Herranz
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain
| | - L F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - A Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - D G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
- Leibniz-Institut für Kristallzüchtung, Berlin, Germany
| | - D G Hawthorn
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - K M Shen
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY, USA.
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
17
|
Ghiringhelli G. A noticeable absence. NATURE MATERIALS 2024; 23:443-444. [PMID: 38570633 DOI: 10.1038/s41563-024-01835-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
|
18
|
A deeper understanding. NATURE MATERIALS 2024; 23:441. [PMID: 38570640 DOI: 10.1038/s41563-024-01864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
|
19
|
Raji A, Dong Z, Porée V, Subedi A, Li X, Mundet B, Varbaro L, Domínguez C, Hadjimichael M, Feng B, Nicolaou A, Rueff JP, Li D, Gloter A. Valence-Ordered Thin-Film Nickelate with Tri-component Nickel Coordination Prepared by Topochemical Reduction. ACS NANO 2024; 18:4077-4088. [PMID: 38271616 DOI: 10.1021/acsnano.3c07614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The metal-hydride-based "topochemical reduction" process has produced several thermodynamically unstable phases across various transition metal oxide series with unusual crystal structures and nontrivial ground states. Here, by such an oxygen (de-)intercalation method we synthesis a samarium nickelate with ordered nickel valences associated with tri-component coordination configurations. This structure, with a formula of Sm9Ni9O22 as revealed by four-dimensional scanning transmission electron microscopy (4D-STEM), emerges from the intricate planes of {303}pc ordered apical oxygen vacancies. X-ray spectroscopy measurements and ab initio calculations show the coexistence of square planar, pyramidal, and octahedral Ni sites with mono-, bi-, and tri-valences. It leads to an intense orbital polarization, charge-ordering, and a ground state with a strong electron localization marked by the disappearance of ligand-hole configuration at low temperature. This nickelate compound provides another example of previously inaccessible materials enabled by topotactic transformations and presents an interesting platform where mixed Ni valence can give rise to exotic phenomena.
Collapse
Affiliation(s)
- Aravind Raji
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, Orsay 91400, France
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48 St. Aubin, Gif sur Yvette 91192, France
| | - Zhengang Dong
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Victor Porée
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48 St. Aubin, Gif sur Yvette 91192, France
| | - Alaska Subedi
- CPHT, Ecole Polytechnique, Palaiseau Cedex 91128, France
| | - Xiaoyan Li
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, Orsay 91400, France
| | - Bernat Mundet
- Department of Quantum Matter Physics, University of Geneva, Geneva 1211, Switzerland
- Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Lucia Varbaro
- Department of Quantum Matter Physics, University of Geneva, Geneva 1211, Switzerland
| | - Claribel Domínguez
- Department of Quantum Matter Physics, University of Geneva, Geneva 1211, Switzerland
| | - Marios Hadjimichael
- Department of Quantum Matter Physics, University of Geneva, Geneva 1211, Switzerland
| | - Bohan Feng
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Alessandro Nicolaou
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48 St. Aubin, Gif sur Yvette 91192, France
| | - Jean-Pascal Rueff
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48 St. Aubin, Gif sur Yvette 91192, France
- LCPMR, Sorbonne Université, CNRS, Paris 75005, France
| | - Danfeng Li
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Alexandre Gloter
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, Orsay 91400, France
| |
Collapse
|
20
|
Yang C, Pons R, Sigle W, Wang H, Benckiser E, Logvenov G, Keimer B, van Aken PA. Direct observation of strong surface reconstruction in partially reduced nickelate films. Nat Commun 2024; 15:378. [PMID: 38191551 PMCID: PMC10774438 DOI: 10.1038/s41467-023-44616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
The polarity of a surface can affect the electronic and structural properties of oxide thin films through electrostatic effects. Understanding the mechanism behind these effects requires knowledge of the atomic structure and electrostatic characteristics at the surface. In this study, we use annular bright-field imaging to investigate the surface structure of a Pr0.8Sr0.2NiO2+x (0 < x < 1) film. We observe a polar distortion coupled with octahedral rotations in a fully oxidized Pr0.8Sr0.2NiO3 sample, and a stronger polar distortion in a partially reduced sample. Its spatial depth extent is about three unit cells from the surface. Additionally, we use four-dimensional scanning transmission electron microscopy (4D-STEM) to directly image the local atomic electric field surrounding Ni atoms near the surface and discover distinct valence variations of Ni atoms, which are confirmed by atomic-resolution electron energy-loss spectroscopy (EELS). Our results suggest that the strong surface reconstruction in the reduced sample is closely related to the formation of oxygen vacancies from topochemical reduction. These findings provide insights into the understanding and evolution of surface polarity at the atomic level.
Collapse
Affiliation(s)
- Chao Yang
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
| | - Rebecca Pons
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Wilfried Sigle
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Hongguang Wang
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Eva Benckiser
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Gennady Logvenov
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Bernhard Keimer
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| |
Collapse
|
21
|
Ji H, Liu Y, Li Y, Ding X, Xie Z, Ji C, Qi S, Gao X, Xu M, Gao P, Qiao L, Yang YF, Zhang GM, Wang J. Rotational symmetry breaking in superconducting nickelate Nd 0.8Sr 0.2NiO 2 films. Nat Commun 2023; 14:7155. [PMID: 37935701 PMCID: PMC10630465 DOI: 10.1038/s41467-023-42988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
The infinite-layer nickelates, isostructural to the high-Tc cuprate superconductors, have emerged as a promising platform to host unconventional superconductivity and stimulated growing interest in the condensed matter community. Despite considerable attention, the superconducting pairing symmetry of the nickelate superconductors, the fundamental characteristic of a superconducting state, is still under debate. Moreover, the strong electronic correlation in the nickelates may give rise to a rich phase diagram, where the underlying interplay between the superconductivity and other emerging quantum states with broken symmetry is awaiting exploration. Here, we study the angular dependence of the transport properties of the infinite-layer nickelate Nd0.8Sr0.2NiO2 superconducting films with Corbino-disk configuration. The azimuthal angular dependence of the magnetoresistance (R(φ)) manifests the rotational symmetry breaking from isotropy to four-fold (C4) anisotropy with increasing magnetic field, revealing a symmetry-breaking phase transition. Approaching the low-temperature and large-magnetic-field regime, an additional two-fold (C2) symmetric component in the R(φ) curves and an anomalous upturn of the temperature-dependent critical field are observed simultaneously, suggesting the emergence of an exotic electronic phase. Our work uncovers the evolution of the quantum states with different rotational symmetries in nickelate superconductors and provides deep insight into their global phase diagram.
Collapse
Affiliation(s)
- Haoran Ji
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Yi Liu
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Yanan Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiang Ding
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zheyuan Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Chengcheng Ji
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Shichao Qi
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Xiaoyue Gao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Minghui Xu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Peng Gao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Yi-Feng Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Guang-Ming Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
| | - Jian Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China.
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190, China.
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China.
- Hefei National Laboratory, Hefei, 230088, China.
| |
Collapse
|
22
|
Shao TN, Zhang ZT, Qiao YJ, Zhao Q, Liu HW, Chen XX, Jiang WM, Yao CL, Chen XY, Chen MH, Dou RF, Xiong CM, Zhang GM, Yang YF, Nie JC. Kondo scattering in underdoped Nd 1-xSr xNiO 2 infinite-layer superconducting thin films. Natl Sci Rev 2023; 10:nwad112. [PMID: 37818115 PMCID: PMC10561711 DOI: 10.1093/nsr/nwad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/25/2022] [Accepted: 03/13/2023] [Indexed: 10/12/2023] Open
Abstract
The recent discovery of superconductivity in infinite-layer nickelates generates tremendous research endeavors, but the ground state of their parent compounds is still under debate. Here, we report experimental evidence for the dominant role of Kondo scattering in the underdoped Nd1-xSrxNiO2 thin films. A resistivity minimum associated with logarithmic temperature dependence in both longitudinal and Hall resistivities are observed in the underdoped Nd1-xSrxNiO2 samples before the superconducting transition. At lower temperatures down to 0.04 K, the resistivities become saturated, following the prediction of the Kondo model. A linear scaling behavior [Formula: see text] between anomalous Hall conductivity [Formula: see text] and conductivity [Formula: see text]is revealed, verifying the dominant Kondo scattering at low temperature. The effect of weak (anti-)localization is found to be secondary. Our experiments can help in clarifying the basic physics in the underdoped Nd1-xSrxNiO2 infinite-layer thin films.
Collapse
Affiliation(s)
- Ting-Na Shao
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Zi-Tao Zhang
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Yu-Jie Qiao
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Qiang Zhao
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Hai-Wen Liu
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Xin-Xiang Chen
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Wei-Min Jiang
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Chun-Li Yao
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Xing-Yu Chen
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Mei-Hui Chen
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Rui-Fen Dou
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Chang-Min Xiong
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Guang-Ming Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Beijing100084, China
| | - Yi-Feng Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100190, China
- Songshan Lake Materials Laboratory, Dongguan523808, China
| | - Jia-Cai Nie
- Department of Physics, Beijing Normal University, Beijing100875, China
| |
Collapse
|
23
|
Chen H, Yang YF, Zhang GM, Liu H. An electronic origin of charge order in infinite-layer nickelates. Nat Commun 2023; 14:5477. [PMID: 37673936 PMCID: PMC10482875 DOI: 10.1038/s41467-023-41236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
A charge order (CO) with a wavevector [Formula: see text] is observed in infinite-layer nickelates. Here we use first-principles calculations to demonstrate a charge-transfer-driven CO mechanism in infinite-layer nickelates, which leads to a characteristic Ni1+-Ni2+-Ni1+ stripe state. For every three Ni atoms, due to the presence of near-Fermi-level conduction bands, Hubbard interaction on Ni-d orbitals transfers electrons on one Ni atom to conduction bands and leaves electrons on the other two Ni atoms to become more localized. We further derive a low-energy effective model to elucidate that the CO state arises from a delicate competition between Hubbard interaction on Ni-d orbitals and charge transfer energy between Ni-d orbitals and conduction bands. With physically reasonable parameters, [Formula: see text] CO state is more stable than uniform paramagnetic state and usual checkerboard antiferromagnetic state. Our work highlights the multi-band nature of infinite-layer nickelates, which leads to some distinctive correlated properties that are not found in cuprates.
Collapse
Affiliation(s)
- Hanghui Chen
- NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai, 200122, China.
- Department of Physics, New York University, New York, NY, 10012, USA.
| | - Yi-Feng Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| | - Guang-Ming Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China.
- Frontier Science Center for Quantum Information, Beijing, 100084, China.
| | - Hongquan Liu
- NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai, 200122, China
| |
Collapse
|
24
|
Sun W, Li Y, Liu R, Yang J, Li J, Wei W, Jin G, Yan S, Sun H, Guo W, Gu Z, Zhu Z, Sun Y, Shi Z, Deng Y, Wang X, Nie Y. Evidence for Anisotropic Superconductivity Beyond Pauli Limit in Infinite-Layer Lanthanum Nickelates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303400. [PMID: 37235743 DOI: 10.1002/adma.202303400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Indexed: 05/28/2023]
Abstract
After being expected to be a promising analog to cuprates for decades, superconductivity has recently been discovered in infinite-layer nickelates, providing new opportunities to explore mechanisms of high-temperature superconductivity. However, in sharp contrast to the single-band and anisotropic superconductivity in cuprates, nickelates exhibit a multi-band electronic structure and an unexpected isotropic superconductivity as reported recently, which challenges the cuprate-like picture in nickelates. Here, it is shown that strong anisotropic magnetotransport behaviors exist in La-based nickelate films with enhanced crystallinity and superconductivity (T c onset $T_{\rm{c}}^{{\rm{onset}}}$ = 18.8 K,T c zero $T_{\rm{c}}^{{\rm{zero}}}$ = 16.5 K). The upper critical fields are anisotropic and violate the estimated Bardeen-Cooper-Schrieffer (BCS) Pauli limit (H Pauli , μ = 1 μ B = 1.86 × T c , H = 0 ${H}_{\mathrm{Pauli},\mu =1{\mu}_{B}}=1.86\ensuremath{\times{}}{T}_{\mathrm{c},H=0}$ ) for in-plane magnetic fields. Moreover, the anisotropic superconductivity is further manifested by the cusp-like peak of the angle-dependent Tc and the vortex motion anisotropy under external magnetic fields.
Collapse
Affiliation(s)
- Wenjie Sun
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yueying Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Ruxin Liu
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jiangfeng Yang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jiayi Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Wei Wei
- Department of Physics, Southeast University, Nanjing, 211189, P. R. China
| | - Gangjian Jin
- School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shengjun Yan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Haoying Sun
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Wei Guo
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Zhengbin Gu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Zengwei Zhu
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yue Sun
- Department of Physics, Southeast University, Nanjing, 211189, P. R. China
| | - Zhixiang Shi
- Department of Physics, Southeast University, Nanjing, 211189, P. R. China
| | - Yu Deng
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xuefeng Wang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yuefeng Nie
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
25
|
Wei W, Vu D, Zhang Z, Walker FJ, Ahn CH. Superconducting Nd 1-xEu xNiO 2 thin films using in situ synthesis. SCIENCE ADVANCES 2023; 9:eadh3327. [PMID: 37406111 DOI: 10.1126/sciadv.adh3327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
We report on superconductivity in Nd1-xEuxNiO2 using Eu as a 4f dopant of the parent NdNiO2 infinite-layer compound. We use an all-in situ molecular beam epitaxy reduction process to achieve the superconducting phase, providing an alternate method to the ex situ CaH2 reduction process to induce superconductivity in the infinite-layer nickelates. The Nd1-xEuxNiO2 samples exhibit a step-terrace structure on their surfaces, have a Tc onset of 21 K at x = 0.25, and have a large upper critical field that may be related to Eu 4f doping.
Collapse
Affiliation(s)
- Wenzheng Wei
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA
| | - Dung Vu
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA
| | - Zhan Zhang
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Frederick J Walker
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA
| | - Charles H Ahn
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA
- Department of Physics, Yale University, New Haven, CT 06520, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
26
|
Lee K, Wang BY, Osada M, Goodge BH, Wang TC, Lee Y, Harvey S, Kim WJ, Yu Y, Murthy C, Raghu S, Kourkoutis LF, Hwang HY. Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO 2. Nature 2023; 619:288-292. [PMID: 37438595 DOI: 10.1038/s41586-023-06129-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2023] [Indexed: 07/14/2023]
Abstract
The occurrence of superconductivity in proximity to various strongly correlated phases of matter has drawn extensive focus on their normal state properties, to develop an understanding of the state from which superconductivity emerges1-4. The recent finding of superconductivity in layered nickelates raises similar interests5-8. However, transport measurements of doped infinite-layer nickelate thin films have been hampered by materials limitations of these metastable compounds: in particular, a high density of extended defects9-11. Here, by moving to a substrate (LaAlO3)0.3(Sr2TaAlO6)0.7 that better stabilizes the growth and reduction conditions, we can synthesize the doping series of Nd1-xSrxNiO2 essentially free from extended defects. In their absence, the normal state resistivity shows a low-temperature upturn in the underdoped regime, linear behaviour near optimal doping and quadratic temperature dependence for overdoping. This is phenomenologically similar to the copper oxides2,12 despite key distinctions-namely, the absence of an insulating parent compound5,6,9,10, multiband electronic structure13,14 and a Mott-Hubbard orbital alignment rather than the charge-transfer insulator of the copper oxides15,16. We further observe an enhancement of superconductivity, both in terms of transition temperature and range of doping. These results indicate a convergence in the electronic properties of both superconducting families as the scale of disorder in the nickelates is reduced.
Collapse
Affiliation(s)
- Kyuho Lee
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
- Department of Physics, Stanford University, Stanford, CA, USA.
| | - Bai Yang Wang
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Motoki Osada
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Berit H Goodge
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Tiffany C Wang
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Yonghun Lee
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Shannon Harvey
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Woo Jin Kim
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Yijun Yu
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | | | - Srinivas Raghu
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Harold Y Hwang
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| |
Collapse
|
27
|
Talantsev EF. Intrinsic Coherence Length Anisotropy in Nickelates and Some Iron-Based Superconductors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4367. [PMID: 37374551 DOI: 10.3390/ma16124367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Nickelate superconductors, R1-xAxNiO2 (where R is a rare earth metal and A = Sr, Ca), experimentally discovered in 2019, exhibit many unexplained mysteries, such as the existence of a superconducting state with Tc (up to 18 K) in thin films and yet absent in bulk materials. Another unexplained mystery of nickelates is their temperature-dependent upper critical field, Bc2(T), which can be nicely fitted to two-dimensional (2D) models; however, the deduced film thickness, dsc,GL, exceeds the physical film thickness, dsc, by a manifold. To address the latter, it should be noted that 2D models assume that dsc is less than the in-plane and out-of-plane ground-state coherence lengths, dsc<ξab(0) and dsc<ξc(0), respectively, and, in addition, that the inequality ξc(0)<ξab(0) satisfies. Analysis of the reported experimental Bc2(T) data showed that at least one of these conditions does not satisfy for R1-xAxNiO2 films. This implies that nickelate films are not 2D superconductors, despite the superconducting state being observed only in thin films. Based on this, here we propose an analytical three-dimensional (3D) model for a global data fit of in-plane and out-of-plane Bc2(T) in nickelates. The model is based on a heuristic expression for temperature-dependent coherence length anisotropy: γξ(T)=γξ(0)1-1a×TTc, where a>1 is a unitless free-fitting parameter. The proposed expression for γξ(T), perhaps, has a much broader application because it has been successfully applied to bulk pnictide and chalcogenide superconductors.
Collapse
Affiliation(s)
- Evgeny F Talantsev
- M. N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18, S. Kovalevskoy St., 620108 Ekaterinburg, Russia
- NANOTECH Centre, Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
| |
Collapse
|
28
|
Goodge BH, Geisler B, Lee K, Osada M, Wang BY, Li D, Hwang HY, Pentcheva R, Kourkoutis LF. Resolving the polar interface of infinite-layer nickelate thin films. NATURE MATERIALS 2023; 22:466-473. [PMID: 36973543 DOI: 10.1038/s41563-023-01510-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Nickel-based superconductors provide a long-awaited experimental platform to explore possible cuprate-like superconductivity. Despite similar crystal structure and d electron filling, however, superconductivity in nickelates has thus far only been stabilized in thin-film geometry, raising questions about the polar interface between substrate and thin film. Here we conduct a detailed experimental and theoretical study of the prototypical interface between Nd1-xSrxNiO2 and SrTiO3. Atomic-resolution electron energy loss spectroscopy in the scanning transmission electron microscope reveals the formation of a single intermediate Nd(Ti,Ni)O3 layer. Density functional theory calculations with a Hubbard U term show how the observed structure alleviates the polar discontinuity. We explore the effects of oxygen occupancy, hole doping and cation structure to disentangle the contributions of each for reducing interface charge density. Resolving the non-trivial interface structure will be instructive for future synthesis of nickelate films on other substrates and in vertical heterostructures.
Collapse
Affiliation(s)
- Berit H Goodge
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| | - Benjamin Geisler
- Department of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Duisburg, Germany
| | - Kyuho Lee
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Motoki Osada
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Bai Yang Wang
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Danfeng Li
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong
| | - Harold Y Hwang
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Rossitza Pentcheva
- Department of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Duisburg, Germany
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
29
|
Fabbris G, Meyers D, Shen Y, Bisogni V, Zhang J, Mitchell JF, Norman MR, Johnston S, Feng J, Chiuzbăian GS, Nicolaou A, Jaouen N, Dean MPM. Resonant inelastic x-ray scattering data for Ruddlesden-Popper and reduced Ruddlesden-Popper nickelates. Sci Data 2023; 10:174. [PMID: 36991033 PMCID: PMC10060392 DOI: 10.1038/s41597-023-02079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Ruddlesden-Popper and reduced Ruddlesden-Popper nickelates are intriguing candidates for mimicking the properties of high-temperature superconducting cuprates. The degree of similarity between these nickelates and cuprates has been the subject of considerable debate. Resonant inelastic x-ray scattering (RIXS) has played an important role in exploring their electronic and magnetic excitations, but these efforts have been stymied by inconsistencies between different samples and the lack of publicly available data for detailed comparison. To address this issue, we present open RIXS data on La4Ni3O10 and La4Ni3O8.
Collapse
Affiliation(s)
- G Fabbris
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA.
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, 60439, USA.
| | - D Meyers
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Y Shen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - V Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - J Zhang
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
- Institute of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - J F Mitchell
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - M R Norman
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - S Johnston
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee, 37966, USA
- Institute of Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - J Feng
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris, France
- Institute of Advanced Science Facilities, Shenzhen, Guangdong, 518107, China
| | - G S Chiuzbăian
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - A Nicolaou
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - N Jaouen
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - M P M Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA.
| |
Collapse
|
30
|
Ding X, Tam CC, Sui X, Zhao Y, Xu M, Choi J, Leng H, Zhang J, Wu M, Xiao H, Zu X, Garcia-Fernandez M, Agrestini S, Wu X, Wang Q, Gao P, Li S, Huang B, Zhou KJ, Qiao L. Critical role of hydrogen for superconductivity in nickelates. Nature 2023; 615:50-55. [PMID: 36859583 DOI: 10.1038/s41586-022-05657-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/14/2022] [Indexed: 03/03/2023]
Abstract
The newly discovered nickelate superconductors so far only exist in epitaxial thin films synthesized by a topotactic reaction with metal hydrides1. This method changes the nickelates from the perovskite to an infinite-layer structure by deintercalation of apical oxygens1-3. Such a chemical reaction may introduce hydrogen (H), influencing the physical properties of the end materials4-9. Unfortunately, H is insensitive to most characterization techniques and is difficult to detect because of its light weight. Here, in optimally Sr doped Nd0.8Sr0.2NiO2H epitaxial films, secondary-ion mass spectroscopy shows abundant H existing in the form of Nd0.8Sr0.2NiO2Hx (x ≅ 0.2-0.5). Zero resistivity is found within a very narrow H-doping window of 0.22 ≤ x ≤ 0.28, showing unequivocally the critical role of H in superconductivity. Resonant inelastic X-ray scattering demonstrates the existence of itinerant interstitial s (IIS) orbitals originating from apical oxygen deintercalation. Density functional theory calculations show that electronegative H- occupies the apical oxygen sites annihilating IIS orbitals, reducing the IIS-Ni 3d orbital hybridization. This leads the electronic structure of H-doped Nd0.8Sr0.2NiO2Hx to be more two-dimensional-like, which might be relevant for the observed superconductivity. We highlight that H is an important ingredient for superconductivity in epitaxial infinite-layer nickelates.
Collapse
Affiliation(s)
- Xiang Ding
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Charles C Tam
- Diamond Light Source, Harwell Campus, Didcot, UK
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK
| | - Xuelei Sui
- Beijing Computational Science Research Center, Beijing, China
| | - Yan Zhao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Minghui Xu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Jaewon Choi
- Diamond Light Source, Harwell Campus, Didcot, UK
| | - Huaqian Leng
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Ji Zhang
- School of Materials, University of New South Wales, Sydney, New South Wales, Australia
| | - Mei Wu
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China
| | - Haiyan Xiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaotao Zu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | | | | | - Xiaoqiang Wu
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Qingyuan Wang
- Institute for Advanced Study, Chengdu University, Chengdu, China.
| | - Peng Gao
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China
| | - Sean Li
- School of Materials, University of New South Wales, Sydney, New South Wales, Australia
| | - Bing Huang
- Beijing Computational Science Research Center, Beijing, China.
- Department of Physics, Beijing Normal University, Beijing, China.
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, UK.
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
31
|
Yang YF. An emerging global picture of heavy fermion physics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:103002. [PMID: 36542859 DOI: 10.1088/1361-648x/acadc4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Recent progresses using state-of-the-art experimental techniques have motivated a number of new insights on heavy fermion physics. This article gives a brief summary of the author's research along this direction. We discuss five major topics including: (1) development of phase coherence and two-stage hybridization; (2) two-fluid behavior and hidden universal scaling; (3) quantum phase transitions and fractionalized heavy fermion liquid; (4) quantum critical superconductivity; (5) material-specific properties. These cover the most essential parts of heavy fermion physics and lead to an emerging global picture beyond conventional theories based on mean-field or local approximations.
Collapse
Affiliation(s)
- Yi-Feng Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
32
|
Tam CC, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H, Gao P, García-Fernández M, Qiao L, Zhou KJ. Charge density waves in infinite-layer NdNiO 2 nickelates. NATURE MATERIALS 2022; 21:1116-1120. [PMID: 35982306 DOI: 10.1038/s41563-022-01330-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
In materials science, much effort has been devoted to the reproduction of superconductivity in chemical compositions, analogous to cuprate superconductors since their discovery over 30 years ago. This approach was recently successful in realising superconductivity in infinite-layer nickelates1-6. Although differing from cuprates in electronic and magnetic properties, strong Coulomb interactions suggest that infinite-layer nickelates have a propensity towards various symmetry-breaking orders that populate cuprates7-10. Here we report the observation of charge density waves (CDWs) in infinite-layer NdNiO2 films using Ni L3 resonant X-ray scattering. Remarkably, CDWs form in Nd 5d and Ni 3d orbitals at the same commensurate wavevector (0.333, 0) reciprocal lattice units, with non-negligible out-of-plane dependence and an in-plane correlation length of up to ~60 Å. Spectroscopic studies reveal a strong connection between CDWs and Nd 5d-Ni 3d orbital hybridization. Upon entering the superconducting state at 20% Sr doping, the CDWs disappear. Our work demonstrates the existence of CDWs in infinite-layer nickelates with a multiorbital character distinct from cuprates, which establishes their low-energy physics.
Collapse
Affiliation(s)
- Charles C Tam
- Diamond Light Source, Didcot, United Kingdom
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
| | - Jaewon Choi
- Diamond Light Source, Didcot, United Kingdom
| | - Xiang Ding
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Abhishek Nag
- Diamond Light Source, Didcot, United Kingdom
- Laboratory for Non-linear Optics, Paul Scherrer Institut, Villigen, PSI, Switzerland
| | - Mei Wu
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China
| | - Bing Huang
- Beijing Computational Science Research Center, Beijing, China
| | - Huiqian Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Peng Gao
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China
| | | | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China.
| | - Ke-Jin Zhou
- Diamond Light Source, Didcot, United Kingdom.
| |
Collapse
|
33
|
Benckiser E, Hepting M, Keimer B. Neighbours in charge. NATURE MATERIALS 2022; 21:1102-1103. [PMID: 36151461 DOI: 10.1038/s41563-022-01366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Eva Benckiser
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Matthias Hepting
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Bernhard Keimer
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
| |
Collapse
|
34
|
Kreisel A, Andersen BM, Rømer AT, Eremin IM, Lechermann F. Superconducting Instabilities in Strongly Correlated Infinite-Layer Nickelates. PHYSICAL REVIEW LETTERS 2022; 129:077002. [PMID: 36018682 DOI: 10.1103/physrevlett.129.077002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The discovery of superconductivity in infinite-layer nickelates has added a new family of materials to the fascinating growing class of unconventional superconductors. By incorporating the strongly correlated multiorbital nature of the low-energy electronic degrees of freedom, we compute the leading superconducting instability from magnetic fluctuations relevant for infinite-layer nickelates. Specifically, by properly including the doping dependence of the Ni d_{x^{2}-y^{2}} and d_{z^{2}} orbitals as well as the self-doping band, we uncover a transition from d-wave pairing symmetry to nodal s_{±} superconductivity, driven by strong fluctuations in the d_{z^{2}}-dominated orbital states. We discuss the properties of the resulting superconducting condensates in light of recent tunneling and penetration depth experiments probing the detailed superconducting gap structure of these materials.
Collapse
Affiliation(s)
- Andreas Kreisel
- Institut für Theoretische Physik, Universität Leipzig, D-04103 Leipzig, Germany
| | - Brian M Andersen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Astrid T Rømer
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ilya M Eremin
- Institut für Theoretische Physik III, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Frank Lechermann
- Institut für Theoretische Physik III, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| |
Collapse
|