1
|
Ma D, Xiong Y, Song JCW. Metallic Electro-optic Effect in Gapped Bilayer Graphene. NANO LETTERS 2025; 25:1260-1265. [PMID: 39813111 DOI: 10.1021/acs.nanolett.4c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Electro-optic (EO) modulation is a critical device action in photonics. Recently, the non-Drude dynamics induced by the Berry curvature dipole (BCD) in metals have attracted attention as a potential candidate for terahertz EO modulation. However, such BCD-induced EO effects can be challenging to realize, often requiring flat bands and complex materials such as a strained magic-angle twisted bilayer graphene on hexagonal boron nitride. Here, we argue that metallic EO can be achieved with a much simpler material, gapped bilayer graphene, with EO coefficients comparable to that in flat-band materials in the terahertz range. In particular, we find metallic EO can be realized without a Berry curvature dipole; we identify skew-scattering and a "snap" (third-order derivative of velocity) can readily produce pronounced Pockels and Kerr EO effects in clean metals. These yield nonreciprocal and field-activated birefringence and field-induced modulations to transmission and reflection, essential components for terahertz EO modulators.
Collapse
Affiliation(s)
- Da Ma
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Ying Xiong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Justin C W Song
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
2
|
Min L, Zhang Y, Xie Z, Ayyagari SVG, Miao L, Onishi Y, Lee SH, Wang Y, Alem N, Fu L, Mao Z. Colossal room-temperature non-reciprocal Hall effect. NATURE MATERIALS 2024; 23:1671-1677. [PMID: 39433906 DOI: 10.1038/s41563-024-02015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 09/03/2024] [Indexed: 10/23/2024]
Abstract
Non-reciprocal charge transport has gained significant attention due to its potential in exploring quantum symmetry and its promising applications. Traditionally, non-reciprocal transport has been observed in the longitudinal direction, with non-reciprocal resistance being a small fraction of the ohmic resistance. Here we report a transverse non-reciprocal transport phenomenon featuring a quadratic current-voltage characteristic and divergent non-reciprocity, termed the non-reciprocal Hall effect. This effect is observed in microscale Hall devices fabricated from platinum (Pt) deposited by a focused ion beam on silicon substrates. The transverse non-reciprocal Hall effect arises from the geometrically asymmetric scattering of textured Pt nanoparticles within the focused-ion-beam-deposited Pt structures. Notably, the non-reciprocal Hall effect generated in focused-ion-beam-deposited Pt electrodes can propagate to adjacent conductors such as Au and NbP through Hall current injection. Additionally, this pronounced non-reciprocal Hall effect facilitates broadband frequency mixing. These findings not only validate the non-reciprocal Hall effect concept but also open avenues for its application in terahertz communication, imaging and energy harvesting.
Collapse
Affiliation(s)
- Lujin Min
- Department of Physics, Pennsylvania State University, University Park, PA, USA
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Yang Zhang
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhijian Xie
- Department of Electrical and Computer Engineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | | | - Leixin Miao
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Yugo Onishi
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seng Huat Lee
- Department of Physics, Pennsylvania State University, University Park, PA, USA
- 2D Crystal Consortium, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Yu Wang
- Department of Physics, Pennsylvania State University, University Park, PA, USA
- 2D Crystal Consortium, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Nasim Alem
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zhiqiang Mao
- Department of Physics, Pennsylvania State University, University Park, PA, USA.
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
3
|
Isobe H, Nagaosa N. Nonlinear edge transport in a quantum Hall system. SCIENCE ADVANCES 2024; 10:eado2704. [PMID: 39453998 PMCID: PMC11639171 DOI: 10.1126/sciadv.ado2704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/19/2024] [Indexed: 10/27/2024]
Abstract
Nonlinear transport phenomena in condensed matter reflect the geometric nature, quantum coherence, and many-body correlation of electronic states. Electric currents in solids are classified into (i) ohmic current, (ii) supercurrent, and (iii) geometric or topological current. While the nonlinear current-voltage (I-V) characteristics of the former two categories have been extensive research topics recently, those of the last category remains unexplored. Among them, the quantum Hall current is a representative example. Realized in two-dimensional electronic systems under a strong magnetic field, the topological protection quantizes the Hall conductance in the unit of e2/h (e, elementary charge; and h, Planck constant), of which the edge transport picture gives a good account. Here, we theoretically study the nonlinear I-VH characteristic of the edge transport up to third order in VH. We find that nonlinearity arises in the Hall response from electron-electron interaction between the counterpropagating edge channels with the nonlinear energy dispersions. We also discuss possible experimental observations.
Collapse
Affiliation(s)
- Hiroki Isobe
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
- Fundamental Quantum Science Program, TRIP Headquarters, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Chen J, Yang X, Zhou F, Lau YC, Feng W, Yao Y, Li Y, Jiang Y, Wang W. Colossal anomalous Hall effect in the layered antiferromagnetic EuAl 2Si 2 compound. MATERIALS HORIZONS 2024; 11:4665-4673. [PMID: 38990691 DOI: 10.1039/d4mh00480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The anomalous Hall effect (AHE), significantly enhanced by the extrinsic mechanism, has attracted attention for its almost unlimited Hall response, which exceeds the upper limit of the Berry curvature mechanism. However, due to the high conductivity in the clean regime and weak skew scattering, it is a great challenge to obtain large anomalous Hall conductivities and large anomalous Hall angles at the same time. Here, we unveil a new magnetic metal system, EuAl2Si2, which hosts both colossal anomalous Hall conductivity (σAxy ≥ 104 Ω-1 cm-1) and large anomalous Hall angle (AHA >10%). The scaling relation suggests that the skew scattering mechanism is dominant in the colossal anomalous Hall response and gives rise to a large skew scattering constant. The large effective SOC and large magnetic moment may account for this anomaly. Our results indicate that EuAl2Si2 is a good platform to study the extrinsic AHE mechanism.
Collapse
Affiliation(s)
- Jie Chen
- School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China.
| | - Xiuxian Yang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Zhou
- School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China.
| | - Yong-Chang Lau
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanxiang Feng
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yugui Yao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yue Li
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
| | - Yong Jiang
- School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China.
| | - Wenhong Wang
- School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
5
|
Li H, Zhang C, Zhou C, Ma C, Lei X, Jin Z, He H, Li B, Law KT, Wang J. Quantum geometry quadrupole-induced third-order nonlinear transport in antiferromagnetic topological insulator MnBi 2Te 4. Nat Commun 2024; 15:7779. [PMID: 39237573 PMCID: PMC11377558 DOI: 10.1038/s41467-024-52206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
The study of quantum geometry effects in materials has been one of the most important research directions in recent decades. The quantum geometry of a material is characterized by the quantum geometric tensor of the Bloch states. The imaginary part of the quantum geometry tensor gives rise to the Berry curvature while the real part gives rise to the quantum metric. While Berry curvature has been well studied in the past decades, the experimental investigation on the quantum metric effects is only at its infancy stage. In this work, we measure the nonlinear transport of bulk MnBi2Te4, which is a topological anti-ferromagnet. We found that the second order nonlinear responses are negligible as required by inversion symmetry, the third-order nonlinear responses are finite. The measured third-harmonic longitudinal (V x x 3 ω ) and transverse (V x y 3 ω ) voltages with frequency 3 ω , driven by an a.c. current with frequency ω , show an intimate connection with magnetic transitions of MnBi2Te4 flakes. Their magnitudes change abruptly as MnBi2Te4 flakes go through magnetic transitions from an antiferromagnetic state to a canted antiferromagnetic state and to a ferromagnetic state. In addition, the measuredV x x 3 ω is an even function of the applied magnetic field B whileV x y 3 ω is odd in B. Amazingly, the field dependence of the third-order responses as a function of the magnetic field suggests thatV x x 3 ω is induced by the quantum metric quadrupole andV x y 3 ω is induced by the Berry curvature quadrupole. Therefore, the quadrupoles of both the real and the imaginary part of the quantum geometry tensor of bulk MnBi2Te4 are revealed through the third order nonlinear transport measurements. This work greatly advanced our understanding on the connections between the higher order moments of quantum geometry and nonlinear transport.
Collapse
Affiliation(s)
- Hui Li
- Department of Physics, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Chengping Zhang
- Department of Physics, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Chengjie Zhou
- Department of Physics, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Chen Ma
- Department of Physics, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiao Lei
- Department of Physics, South University of Science and Technology of China, Shenzhen, Guangdong, China
| | - Zijing Jin
- Department of Physics, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hongtao He
- Department of Physics, South University of Science and Technology of China, Shenzhen, Guangdong, China
| | - Baikui Li
- Department of Physics, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kam Tuen Law
- Department of Physics, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Jiannong Wang
- Department of Physics, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
6
|
Du L, Huang Z, Zhang J, Ye F, Dai Q, Deng H, Zhang G, Sun Z. Nonlinear physics of moiré superlattices. NATURE MATERIALS 2024; 23:1179-1192. [PMID: 39215154 DOI: 10.1038/s41563-024-01951-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
Nonlinear physics is one of the most important research fields in modern physics and materials science. It offers an unprecedented paradigm for exploring many fascinating physical phenomena and realizing diverse cutting-edge applications inconceivable in the framework of linear processes. Here we review the recent theoretical and experimental progress concerning the nonlinear physics of synthetic quantum moiré superlattices. We focus on the emerging nonlinear electronic, optical and optoelectronic properties of moiré superlattices, including but not limited to the nonlinear anomalous Hall effect, dynamically twistable harmonic generation, nonlinear optical chirality, ultralow-power-threshold optical solitons and spontaneous photogalvanic effect. We also present our perspectives on the future opportunities and challenges in this rapidly progressing field, and highlight the implications for advances in both fundamental physics and technological innovations.
Collapse
Affiliation(s)
- Luojun Du
- Beijing National Laboratory for Condensed Matter Physics, Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhiheng Huang
- Beijing National Laboratory for Condensed Matter Physics, Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhang
- QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
| | - Fangwei Ye
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Deng
- Physics Department, University of Michigan, Ann Arbor, MI, USA
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Songshan-Lake Materials Laboratory, Dongguan, China.
| | - Zhipei Sun
- QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.
| |
Collapse
|
7
|
Bhowmik S, Ghosh A, Chandni U. Emergent phases in graphene flat bands. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:096401. [PMID: 39059412 DOI: 10.1088/1361-6633/ad67ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Electronic correlations in two-dimensional materials play a crucial role in stabilising emergent phases of matter. The realisation of correlation-driven phenomena in graphene has remained a longstanding goal, primarily due to the absence of strong electron-electron interactions within its low-energy bands. In this context, magic-angle twisted bilayer graphene has recently emerged as a novel platform featuring correlated phases favoured by the low-energy flat bands of the underlying moiré superlattice. Notably, the observation of correlated insulators and superconductivity, and the interplay between these phases have garnered significant attention. A wealth of correlated phases with unprecedented tunability was discovered subsequently, including orbital ferromagnetism, Chern insulators, strange metallicity, density waves, and nematicity. However, a comprehensive understanding of these closely competing phases remains elusive. The ability to controllably twist and stack multiple graphene layers has enabled the creation of a whole new family of moiré superlattices with myriad properties. Here, we review the progress and development achieved so far, encompassing the rich phase diagrams offered by these graphene-based moiré systems. Additionally, we discuss multiple phases recently observed in non-moiré multilayer graphene systems. Finally, we outline future opportunities and challenges for the exploration of hidden phases in this new generation of moiré materials.
Collapse
Affiliation(s)
- Saisab Bhowmik
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Arindam Ghosh
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - U Chandni
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Datta S, Bhowmik S, Varshney H, Watanabe K, Taniguchi T, Agarwal A, Chandni U. Nonlinear Electrical Transport Unveils Fermi Surface Malleability in a Moiré Heterostructure. NANO LETTERS 2024; 24:9520-9527. [PMID: 39058474 DOI: 10.1021/acs.nanolett.4c01946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Van Hove singularities enhance many-body interactions and induce collective states of matter ranging from superconductivity to magnetism. In magic-angle twisted bilayer graphene, van Hove singularities appear at low energies and are malleable with density, leading to a sequence of Lifshitz transitions and resets observable in Hall measurements. However, without a magnetic field, linear transport measurements have limited sensitivity to the band's topology. Here, we utilize nonlinear longitudinal and transverse transport measurements to probe these unique features in twisted bilayer graphene at zero magnetic field. We demonstrate that the nonlinear responses, induced by the Berry curvature dipole and extrinsic scattering processes, intricately map the Fermi surface reconstructions at various fillings. Importantly, our experiments highlight the intrinsic connection of these features with the moiré bands. Beyond corroborating the insights from linear Hall measurements, our findings establish nonlinear transport as a pivotal tool for probing band topology and correlated phenomena.
Collapse
Affiliation(s)
- Suvronil Datta
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Saisab Bhowmik
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Harsh Varshney
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Amit Agarwal
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | - U Chandni
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Cheng B, Gao Y, Zheng Z, Chen S, Liu Z, Zhang L, Zhu Q, Li H, Li L, Zeng C. Giant nonlinear Hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium. Nat Commun 2024; 15:5513. [PMID: 38951497 PMCID: PMC11217359 DOI: 10.1038/s41467-024-49706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
The second-order nonlinear Hall effect (NLHE) in non-centrosymmetric materials has recently drawn intense interest, since its inherent rectification could enable various device applications such as energy harvesting and wireless charging. However, previously reported NLHE systems normally suffer from relatively small Hall voltage outputs and/or low working temperatures. In this study, we report the observation of a pronounced NLHE in tellurium (Te) thin flakes at room temperature. Benefiting from the semiconductor nature of Te, the obtained nonlinear response can be readily enhanced through electrostatic gating, leading to a second-harmonic output at 300 K up to 2.8 mV. By utilizing such a giant NLHE, we further demonstrate the potential of Te as a wireless Hall rectifier within the radiofrequency range, which is manifested by the remarkable and tunable rectification effect also at room temperature. Extrinsic scattering is then revealed to be the dominant mechanism for the NLHE in Te, with symmetry breaking on the surface playing a key role. As a simple elemental semiconductor, Te provides an appealing platform to advance our understanding of nonlinear transport in solids and to develop NLHE-based electronic devices.
Collapse
Affiliation(s)
- Bin Cheng
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Yang Gao
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhi Zheng
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Shuhang Chen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zheng Liu
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ling Zhang
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Qi Zhu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hui Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Lin Li
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China.
| | - Changgan Zeng
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China.
| |
Collapse
|
10
|
Zhong J, Zhang S, Duan J, Peng H, Feng Q, Hu Y, Wang Q, Mao J, Liu J, Yao Y. Effective Manipulation of a Colossal Second-Order Transverse Response in an Electric-Field-Tunable Graphene Moiré System. NANO LETTERS 2024; 24:5791-5798. [PMID: 38695400 DOI: 10.1021/acs.nanolett.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The second-order nonlinear transport illuminates a frequency-doubling response emerging in quantum materials with a broken inversion symmetry. The two principal driving mechanisms, the Berry curvature dipole and the skew scattering, reflect various information including ground-state symmetries, band dispersions, and topology of electronic wave functions. However, effective manipulation of them in a single system has been lacking, hindering the pursuit of strong responses. Here, we report on the effective manipulation of the two mechanisms in a single graphene moiré superlattice, AB-BA stacked twisted double bilayer graphene. Most saliently, by virtue of the high tunability of moiré band structures and scattering rates, a record-high second-order transverse conductivity ∼ 510 μm S V-1 is observed, which is orders of magnitude higher than any reported values in the literature. Our findings establish the potential of electrically tunable graphene moiré systems for nonlinear transport manipulations and applications.
Collapse
Affiliation(s)
- Jinrui Zhong
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100086, China
| | - Shihao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Junxi Duan
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100086, China
| | - Huimin Peng
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100086, China
| | - Qi Feng
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100086, China
| | - Yuqing Hu
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100086, China
| | - Qinsheng Wang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100086, China
| | - Jinhai Mao
- School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianpeng Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
| | - Yugui Yao
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100086, China
| |
Collapse
|
11
|
Zhu H, Yakobson BI. Creating chirality in the nearly two dimensions. NATURE MATERIALS 2024; 23:316-322. [PMID: 38388730 DOI: 10.1038/s41563-024-01814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Structural chirality, defined as the lack of mirror symmetry in materials' atomic structure, is only meaningful in three-dimensional space. Yet two-dimensional (2D) materials, despite their small thickness, can show chirality that enables prominent asymmetric optical, electrical and magnetic properties. In this Perspective, we first discuss the possible definition and mathematical description of '2D chiral materials', and the intriguing physics enabled by structural chirality in van der Waals 2D homobilayers and heterostructures, such as circular dichroism, chiral plasmons and the nonlinear Hall effect. We then summarize the recent experimental progress and approaches to induce and control structural chirality in 2D materials from monolayers to superlattices. Finally, we postulate a few unique opportunities offered by 2D chiral materials, the synthesis and new properties of which can potentially lead to chiral optoelectronic devices and possibly materials for enantioselective photochemistry.
Collapse
Affiliation(s)
- Hanyu Zhu
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
12
|
Kuang X, Pantaleón Peralta PA, Angel Silva-Guillén J, Yuan S, Guinea F, Zhan Z. Optical properties and plasmons in moiré structures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:173001. [PMID: 38232397 DOI: 10.1088/1361-648x/ad1f8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The discoveries of numerous exciting phenomena in twisted bilayer graphene (TBG) are stimulating significant investigations on moiré structures that possess a tunable moiré potential. Optical response can provide insights into the electronic structures and transport phenomena of non-twisted and twisted moiré structures. In this article, we review both experimental and theoretical studies of optical properties such as optical conductivity, dielectric function, non-linear optical response, and plasmons in moiré structures composed of graphene, hexagonal boron nitride (hBN), and/or transition metal dichalcogenides. Firstly, a comprehensive introduction to the widely employed methodology on optical properties is presented. After, moiré potential induced optical conductivity and plasmons in non-twisted structures are reviewed, such as single layer graphene-hBN, bilayer graphene-hBN and graphene-metal moiré heterostructures. Next, recent investigations of twist-angle dependent optical response and plasmons are addressed in twisted moiré structures. Additionally, we discuss how optical properties and plasmons could contribute to the understanding of the many-body effects and superconductivity observed in moiré structures.
Collapse
Affiliation(s)
- Xueheng Kuang
- Yangtze Delta Industrial Innovation Center of Quantum Science and Technology, Suzhou 215000, People's Republic of China
| | | | - Jose Angel Silva-Guillén
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Francisco Guinea
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 San Sebastián, Spain
| | - Zhen Zhan
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
13
|
Suárez-Rodríguez M, Martín-García B, Skowroński W, Calavalle F, Tsirkin SS, Souza I, De Juan F, Chuvilin A, Fert A, Gobbi M, Casanova F, Hueso LE. Odd Nonlinear Conductivity under Spatial Inversion in Chiral Tellurium. PHYSICAL REVIEW LETTERS 2024; 132:046303. [PMID: 38335368 DOI: 10.1103/physrevlett.132.046303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 02/12/2024]
Abstract
Electrical transport in noncentrosymmetric materials departs from the well-established phenomenological Ohm's law. Instead of a linear relation between current and electric field, a nonlinear conductivity emerges along specific crystallographic directions. This nonlinear transport is fundamentally related to the lack of spatial inversion symmetry. However, the experimental implications of an inversion symmetry operation on the nonlinear conductivity remain to be explored. Here, we report on a large, nonlinear conductivity in chiral tellurium. By measuring samples with opposite handedness, we demonstrate that the nonlinear transport is odd under spatial inversion. Furthermore, by applying an electrostatic gate, we modulate the nonlinear output by a factor of 300, reaching the highest reported value excluding engineered heterostructures. Our results establish chiral tellurium as an ideal compound not just to study the fundamental interplay between crystal structure, symmetry operations and nonlinear transport; but also to develop wireless rectifiers and energy-harvesting chiral devices.
Collapse
Affiliation(s)
| | - Beatriz Martín-García
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Basque Country, Spain
| | - Witold Skowroński
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain
- AGH University of Krakow, Institute of Electronics, 30-059 Kraków, Poland
| | - F Calavalle
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Stepan S Tsirkin
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Basque Country, Spain
- Centro de Física de Materiales CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Ivo Souza
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Basque Country, Spain
- Centro de Física de Materiales CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Fernando De Juan
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Basque Country, Spain
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Andrey Chuvilin
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Basque Country, Spain
| | - Albert Fert
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Basque Country, Spain
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Department of Materials Physics UPV/EHU, 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Marco Gobbi
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Basque Country, Spain
- Centro de Física de Materiales CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Fèlix Casanova
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Basque Country, Spain
| | - Luis E Hueso
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Basque Country, Spain
| |
Collapse
|
14
|
De Beule C, Mele EJ. Berry Curvature Spectroscopy from Bloch Oscillations. PHYSICAL REVIEW LETTERS 2023; 131:196603. [PMID: 38000436 DOI: 10.1103/physrevlett.131.196603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 11/26/2023]
Abstract
Artificial crystals such as moiré superlattices can have a real-space periodicity much larger than the underlying atomic scale. This facilitates the presence of Bloch oscillations in the presence of a static electric field. We demonstrate that the optical response of such a system, when dressed with a static field, becomes resonant at the frequencies of Bloch oscillations, which are in the terahertz regime when the lattice constant is of the order of 10 nm. In particular, we show within a semiclassical band-projected theory that resonances in the dressed Hall conductivity are proportional to the lattice Fourier components of the Berry curvature. We illustrate our results with a low-energy model on an effective honeycomb lattice.
Collapse
Affiliation(s)
- Christophe De Beule
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - E J Mele
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
15
|
Zhao TY, Wang AQ, Ye XG, Liu XY, Liao X, Liao ZM. Gate-Tunable Berry Curvature Dipole Polarizability in Dirac Semimetal Cd_{3}As_{2}. PHYSICAL REVIEW LETTERS 2023; 131:186302. [PMID: 37977647 DOI: 10.1103/physrevlett.131.186302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
We reveal the gate-tunable Berry curvature dipole polarizability in Dirac semimetal Cd_{3}As_{2} nanoplates through measurements of the third-order nonlinear Hall effect. Under an applied electric field, the Berry curvature exhibits an asymmetric distribution, forming a field-induced Berry curvature dipole, resulting in a measurable third-order Hall voltage with a cubic relationship to the longitudinal electric field. Notably, the magnitude and polarity of this third-order nonlinear Hall effect can be effectively modulated by gate voltages. Furthermore, our scaling relation analysis demonstrates that the sign of the Berry curvature dipole polarizability changes when tuning the Fermi level across the Dirac point, in agreement with theoretical calculations. The results highlight the gate control of nonlinear quantum transport in Dirac semimetals, paving the way for promising advancements in topological electronics.
Collapse
Affiliation(s)
- Tong-Yang Zhao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China and Hefei National Laboratory, Hefei 230088, China
| | - An-Qi Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China and Hefei National Laboratory, Hefei 230088, China
| | - Xing-Guo Ye
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China and Hefei National Laboratory, Hefei 230088, China
| | - Xing-Yu Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China and Hefei National Laboratory, Hefei 230088, China
| | - Xin Liao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China and Hefei National Laboratory, Hefei 230088, China
| | - Zhi-Min Liao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China and Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
16
|
De Beule C, Phong VT, Mele EJ. Roses in the nonperturbative current response of artificial crystals. Proc Natl Acad Sci U S A 2023; 120:e2306384120. [PMID: 37856548 PMCID: PMC10614611 DOI: 10.1073/pnas.2306384120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
In two-dimensional artificial crystals with large real-space periodicity, the nonlinear current response to a large applied electric field can feature a strong angular dependence, which encodes information about the band dispersion and Berry curvature of isolated electronic Bloch minibands. Within the relaxation-time approximation, we obtain analytic expressions up to infinite order in the driving field for the current in a band-projected theory with time-reversal and trigonal symmetry. For a fixed field strength, the dependence of the current on the direction of the applied field is given by rose curves whose petal structure is symmetry constrained and is obtained from an expansion in real-space translation vectors. We illustrate our theory with calculations on periodically buckled graphene and twisted double bilayer graphene, wherein the discussed physics can be accessed at experimentally relevant field strengths.
Collapse
Affiliation(s)
- Christophe De Beule
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA19104
- Department of Physics and Materials Science, University of Luxembourg, LuxembourgL-1511, Luxembourg
| | - Võ Tiến Phong
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA19104
| | - E. J. Mele
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
17
|
Jin Z, Yao X, Wang Z, Yuan HY, Zeng Z, Wang W, Cao Y, Yan P. Nonlinear Topological Magnon Spin Hall Effect. PHYSICAL REVIEW LETTERS 2023; 131:166704. [PMID: 37925727 DOI: 10.1103/physrevlett.131.166704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/03/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
When a magnon passes through two-dimensional magnetic textures, it will experience a fictitious magnetic field originating from the 3×3 skew-symmetric gauge fields. To date, only one of the three independent components of the gauge fields has been found to play a role in generating the fictitious magnetic field, while the other two are perfectly hidden. In this Letter, we show that they are concealed in the nonlinear magnon transport in magnetic textures. Without loss of generality, we theoretically study the nonlinear magnon-skyrmion interaction in antiferromagnets. By analyzing the scattering features of three-magnon processes between the circularly polarized incident magnon and breathing skyrmion, we predict a giant Hall angle of both the confluence and splitting modes. Furthermore, we find that the Hall angle reverses its sign when one switches the handedness of the incident magnons. We dub this the nonlinear topological magnon spin Hall effect. Our findings are deeply rooted in the bosonic nature of magnons that the particle number is not conserved, which has no counterpart in low-energy fermionic systems and may open the door for probing gauge fields by nonlinear means.
Collapse
Affiliation(s)
- Zhejunyu Jin
- School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianglong Yao
- School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhenyu Wang
- School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - H Y Yuan
- Institute for Theoretical Physics, Utrecht University, 3584 CC Utrecht, Netherlands
| | - Zhaozhuo Zeng
- School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Weiwei Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yunshan Cao
- School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Peng Yan
- School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
18
|
Huang M, Wu Z, Zhang X, Feng X, Zhou Z, Wang S, Chen Y, Cheng C, Sun K, Meng ZY, Wang N. Intrinsic Nonlinear Hall Effect and Gate-Switchable Berry Curvature Sliding in Twisted Bilayer Graphene. PHYSICAL REVIEW LETTERS 2023; 131:066301. [PMID: 37625039 DOI: 10.1103/physrevlett.131.066301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/14/2023] [Accepted: 06/26/2023] [Indexed: 08/27/2023]
Abstract
Though the observation of the quantum anomalous Hall effect and nonlocal transport response reveals nontrivial band topology governed by the Berry curvature in twisted bilayer graphene, some recent works reported nonlinear Hall signals in graphene superlattices that are caused by the extrinsic disorder scattering rather than the intrinsic Berry curvature dipole moment. In this Letter, we report a Berry curvature dipole induced intrinsic nonlinear Hall effect in high-quality twisted bilayer graphene devices. We also find that the application of the displacement field substantially changes the direction and amplitude of the nonlinear Hall voltages, as a result of a field-induced sliding of the Berry curvature hotspots. Our Letter not only proves that the Berry curvature dipole could play a dominant role in generating the intrinsic nonlinear Hall signal in graphene superlattices with low disorder densities, but also demonstrates twisted bilayer graphene to be a sensitive and fine-tunable platform for second harmonic generation and rectification.
Collapse
Affiliation(s)
- Meizhen Huang
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zefei Wu
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xu Zhang
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China
| | - Xuemeng Feng
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zishu Zhou
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shi Wang
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yong Chen
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Zi Yang Meng
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
19
|
Wang J, Zeng H, Duan W, Huang H. Intrinsic Nonlinear Hall Detection of the Néel Vector for Two-Dimensional Antiferromagnetic Spintronics. PHYSICAL REVIEW LETTERS 2023; 131:056401. [PMID: 37595209 DOI: 10.1103/physrevlett.131.056401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/29/2023] [Accepted: 06/30/2023] [Indexed: 08/20/2023]
Abstract
The respective unique merit of antiferromagnets and two-dimensional (2D) materials in spintronic applications inspires us to exploit 2D antiferromagnetic spintronics. However, the detection of the Néel vector in 2D antiferromagnets remains a great challenge because the measured signals usually decrease significantly in the 2D limit. Here we propose that the Néel vector of 2D antiferromagnets can be efficiently detected by the intrinsic nonlinear Hall (INH) effect which exhibits unexpected significant signals. As a specific example, we show that the INH conductivity of the monolayer manganese chalcogenides MnX (X=S, Se, Te) can reach the order of nm·mA/V^{2}, which is orders of magnitude larger than experimental values of paradigmatic antiferromagnetic spintronic materials. The INH effect can be accurately controlled by shifting the chemical potential around the band edge, which is experimentally feasible via electric gating or charge doping. Moreover, we explicitly demonstrate its 2π-periodic dependence on the Néel vector orientation based on an effective k·p model. Our findings enable flexible design schemes and promising material platforms for spintronic memory device applications based on 2D antiferromagnets.
Collapse
Affiliation(s)
- Jizhang Wang
- School of Physics, Peking University, Beijing 100871, China
| | - Hui Zeng
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Wenhui Duan
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Huaqing Huang
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Center for High Energy Physics, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Phong VT, Mele EJ. Quantum Geometric Oscillations in Two-Dimensional Flat-Band Solids. PHYSICAL REVIEW LETTERS 2023; 130:266601. [PMID: 37450787 DOI: 10.1103/physrevlett.130.266601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/21/2023] [Indexed: 07/18/2023]
Abstract
Two-dimensional van der Waals heterostructures can be engineered into artificial superlattices that host flat bands with significant Berry curvature and provide a favorable environment for the emergence of novel electron dynamics. In particular, the Berry curvature can induce an oscillating trajectory of an electron wave packet transverse to an applied static electric field. Though analogous to Bloch oscillations, this novel oscillatory behavior is driven entirely by quantum geometry in momentum space instead of band dispersion. While the current from Bloch oscillations can be localized by increasing field strength, the current from the geometric orbits saturates to a nonzero plateau in the strong-field limit. In nonmagnetic materials, the geometric oscillations are even under inversion of the applied field, whereas the Bloch oscillations are odd, a property that can be used to distinguish these two coexisting effects.
Collapse
Affiliation(s)
- Võ Tiến Phong
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - E J Mele
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|