1
|
Xue Q, Sun Y, Zhou J. Nonlinear Optics-Driven Spin Reorientation in Ferromagnetic Materials. ACS NANO 2024; 18:24317-24326. [PMID: 39172468 DOI: 10.1021/acsnano.4c06453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Based on nonlinear optics, we propose that light irradiation could induce a nonequilibrium steady state magnetization variation. We formulize a band theory to elucidate its general microscopic mechanisms, which are rooted by the quantum geometric structure and topological nature of electronic Bloch wave functions. The existence is determined by the light polarization and specific material symmetry, based on the magnetic group theory. In general, for a magnetic system, both circularly and linearly polarized light could exert an effective magnetic field and a magnetic "velocity" (magnetization variation rate over time, serving as an effective torque) to reorient the magnetization direction. They are contributed by spin and orbital angular momenta simultaneously. Aided by group theory and first-principles calculations, we illustrate this theory using a showcase example of monolayer NiCl2, showing that light irradiation effectively generates an out-of-plane effective magnetic torque, which lifts its in-plane easy magnetization. According to magnetic dynamic simulations, under light with a modest intensity, this switching could occur on the order of 0.1-1 ns time scale, demonstrating its ultrafast nature that is desirable for quantum manipulation.
Collapse
Affiliation(s)
- Qianqian Xue
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yan Sun
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhou
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Barhoumi M, Liu J, Hübner W, Lefkidis G. Using single and double laser pulses on the molecular Ni 4@C 48H 36 system to design integrated nanospintronic units. Phys Chem Chem Phys 2024; 26:16070-16090. [PMID: 38780108 DOI: 10.1039/d4cp00523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The accomplishment of long-distance spin transfer scenarios between several magnetic centers is a big challenge for building and supporting spin-logic units for developing future all-optical magnetic unit operations. Using high-level quantum chemistry theory CCSD and EOM-CCSD, we systematically study the ultrafast laser-induced spin-dynamics process on a carbon-based material, to which four magnetic centers are attached. We show that the CCSD method with the 6-31G basis set calculation is sensitive to the C-Ni bond length. The spin density distribution, which is computed using EOM-CCSD with LanL2DZ+ECP calculations, Mulliken population analysis, including spin-orbit-coupling (SOC) and a magnetic field, fulfills the requirements for achieving spin dynamics processes. Different local spin-flip and spin-transfer processes are accomplished within the subpicosecond regime. The impact of the propagation direction of the laser pulse by switching their polar and the azimuthal angles in spherical coordinates on the spin dynamics processes is analyzed. Double laser pulses with time delay δt ≥ 200 × FWHM yield in a realistic magnetic field gradient selectively a lateral resolution, which corresponds to distances smaller than the CMOS scale (2 nm in 2024) while our system size is comparable to the CMOS scale. Here Λ and V processes with two quasi-degenerate intermediate levels are used. We propose a model of an integrated spin-logic processor created from an array of individual spin-logic blocks, which are realized by four magnetic centers Ni. The findings of this study demonstrate the enormous potential of using laser-induced spin dynamics as the fundamental mechanism for future molecular magnetic technology.
Collapse
Affiliation(s)
- Mohamed Barhoumi
- Deutsche Telekom Chair of Communication Networks, Institute of Communication Technology, Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
- Quantum Communication Networks (QCNets) Research Group, Institute of Communication Technology, Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU) Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany.
| | - Jing Liu
- Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
| | - Wolfgang Hübner
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU) Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany.
| | - Georgios Lefkidis
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU) Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany.
- Department of Engineering Mechanics, Northwestern Polytechnical University, 710072 Xi'an, China
| |
Collapse
|
3
|
Wang H, Huang YX, Liu H, Feng X, Zhu J, Wu W, Xiao C, Yang SA. Orbital Origin of the Intrinsic Planar Hall Effect. PHYSICAL REVIEW LETTERS 2024; 132:056301. [PMID: 38364160 DOI: 10.1103/physrevlett.132.056301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
Recent experiments reported an antisymmetric planar Hall effect, where the Hall current is odd in the in plane magnetic field and scales linearly with both electric and magnetic fields applied. Existing theories rely exclusively on a spin origin, which requires spin-orbit coupling to take effect. Here, we develop a general theory for the intrinsic planar Hall effect (IPHE), highlighting a previously unknown orbital mechanism and connecting it to a band geometric quantity-the anomalous orbital polarizability (AOP). Importantly, the orbital mechanism does not request spin-orbit coupling, so sizable IPHE can occur and is dominated by an orbital contribution in systems with weak spin-orbit coupling. Combined with first-principles calculations, we demonstrate our theory with quantitative evaluation for bulk materials TaSb_{2}, NbAs_{2}, and SrAs_{3}. We further show that AOP and its associated orbital IPHE can be greatly enhanced at topological band crossings, offering a new way to probe topological materials.
Collapse
Affiliation(s)
- Hui Wang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yue-Xin Huang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
- School of Sciences, Great Bay University, Dongguan 523000, China
- Great Bay Institute for Advanced Study, Dongguan 523000, China
| | - Huiying Liu
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
- School of Physics, Beihang University, Beijing 100191, China
| | - Xiaolong Feng
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, D-01187 Dresden, Germany
| | - Jiaojiao Zhu
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Weikang Wu
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Cong Xiao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
- Department of Physics, The University of Hong Kong, Hong Kong, China
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
| | - Shengyuan A Yang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
| |
Collapse
|
4
|
Barhoumi M, Liu J, Lefkidis G, Hübner W. Laser-induced ultrafast spin-transfer processes in non-linear zigzag carbon chain systems. Phys Chem Chem Phys 2023; 25:24563-24580. [PMID: 37661835 DOI: 10.1039/d3cp02483k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
We combine the high-level quantum chemistry theory CCSD and EOM-CCSD together with local and global Λ processes to investigate the details of the laser-induced ultrafast spin manipulation scenarios in non-linear zigzag carbon chain systems Ni2@C32H32 and Ni2@C36H36. The spin density distribution, which is calculated on each many-body state using a Mulliken population analysis, fulfills the requirements to accomplish the spin dynamics processes. Various spin-flip and spin-transfer scenarios are accomplished. All the spin-dynamics processes can be achieved within subpicosecond times. Under the influence of a magnetic field, we find that the spin-transfer scenarios are preserved, while the local spin-flip scenario on a Ni atom can be significantly inhibited depending on the strength of the magnetic field. The impact of the propagation direction of the laser pulse on the spin dynamics processes by varying their polar and azimuthal angles in spherical coordinates is investigated. Additionally, we find that double laser pulses successfully induce the spin-transfer processes. Our outcomes underline the significant potential of carbon chain systems as building blocks for developing future all-optical integrated logic processing units.
Collapse
Affiliation(s)
- Mohamed Barhoumi
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU) Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany.
| | - Jing Liu
- Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
| | - Georgios Lefkidis
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU) Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany.
| | - Wolfgang Hübner
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU) Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany.
| |
Collapse
|