1
|
Graham JN, Liu H, Sazgari V, Mielke III C, Medarde M, Luetkens H, Khasanov R, Shi Y, Guguchia Z. Microscopic probing of the superconducting and normal state properties of Ta 2V 3.1Si 0.9 by muon spin rotation. COMMUNICATIONS MATERIALS 2024; 5:225. [PMID: 39398529 PMCID: PMC11469957 DOI: 10.1038/s43246-024-00666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
The two-dimensional kagome lattice is an experimental playground for novel physical phenomena, from frustrated magnetism and topological matter to chiral charge order and unconventional superconductivity. A newly identified kagome superconductor, Ta2V3.1Si0.9 has recently gained attention for possessing a record high critical temperature, T C = 7.5 K for kagome metals at ambient pressure. In this study we conducted a series of muon spin rotation measurements to delve deeper into understanding the superconducting and normal state properties of Ta2V3.1Si0.9. We demonstrate that Ta2V3.1Si0.9 is a bulk superconductor with either a s+s-wave or anisotropic s-wave gap symmetry, and has an unusual paramagnetic shift in response to external magnetic fields in the superconducting state. Additionally, we observe an exceptionally low superfluid density - a distinctive characteristic of unconventional superconductivity - which remarkably is comparable to the superfluid density found in hole-doped cuprates. In its normal state, Ta2V3.1Si0.9 exhibits a significant increase in the zero-field muon spin depolarisation rate, starting at approximately 150 K, which has been observed in other kagome-lattice superconductors, and therefore hints at possible hidden magnetism. These findings characterise Ta2V3.1Si0.9 as an unconventional superconductor and a noteworthy new member of the vanadium-based kagome material family.
Collapse
Affiliation(s)
- J. N. Graham
- PSI Center for Neutron and Muon Sciences CNM, 5232 Villigen PSI, Switzerland
| | - H. Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190 China
| | - V. Sazgari
- PSI Center for Neutron and Muon Sciences CNM, 5232 Villigen PSI, Switzerland
| | - C. Mielke III
- PSI Center for Neutron and Muon Sciences CNM, 5232 Villigen PSI, Switzerland
| | - M. Medarde
- PSI Center for Neutron and Muon Sciences CNM, 5232 Villigen PSI, Switzerland
| | - H. Luetkens
- PSI Center for Neutron and Muon Sciences CNM, 5232 Villigen PSI, Switzerland
| | - R. Khasanov
- PSI Center for Neutron and Muon Sciences CNM, 5232 Villigen PSI, Switzerland
| | - Y. Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190 China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808 China
| | - Z. Guguchia
- PSI Center for Neutron and Muon Sciences CNM, 5232 Villigen PSI, Switzerland
| |
Collapse
|
2
|
Miura M, Eley S, Iida K, Hanzawa K, Matsumoto J, Hiramatsu H, Ogimoto Y, Suzuki T, Kobayashi T, Ozaki T, Kurokawa H, Sekiya N, Yoshida R, Kato T, Okada T, Okazaki H, Yamaki T, Hänisch J, Awaji S, Maeda A, Maiorov B, Hosono H. Quadrupling the depairing current density in the iron-based superconductor SmFeAsO 1-xH x. NATURE MATERIALS 2024; 23:1370-1378. [PMID: 39026087 PMCID: PMC11442304 DOI: 10.1038/s41563-024-01952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
Iron-based 1111-type superconductors display high critical temperatures and relatively high critical current densities Jc. The typical approach to increasing Jc is to introduce defects to control dissipative vortex motion. However, when optimized, this approach is theoretically predicted to be limited to achieving a maximum Jc of only ∼30% of the depairing current density Jd, which depends on the coherence length and the penetration depth. Here we dramatically boost Jc in SmFeAsO1-xHx films using a thermodynamic approach aimed at increasing Jd and incorporating vortex pinning centres. Specifically, we reduce the penetration depth, coherence length and critical field anisotropy by increasing the carrier density through high electron doping using H substitution. Remarkably, the quadrupled Jd reaches 415 MA cm-2, a value comparable to cuprates. Finally, by introducing defects using proton irradiation, we obtain high Jc values in fields up to 25 T. We apply this method to other iron-based superconductors and achieve a similar enhancement of current densities.
Collapse
Affiliation(s)
- Masashi Miura
- Graduate School of Science and Technology, Seikei University, Tokyo, Japan.
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM, USA.
- Fusion Oriented REsearch for disruptive Science and Technology (FOREST), Japan Science and Technology Agency (JST), Tokyo, Japan.
| | - Serena Eley
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Kazumasa Iida
- College of Industrial Technology, Nihon University, Chiba, Japan
| | - Kota Hanzawa
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Jumpei Matsumoto
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hidenori Hiramatsu
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuki Ogimoto
- Graduate School of Science and Technology, Seikei University, Tokyo, Japan
| | - Takumi Suzuki
- Graduate School of Science and Technology, Seikei University, Tokyo, Japan
| | - Tomoki Kobayashi
- Department of Basic Science, The University of Tokyo, Tokyo, Japan
| | | | - Hodaka Kurokawa
- The Institute of Advanced Sciences, Yokohama National University, Yokohama, Japan
| | - Naoto Sekiya
- Department of Electrical and Electronic Engineering, University of Yamanashi, Kofu, Japan
| | - Ryuji Yoshida
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya, Japan
| | - Takeharu Kato
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya, Japan
| | - Tatsunori Okada
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Hiroyuki Okazaki
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Japan
| | - Tetsuya Yamaki
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Japan
| | - Jens Hänisch
- Institute for Technical Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Satoshi Awaji
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Atsutaka Maeda
- Department of Basic Science, The University of Tokyo, Tokyo, Japan
| | - Boris Maiorov
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Hideo Hosono
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama, Japan
- National Institute for Materials Science (NIMS), Tsukuba, Japan
| |
Collapse
|
3
|
Ye S, Xu M, Yan H, Li ZX, Zou C, Li X, Hao Z, Yin C, Chen Y, Zhou X, Lee DH, Wang Y. Emergent normal fluid in the superconducting ground state of overdoped cuprates. Nat Commun 2024; 15:4939. [PMID: 38858381 PMCID: PMC11164957 DOI: 10.1038/s41467-024-49325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
The microscopic mechanism for the disappearance of superconductivity in overdoped cuprates is still under heated debate. Here we use scanning tunneling spectroscopy to investigate the evolution of quasiparticle interference phenomenon in Bi2Sr2CuO6+δ over a wide range of hole densities. We find that when the system enters the overdoped regime, a peculiar quasiparticle interference wavevector with arc-like pattern starts to emerge even at zero bias, and its intensity grows with increasing doping level. Its energy dispersion is incompatible with the octet model for d-wave superconductivity, but is highly consistent with the scattering interference of gapless normal carriers. The gapless quasiparticles are mainly located near the antinodes and are independent of temperature, consistent with the disorder scattering mechanism. We propose that a branch of normal fluid emerges from the pair-breaking scattering between flat antinodal bands in the quantum ground state, which is the primary cause for the reduction of superfluid density and suppression of superconductivity in overdoped cuprates.
Collapse
Affiliation(s)
- Shusen Ye
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, P. R. China
| | - Miao Xu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, P. R. China
| | - Hongtao Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Zi-Xiang Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China
- Department of Physics, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Changwei Zou
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, P. R. China
| | - Xintong Li
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhenqi Hao
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, P. R. China
| | - Chaohui Yin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yiwen Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Dung-Hai Lee
- Department of Physics, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, P. R. China.
- New Cornerstone Science Laboratory, Frontier Science Center for Quantum Information, Beijing, P. R. China.
- Hefei National Laboratory, Hefei, P. R. China.
| |
Collapse
|
4
|
Hu S, Qiao J, Gu G, Xue QK, Zhang D. Vortex entropy and superconducting fluctuations in ultrathin underdoped Bi 2Sr 2CaCu 2O 8+x superconductor. Nat Commun 2024; 15:4818. [PMID: 38844439 PMCID: PMC11156657 DOI: 10.1038/s41467-024-48899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
Vortices in superconductors can help identify emergent phenomena but certain fundamental aspects of vortices, such as their entropy, remain poorly understood. Here, we study the vortex entropy in underdoped Bi2Sr2CaCu2O8+x by measuring both magneto-resistivity and Nernst effect on ultrathin flakes (≤2 unit-cell). We extract the London penetration depth from the magneto-transport measurements on samples with different doping levels. It reveals that the superfluid phase stiffness ρs scales linearly with the superconducting transition temperature Tc, down to the extremely underdoped case. On the same batch of ultrathin flakes, we measure the Nernst effect via on-chip thermometry. Together, we obtain the vortex entropy and find that it decays exponentially with Tc or ρs. We further analyze the Nernst signal above Tc in the framework of Gaussian superconducting fluctuations. The combination of electrical and thermoelectric measurements in the two-dimensional limit provides fresh insight into high temperature superconductivity.
Collapse
Affiliation(s)
- Shuxu Hu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Jiabin Qiao
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, School of Physics, Beijing Institute of Technology, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
| | - Genda Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Qi-Kun Xue
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
- Southern University of Science and Technology, Shenzhen, China.
- Frontier Science Center for Quantum Information, Beijing, China.
| | - Ding Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
- Frontier Science Center for Quantum Information, Beijing, China.
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, Japan.
| |
Collapse
|
5
|
Hiraishi M, Okabe H, Koda A, Kadono R, Muroi T, Hirai D, Hiroi Z. Nonmagnetic Ground State in RuO_{2} Revealed by Muon Spin Rotation. PHYSICAL REVIEW LETTERS 2024; 132:166702. [PMID: 38701457 DOI: 10.1103/physrevlett.132.166702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024]
Abstract
The magnetic ground state of single crystalline RuO_{2} was investigated by the muon spin rotation and relaxation (μSR) experiment. The spin precession signal due to the spontaneous internal magnetic field B_{loc}, which is expected in the magnetically ordered phase, was not observed in the temperature range 5-400 K. Muon sites were evaluated by first-principles calculations using dilute hydrogen simulating muon as pseudohydrogen, and B_{loc} was simulated for the antiferromagnetic structures with a Ru magnetic moment |m_{Ru}|≈0.05μ_{B} suggested from diffraction experiments. As a result, the possibility was ruled out that muons are localized at sites where B_{loc} accidentally cancels. Conversely, assuming that the slow relaxation observed in μSR spectra was part of the precession signal, the upper limit for the magnitude of |m_{Ru}| was estimated to be 4.8(2)×10^{-4}μ_{B}, which is significantly less than 0.05μ_{B}. These results indicate that the antiferromagnetic order, as reported, is unlikely to exist in the bulk crystal.
Collapse
Affiliation(s)
- M Hiraishi
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan
- Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - H Okabe
- Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
- Institute for Materials Research, Tohoku University (IMR), Aoba-ku, Sendai 980-8577, Japan
| | - A Koda
- Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
- Graduate University for Advanced Studies, SOKENDAI
| | - R Kadono
- Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - T Muroi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - D Hirai
- Department of Applied Physics, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Z Hiroi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
6
|
Khasanov R, Ruan BB, Shi YQ, Chen GF, Luetkens H, Ren ZA, Guguchia Z. Tuning of the flat band and its impact on superconductivity in Mo 5Si 3-xP x. Nat Commun 2024; 15:2197. [PMID: 38467628 PMCID: PMC10928102 DOI: 10.1038/s41467-024-46514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
The superconductivity in systems containing dispersionless (flat) bands is seemingly paradoxical, as traditional Bardeen-Cooper-Schrieffer theory requires an infinite enhancement of the carrier masses. However, the combination of flat and steep (dispersive) bands within the multiple band scenario might boost superconducting responses, potentially explaining high-temperature superconductivity in cuprates and metal hydrides. Here, we report on the magnetic penetration depths, the upper critical field, and the specific heat measurements, together with the first-principles calculations for the Mo5Si3-xPx superconducting family. The band structure features a flat band that gradually approaches the Fermi level as a function of phosphorus doping x, reaching the Fermi level at x ≃ 1.3. This leads to an abrupt change in nearly all superconducting quantities. The superfluid density data placed on the 'Uemura plot' results in two separated branches, thus indicating that the emergence of a flat band enhances correlations between conducting electrons.
Collapse
Affiliation(s)
- Rustem Khasanov
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland.
| | - Bin-Bin Ruan
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Yun-Qing Shi
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Gen-Fu Chen
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hubertus Luetkens
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Zhi-An Ren
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zurab Guguchia
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| |
Collapse
|
7
|
Jarjour A, Ferguson GM, Schaefer BT, Lee M, Loh YL, Trivedi N, Nowack KC. Superfluid response of an atomically thin gate-tuned van der Waals superconductor. Nat Commun 2023; 14:2055. [PMID: 37045826 PMCID: PMC10097715 DOI: 10.1038/s41467-023-37210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/03/2023] [Indexed: 04/14/2023] Open
Abstract
A growing number of two-dimensional superconductors are being discovered in the family of exfoliated van der Waals materials. Due to small sample volume, the superfluid response of these materials has not been characterized. Here, we use a local magnetic probe to directly measure this key property of the tunable, gate-induced superconducting state in MoS2. We find that the backgate changes the transition temperature non-monotonically whereas the superfluid stiffness at low temperature and the normal state conductivity monotonically increase. In some devices, we find direct signatures in agreement with a Berezinskii-Kosterlitz-Thouless transition, whereas in others we find a broadened onset of the superfluid response. We show that the observed behavior is consistent with disorder playing an important role in determining the properties of superconducting MoS2. Our work demonstrates that magnetic property measurements are within reach for superconducting devices based on exfoliated sheets and reveals that the superfluid response significantly deviates from simple BCS-like behavior.
Collapse
Affiliation(s)
- Alexander Jarjour
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - G M Ferguson
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Brian T Schaefer
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Menyoung Lee
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Yen Lee Loh
- Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND, USA
| | - Nandini Trivedi
- Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Katja C Nowack
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
| |
Collapse
|
8
|
Talantsev EF. D-Wave Superconducting Gap Symmetry as a Model for Nb1−xMoxB2 (x = 0.25; 1.0) and WB2 Diborides. Symmetry (Basel) 2023. [DOI: 10.3390/sym15040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Recently, Pei et al. (National Science Review2023, nwad034, 10.1093/nsr/nwad034) reported that ambient pressure β-MoB2 (space group: R3¯m) exhibits a phase transition to α-MoB2 (space group: P6/mmm) at pressure P~70 GPa, which is a high-temperature superconductor exhibiting Tc=32 K at P~110 GPa. Although α-MoB2 has the same crystalline structure as ambient-pressure MgB2 and the superconducting critical temperatures of α-MoB2 and MgB2 are very close, the first-principles calculations show that in α-MoB2, the states near the Fermi level, εF, are dominated by the d-electrons of Mo atoms, while in MgB2, the p-orbitals of boron atomic sheets dominantly contribute to the states near the εF. Recently, Hire et al. (Phys. Rev. B2022, 106, 174515) reported that the P6/mmm-phase can be stabilized at ambient pressure in Nb1−xMoxB2 solid solutions, and that these ternary alloys exhibit Tc~8 K. Additionally, Pei et al. (Sci. China-Phys. Mech. Astron. 2022, 65, 287412) showed that compressed WB2 exhibited Tc~15 K at P~121 GPa. Here, we aimed to reveal primary differences/similarities in superconducting state in MgB2 and in its recently discovered diboride counterparts, Nb1−xMoxB2 and highly-compressed WB2. By analyzing experimental data reported for P6/mmm-phases of Nb1−xMoxB2 (x = 0.25; 1.0) and highly compressed WB2, we showed that these three phases exhibit d-wave superconductivity. We deduced 2Δm(0)kBTc=4.1±0.2 for α-MoB2, 2Δm(0)kBTc=5.3±0.1 for Nb0.75Mo0.25B2, and 2Δm(0)kBTc=4.9±0.2 for WB2. We also found that Nb0.75Mo0.25B2 exhibited high strength of nonadiabaticity, which was quantified by the ratio of TθTF=3.5, whereas MgB2, α-MoB2, and WB2 exhibited TθTF~0.3, which is similar to the TθTF in pnictides, A15 alloys, Heusler alloys, Laves phase compounds, cuprates, and highly compressed hydrides.
Collapse
|
9
|
Ru H, Li Z, Wang S, Xiang B, Wang Y. Suppression and Revival of Superconducting Phase Coherence in Monolayer FeSe/SrTiO 3. NANO LETTERS 2022; 22:9997-10002. [PMID: 36519788 DOI: 10.1021/acs.nanolett.2c03587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Monolayer FeSe grown on SrTiO3 (FeSe/STO) is an interfacial high-temperature superconductor distinctively different from bulk FeSe. However, the superconducting phase coherence of the interface is challenging to probe due to its fragility in the atmosphere. Here, we perform in situ mutual inductance under ultrahigh vacuum on FeSe/STO in combination with band mapping by angle-resolved photoemission spectroscopy. We find that even though the monolayer shows a gap-closing temperature above 50 K, no diamagnetism is visible down to 5 K. This is the case for few-layer FeSe/STO until it exceeds a critical number of five layers, where diamagnetism suddenly appears. The suppression of diamagnetism in the monolayer is also lifted by depositing a top FeTe layer. However, Tc and superfluid density both decrease with thicker FeTe, suggesting unconventional electron pairing and phase coherence competition. Our observation may be understood by a scenario in which the interfacial superconducting phase coherence is highly anisotropic.
Collapse
Affiliation(s)
- Hao Ru
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhijie Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Shiyuan Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Bingke Xiang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Yihua Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, People's Republic of China
| |
Collapse
|
10
|
Talantsev EF. Quantifying Nonadiabaticity in Major Families of Superconductors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:71. [PMID: 36615981 PMCID: PMC9824585 DOI: 10.3390/nano13010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The classical Bardeen−Cooper−Schrieffer and Eliashberg theories of the electron−phonon-mediated superconductivity are based on the Migdal theorem, which is an assumption that the energy of charge carriers, kBTF, significantly exceeds the phononic energy, ℏωD, of the crystalline lattice. This assumption, which is also known as adiabatic approximation, implies that the superconductor exhibits fast charge carriers and slow phonons. This picture is valid for pure metals and metallic alloys because these superconductors exhibit ℏωDkBTF<0.01. However, for n-type-doped semiconducting SrTiO3, this adiabatic approximation is not valid, because this material exhibits ℏωDkBTF≅50. There is a growing number of newly discovered superconductors which are also beyond the adiabatic approximation. Here, leaving aside pure theoretical aspects of nonadiabatic superconductors, we classified major classes of superconductors (including, elements, A-15 and Heusler alloys, Laves phases, intermetallics, noncentrosymmetric compounds, cuprates, pnictides, highly-compressed hydrides, and two-dimensional superconductors) by the strength of nonadiabaticity (which we defined by the ratio of the Debye temperature to the Fermi temperature, TθTF). We found that the majority of analyzed superconductors fall into the 0.025≤TθTF≤0.4 band. Based on the analysis, we proposed the classification scheme for the strength of nonadiabatic effects in superconductors and discussed how this classification is linked with other known empirical taxonomies in superconductivity.
Collapse
Affiliation(s)
- Evgueni F. Talantsev
- M. N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18 S. Kovalevskoy Str., 620108 Ekaterinburg, Russia; ; Tel.: +7-912-676-0374
- NANOTECH Centre, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| |
Collapse
|
11
|
Botana MM, Ramallo MV. A Scenario for the Critical Fluctuations near the Transition of Few-Bilayer Films of High-Temperature Cuprate Superconductors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4368. [PMID: 36558221 PMCID: PMC9781180 DOI: 10.3390/nano12244368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
We study the critical fluctuations near the resistive transition of very thin films of high-temperature cuprate superconductors composed of a number N of only a few unit cells of superconducting bilayers. For that, we solve the fluctuation spectrum of a Gaussian-Ginzburg-Landau model for few-bilayers superconductors considering two alternating Josephson interlayer interaction strengths, and we obtain the corresponding paraconductivity above the transition. Then, we extend these calculations to temperatures below the transition through expressions for the Ginzburg number and Kosterlitz-Thouless-like critical region. When compared with previously available data in YBa2Cu3O7-δ few-bilayers systems, with N = 1 to 4, our results seem to provide a plausible scenario for their critical regime.
Collapse
Affiliation(s)
- Martín M. Botana
- Quantum Materials and Photonics Research Group (QMatterPhotonics), Department of Particle Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Materiais (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel V. Ramallo
- Quantum Materials and Photonics Research Group (QMatterPhotonics), Department of Particle Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Materiais (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Liu Y, Huang H, Yuan J, Zhang Y, Feng H, Chen N, Li Y, Teng J, Jin K, Xue D, Su Y. Upper limit of the transition temperature of superconducting materials. PATTERNS (NEW YORK, N.Y.) 2022; 3:100609. [PMID: 36419453 PMCID: PMC9676523 DOI: 10.1016/j.patter.2022.100609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/05/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022]
Abstract
Why are the transition temperatures (T c) of superconducting materials so different? The answer to this question is not only of great significance in revealing the mechanism of high-T c superconductivity but also can be used as a guide for the design of new superconductors. However, so far, it is still challenging to identify the governing factors affecting the T c. In this work, with the aid of machine learning and first-principles calculations, we found a close relevance between the upper limit of the T c and the energy-level distribution of valence electrons. It implies that some additional inter-orbital electron-electron interaction should be considered in the interpretation of high-T c superconductivity.
Collapse
Affiliation(s)
- Yang Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyou Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Yuan
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongyuan Feng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Li
- Department of Engineering Science and Materials, University of Puerto Rico, Mayaguez, PR 00681-9000, USA
| | - Jiao Teng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kui Jin
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dezhen Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yanjing Su
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
13
|
Mielke Iii C, Liu H, Das D, Yin JX, Deng LZ, Spring J, Gupta R, Medarde M, Chu CW, Khasanov R, Hasan ZM, Shi Y, Luetkens H, Guguchia Z. Local spectroscopic evidence for a nodeless magnetic kagome superconductor CeRu 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:485601. [PMID: 36202080 DOI: 10.1088/1361-648x/ac9813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
We report muon spin rotation (µSR) experiments on the microscopic properties of superconductivity and magnetism in the kagome superconductor CeRu2withTc≃5 K. From the measurements of the temperature-dependent magnetic penetration depthλ, the superconducting order parameter exhibits nodeless pairing, which fits best to an anisotropics-wave gap symmetry. We further show that theTc/λ-2ratio is comparable to that of unconventional superconductors. Furthermore, the powerful combination of zero-field (ZF)-µSR and high-fieldµSR has been used to uncover magnetic responses across three characteristic temperatures, identified asT1∗≃110 K,T2∗≃65 K, andT3∗≃40 K. Our experiments classify CeRu2as an exceedingly rare nodeless magnetic kagome superconductor.
Collapse
Affiliation(s)
- C Mielke Iii
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - H Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - D Das
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - J-X Yin
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ 08544, United States of America
| | - L Z Deng
- Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX, United States of America
| | - J Spring
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - R Gupta
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - M Medarde
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - C-W Chu
- Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX, United States of America
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - R Khasanov
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Z M Hasan
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ 08544, United States of America
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08540, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
- Quantum Science Center, Oak Ridge, TN 37831, United States of America
| | - Y Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - H Luetkens
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Z Guguchia
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
14
|
On the electron pairing mechanism of copper-oxide high temperature superconductivity. Proc Natl Acad Sci U S A 2022; 119:e2207449119. [PMID: 36067325 PMCID: PMC9477408 DOI: 10.1073/pnas.2207449119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The elementary CuO2 plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO5 pyramids. Virtual transitions of electrons between adjacent planar Cu and O atoms, occurring at a rate t/ℏ and across the charge-transfer energy gap [Formula: see text], generate "superexchange" spin-spin interactions of energy [Formula: see text] in an antiferromagnetic correlated-insulator state. However, hole doping this CuO2 plane converts this into a very-high-temperature superconducting state whose electron pairing is exceptional. A leading proposal for the mechanism of this intense electron pairing is that, while hole doping destroys magnetic order, it preserves pair-forming superexchange interactions governed by the charge-transfer energy scale [Formula: see text]. To explore this hypothesis directly at atomic scale, we combine single-electron and electron-pair (Josephson) scanning tunneling microscopy to visualize the interplay of [Formula: see text] and the electron-pair density nP in Bi2Sr2CaCu2O8+x. The responses of both [Formula: see text] and nP to alterations in the distance δ between planar Cu and apical O atoms are then determined. These data reveal the empirical crux of strongly correlated superconductivity in CuO2, the response of the electron-pair condensate to varying the charge-transfer energy. Concurrence of predictions from strong-correlation theory for hole-doped charge-transfer insulators with these observations indicates that charge-transfer superexchange is the electron-pairing mechanism of superconductive Bi2Sr2CaCu2O8+x.
Collapse
|
15
|
Harrison N, Chan MK. Magic Gap Ratio for Optimally Robust Fermionic Condensation and Its Implications for High-T_{c} Superconductivity. PHYSICAL REVIEW LETTERS 2022; 129:017001. [PMID: 35841553 DOI: 10.1103/physrevlett.129.017001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Bardeen-Schrieffer-Cooper (BCS) and Bose-Einstein condensation (BEC) occur at opposite limits of a continuum of pairing interaction strength between fermions. A crossover between these limits is readily observed in a cold atomic Fermi gas. Whether it occurs in other systems such as the high temperature superconducting cuprates has remained an open question. We uncover here unambiguous evidence for a BCS-BEC crossover in the cuprates by identifying a universal magic gap ratio 2Δ/k_{B}T_{c}≈6.5 (where Δ is the pairing gap and T_{c} is the transition temperature) at which paired fermion condensates become optimally robust. At this gap ratio, corresponding to the unitary point in a cold atomic Fermi gas, the measured condensate fraction N_{0} and the height of the jump δγ(T_{c}) in the coefficient γ of the fermionic specific heat at T_{c} are strongly peaked. In the cuprates, δγ(T_{c}) is peaked at this gap ratio when Δ corresponds to the antinodal spectroscopic gap, thus reinforcing its interpretation as the pairing gap. We find the peak in δγ(T_{c}) also to coincide with a normal state maximum in γ, which is indicative of a pairing fluctuation pseudogap above T_{c}.
Collapse
Affiliation(s)
- N Harrison
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M K Chan
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
16
|
Peculiar Physics of Heavy-Fermion Metals: Theory versus Experiment. ATOMS 2022. [DOI: 10.3390/atoms10030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This review considers the topological fermion condensation quantum phase transition (FCQPT) that leads to flat bands and allows the elucidation of the special behavior of heavy-fermion (HF) metals that is not exhibited by common metals described within the framework of the Landau Fermi liquid (LFL) theory. We bring together theoretical consideration within the framework of the fermion condensation theory based on the FCQPT with experimental data collected on HF metals. We show that very different HF metals demonstrate universal behavior induced by the FCQPT and demonstrate that Fermi systems near the FCQPT are controlled by the Fermi quasiparticles with the effective mass M* strongly depending on temperature T, magnetic field B, pressure P, etc. Within the framework of our analysis, the experimental data regarding the thermodynamic, transport and relaxation properties of HF metal are naturally described. Based on the theory, we explain a number of experimental data and show that the considered HF metals exhibit peculiar properties such as: (1) the universal T/B scaling behavior; (2) the linear dependence of the resistivity on T, ρ(T)∝A1T (with A1 is a temperature-independent coefficient), and the negative magnetoresistance; (3) asymmetrical dependence of the tunneling differential conductivity (resistivity) on the bias voltage; (4) in the case of a flat band, the superconducting critical temperature Tc∝g with g being the coupling constant, while the M* becomes finite; (5) we show that the so called Planckian limit exhibited by HF metals with ρ(T)∝T is defined by the presence of flat bands.
Collapse
|
17
|
Chávez I, Grether M, de Llano M. Superconductor superfluid density from the Bardeen–Cooper–Schrieffer/Bose crossover theory. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Abstract
The superfluid density $$n_{s}(T)$$
n
s
(
T
)
of a superconductor is calculated based on the generalized Bose–Einstein condensation (GBEC) theory that addresses a fully-interacting ternary boson-fermion gas mixture of free electrons as fermions, plus two-electron Cooper pairs (2eCPs) and also, explicitly, two-hole Cooper pairs (2hCPs), both as bosons. Here we consider two special cases (i) 100%–0% (i.e., with no condensed 2hCPs) and (ii) 0%–100% (i.e., with no condensed 2eCPs). Subsumed in GBEC are the Bardeen–Cooper–Schrieffer (BCS) and Bose–Einstein condensation (BEC) theories along with the BCS-BEC crossover theory extended with 2hCPs. We find that in the weak-coupling regime $$n_{s}(0)$$
n
s
(
0
)
agrees with data from the Uemura et al. (2004) graph for several elemental SCs by taking in 3D with a quadratic energy-dispersion relation while in 2D with a linear relation are much too far below the data. In the strong-coupling regime the linear behavior of critical temperature $$T_{c}$$
T
c
vs $$n_{s}(0)$$
n
s
(
0
)
obtained here is just as Božović et al. (2016) found. However, in 2D with a linear relation accounting for 0%–100%, $$n_{s}(T)/n_{s}(0)$$
n
s
(
T
)
/
n
s
(
0
)
compares well with some high-$$T_{c}$$
T
c
-cuprate SC data between the two coupling regimes.
Collapse
|
18
|
Wang QH, Bedoya-Pinto A, Blei M, Dismukes AH, Hamo A, Jenkins S, Koperski M, Liu Y, Sun QC, Telford EJ, Kim HH, Augustin M, Vool U, Yin JX, Li LH, Falin A, Dean CR, Casanova F, Evans RFL, Chshiev M, Mishchenko A, Petrovic C, He R, Zhao L, Tsen AW, Gerardot BD, Brotons-Gisbert M, Guguchia Z, Roy X, Tongay S, Wang Z, Hasan MZ, Wrachtrup J, Yacoby A, Fert A, Parkin S, Novoselov KS, Dai P, Balicas L, Santos EJG. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS NANO 2022; 16:6960-7079. [PMID: 35442017 PMCID: PMC9134533 DOI: 10.1021/acsnano.1c09150] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/23/2022] [Indexed: 05/23/2023]
Abstract
Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.
Collapse
Affiliation(s)
- Qing Hua Wang
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Amilcar Bedoya-Pinto
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
- Instituto
de Ciencia Molecular (ICMol), Universitat
de València, 46980 Paterna, Spain
| | - Mark Blei
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Avalon H. Dismukes
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Assaf Hamo
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sarah Jenkins
- Twist
Group,
Faculty of Physics, University of Duisburg-Essen, Campus Duisburg, 47057 Duisburg, Germany
| | - Maciej Koperski
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Yu Liu
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Qi-Chao Sun
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
| | - Evan J. Telford
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Hyun Ho Kim
- School
of Materials Science and Engineering, Department of Energy Engineering
Convergence, Kumoh National Institute of
Technology, Gumi 39177, Korea
| | - Mathias Augustin
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Uri Vool
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John Harvard
Distinguished Science Fellows Program, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Jia-Xin Yin
- Laboratory
for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey 08544, United States
| | - Lu Hua Li
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Alexey Falin
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Cory R. Dean
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Fèlix Casanova
- CIC nanoGUNE
BRTA, 20018 Donostia - San Sebastián, Basque
Country, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Richard F. L. Evans
- Department
of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Mairbek Chshiev
- Université
Grenoble Alpes, CEA, CNRS, Spintec, 38000 Grenoble, France
- Institut
Universitaire de France, 75231 Paris, France
| | - Artem Mishchenko
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Cedomir Petrovic
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rui He
- Department
of Electrical and Computer Engineering, Texas Tech University, 910 Boston Avenue, Lubbock, Texas 79409, United
States
| | - Liuyan Zhao
- Department
of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Adam W. Tsen
- Institute
for Quantum Computing and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brian D. Gerardot
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Mauro Brotons-Gisbert
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Zurab Guguchia
- Laboratory
for Muon Spin Spectroscopy, Paul Scherrer
Institute, CH-5232 Villigen PSI, Switzerland
| | - Xavier Roy
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sefaattin Tongay
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Ziwei Wang
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - M. Zahid Hasan
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Princeton
Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Joerg Wrachtrup
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Amir Yacoby
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John A.
Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Albert Fert
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Unité
Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Department
of Materials Physics UPV/EHU, 20018 Donostia - San Sebastián, Basque Country, Spain
| | - Stuart Parkin
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
| | - Kostya S. Novoselov
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Pengcheng Dai
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Luis Balicas
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
- Department
of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
19
|
Rudshteyn B, Weber JL, Coskun D, Devlaminck PA, Zhang S, Reichman DR, Shee J, Friesner RA. Calculation of Metallocene Ionization Potentials via Auxiliary Field Quantum Monte Carlo: Toward Benchmark Quantum Chemistry for Transition Metals. J Chem Theory Comput 2022; 18:2845-2862. [PMID: 35377642 PMCID: PMC9123894 DOI: 10.1021/acs.jctc.1c01071] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The accurate ab initio prediction of ionization energies is essential to understanding the electrochemistry of transition metal complexes in both materials science and biological applications. However, such predictions have been complicated by the scarcity of gas phase experimental data, the relatively large size of the relevant molecules, and the presence of strong electron correlation effects. In this work, we apply all-electron phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) utilizing multideterminant trial wave functions to six metallocene complexes to compare the computed adiabatic and vertical ionization energies with experimental results. We find that ph-AFQMC yields mean absolute errors (MAEs) of 1.69 ± 1.02 kcal/mol for the adiabatic energies and 2.85 ± 1.13 kcal/mol for the vertical energies. We also carry out density functional theory (DFT) calculations using a variety of functionals, which yields MAEs of 3.62-6.98 kcal/mol and 3.31-9.88 kcal/mol, as well as one variant of localized coupled cluster calculations (DLPNO-CCSD(T0) with moderate PNO cutoffs), which has MAEs of 4.96 and 6.08 kcal/mol, respectively. We also test the reliability of DLPNO-CCSD(T0) and DFT on acetylacetonate (acac) complexes for adiabatic energies measured in the same manner experimentally, and we find higher MAEs, ranging from 4.56 to 10.99 kcal/mol (with a different ordering) for DFT and 6.97 kcal/mol for DLPNO-CCSD(T0). Finally, by utilizing experimental solvation energies, we show that accurate reduction potentials in solution for the metallocene series can be obtained from the AFQMC gas phase results.
Collapse
Affiliation(s)
- Benjamin Rudshteyn
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - John L Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Dilek Coskun
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Pierre A Devlaminck
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - James Shee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
20
|
Wang D, Xu JQ, Zhang HJ, Wang QH. Anisotropic Scattering Caused by Apical Oxygen Vacancies in Thin Films of Overdoped High-Temperature Cuprate Superconductors. PHYSICAL REVIEW LETTERS 2022; 128:137001. [PMID: 35426715 DOI: 10.1103/physrevlett.128.137001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/24/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
There is a hot debate on the anomalous behavior of superfluid density ρ_{s} in overdoped La_{2-x}Sr_{x}CuO_{4} films in recent years. The linear drop of ρ_{s} at low temperatures implies the superconductors are clean, but the linear scaling between ρ_{s} (in the zero temperature limit) and the transition temperature T_{c} is a hallmark of the dirty limit in the Bardeen-Cooper-Schrieffer (BCS) framework [I. Bozovic et al., Nature (London) 536, 309 (2016)NATUAS0028-083610.1038/nature19061]. This dichotomy motivated exotic theories beyond the standard BCS theory. We show, however, that such a dichotomy can be reconciled naturally by the role of increasing anisotropic scattering caused by the apical oxygen vacancies. Furthermore, the anisotropic scattering also explains the "missing" Drude weight upon doping in the optical conductivity, as reported in the THz experiment [F. Mahmood et al., Phys. Rev. Lett. 122, 027003 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.027003]. Therefore, the overdoped cuprates can actually be described consistently by the d-wave BCS theory with the unique anisotropic scattering.
Collapse
Affiliation(s)
- Da Wang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun-Qi Xu
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hai-Jun Zhang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qiang-Hua Wang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
21
|
Euclidean Q-Balls of Fluctuating SDW/CDW in the ‘Nested’ Hubbard Model of High-Tc Superconductors as the Origin of Pseudogap and Superconducting Behaviors. CONDENSED MATTER 2022. [DOI: 10.3390/condmat7020031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The origin of the pseudogap and superconducting behaviors in high-Tc superconductors is proposed, based on the picture of Euclidean Q-balls formation that carry Cooper/local-pair condensates inside their volumes. Euclidean Q-balls that describe bubbles of collective spin-/charge density fluctuations (SDW/CDW) oscillating in Matsubara time are found as a new self-consistent solution of the Eliashberg equations in the ‘nested’ repulsive Hubbard model of high-Tc superconductors. The Q-balls arise due to global invariance of the effective theory under the phase rotation of the Fourier amplitudes of SDW/CDW fluctuations, leading to conservation of the ‘Noether charge’ Q in Matsubara time. Due to self-consistently arising local minimum of their potential energy at finite amplitude of the density fluctuations, the Q-balls provide greater binding energy of fermions into local/Cooper pairs relative to the usual Frohlich mechanism of exchange with infinitesimal lattice/charge/spin quasiparticles. We show that around some temperature T* the Q-balls arise with a finite density of superconducting condensate inside them. The Q-balls expand their sizes to infinity at superconducting transition temperature Tc. The fermionic spectral gap inside the Q-balls arises in the vicinity of the ‘nested’ regions of the bare Fermi surface. Solutions are found analytically from the Eliashberg equations with the ‘nesting’ wave vectors connecting ‘hot spots’ in the Brillouin zone. The experimental ‘Uemura plot’ of the linear dependence of Tc on superconducting density ns in high-Tc superconducting compounds follows naturally from the proposed theory.
Collapse
|
22
|
Barišić N, Sunko DK. High-T c Cuprates: a Story of Two Electronic Subsystems. JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM 2022; 35:1781-1799. [PMID: 35756097 PMCID: PMC9217785 DOI: 10.1007/s10948-022-06183-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
A review of the phenomenology and microscopy of cuprate superconductors is presented, with particular attention to universal conductance features, which reveal the existence of two electronic subsystems. The overall electronic system consists of 1 + p charges, where p is the doping. At low dopings, exactly one hole is localized per planar copper-oxygen unit, while upon increasing doping and temperature, the hole is gradually delocalized and becomes itinerant. Remarkably, the itinerant holes exhibit identical Fermi liquid character across the cuprate phase diagram. This universality enables a simple count of carrier density and yields comprehensive understanding of the key features in the normal and superconducting state. A possible superconducting mechanism is presented, compatible with the key experimental facts. The base of this mechanism is the interaction of fast Fermi liquid carriers with localized holes. A change in the microscopic nature of chemical bonding in the copper oxide planes, from ionic to covalent, is invoked to explain the phase diagram of these fascinating compounds.
Collapse
Affiliation(s)
- N. Barišić
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, 10000 Croatia
- Institute of Solid State Physics, TU Wien, Vienna, 1040 Austria
| | - D. K. Sunko
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, 10000 Croatia
| |
Collapse
|
23
|
Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 2022; 602:245-250. [PMID: 35140387 DOI: 10.1038/s41586-021-04327-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022]
Abstract
The kagome lattice1, which is the most prominent structural motif in quantum physics, benefits from inherent non-trivial geometry so that it can host diverse quantum phases, ranging from spin-liquid phases, to topological matter, to intertwined orders2-8 and, most rarely, to unconventional superconductivity6,9. Recently, charge sensitive probes have indicated that the kagome superconductors AV3Sb5 (A = K, Rb, Cs)9-11 exhibit unconventional chiral charge order12-19, which is analogous to the long-sought-after quantum order in the Haldane model20 or Varma model21. However, direct evidence for the time-reversal symmetry breaking of the charge order remains elusive. Here we use muon spin relaxation to probe the kagome charge order and superconductivity in KV3Sb5. We observe a noticeable enhancement of the internal field width sensed by the muon ensemble, which takes place just below the charge ordering temperature and persists into the superconducting state. Notably, the muon spin relaxation rate below the charge ordering temperature is substantially enhanced by applying an external magnetic field. We further show the multigap nature of superconductivity in KV3Sb5 and that the [Formula: see text] ratio (where Tc is the superconducting transition temperature and λab is the magnetic penetration depth in the kagome plane) is comparable to those of unconventional high-temperature superconductors. Our results point to time-reversal symmetry-breaking charge order intertwining with unconventional superconductivity in the correlated kagome lattice.
Collapse
|
24
|
Huddart BM, Onuorah IJ, Isah MM, Bonfà P, Blundell SJ, Clark SJ, De Renzi R, Lancaster T. Intrinsic Nature of Spontaneous Magnetic Fields in Superconductors with Time-Reversal Symmetry Breaking. PHYSICAL REVIEW LETTERS 2021; 127:237002. [PMID: 34936766 DOI: 10.1103/physrevlett.127.237002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
We present a systematic investigation of muon-stopping states in superconductors that reportedly exhibit spontaneous magnetic fields below their transition temperatures due to time-reversal symmetry breaking. These materials include elemental rhenium, several intermetallic systems, and Sr_{2}RuO_{4}. We demonstrate that the presence of the muon leads to only a limited and relatively localized perturbation to the local crystal structure, while any small changes to the electronic structure occur several electron volts below the Fermi energy, leading to only minimal changes in the charge density on ions close to the muon. Our results imply that the muon-induced perturbation alone is unlikely to lead to the observed spontaneous fields in these materials, whose origin is more likely intrinsic to the time-reversal symmetry-broken superconducting state.
Collapse
Affiliation(s)
- B M Huddart
- Department of Physics, Centre for Materials Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - I J Onuorah
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy
| | - M M Isah
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy
| | - P Bonfà
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy
| | - S J Blundell
- Department of Physics, Clarendon Laboratory, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom
| | - S J Clark
- Department of Physics, Centre for Materials Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - R De Renzi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy
| | - T Lancaster
- Department of Physics, Centre for Materials Physics, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
25
|
Raychaudhuri P, Dutta S. Phase fluctuations in conventional superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:083001. [PMID: 34731851 DOI: 10.1088/1361-648x/ac360b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Within the Bardeen-Cooper-Schrieffer (BCS) theory, superconductivity is entirely governed by the pairing energy scale, which gives rise to the superconducting energy gap, Δ. However, another important energy scale, the superfluid phase stiffness,J, which determines the resilience of the superconductor to phase-fluctuations is normally ignored. The spectacular success of BCS theory owes to the fact that in conventional superconductorsJis normally several orders of magnitude larger than Δ and thus an irrelevant energy scale. However, in certain situations such as in the presence of low carrier density, strong disorder, at low-dimensions or in granular superconductors,Jcan drastically come down and even become smaller than Δ. In such situations, the temperature and magnetic field evolution of superconducting properties is governed by phase fluctuations, which gives rise to novel electronic states where signatures of electronic pairing continue to exist even when the zero resistance state is destroyed. In this article, we will review the recent experimental developments on the study of phase fluctuations in conventional superconductors.
Collapse
Affiliation(s)
- Pratap Raychaudhuri
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Surajit Dutta
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
26
|
Das D, Gupta R, Baines C, Luetkens H, Kaczorowski D, Guguchia Z, Khasanov R. Unconventional Pressure Dependence of the Superfluid Density in the Nodeless Topological Superconductor α-PdBi_{2}. PHYSICAL REVIEW LETTERS 2021; 127:217002. [PMID: 34860073 DOI: 10.1103/physrevlett.127.217002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
We investigated the superconducting properties of the topological superconductor α-PdBi_{2} at ambient and external pressures up to 1.77 GPa using muon spin rotation experiments. The ambient pressure measurements evince a fully gapped s-wave superconducting state in the bulk of the specimen. Alternating current magnetic susceptibility and muon spin rotation measurements manifest a continuous suppression of T_{c} with increasing pressure. In parallel, we observed a significant decrease of superfluid density by ∼20% upon application of external pressure. Remarkably, the superfluid density follows a linear relation with T_{c}, which was found before in some unconventional topological superconductors and hole-doped cuprates. This finding signals a possible crossover from Bose-Einstein to Bardeen-Cooper-Schrieffer like condensation in α-PdBi_{2}.
Collapse
Affiliation(s)
- Debarchan Das
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Ritu Gupta
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Christopher Baines
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Hubertus Luetkens
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Dariusz Kaczorowski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, ul. Okólna 2, 50-422, Poland
| | - Zurab Guguchia
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Rustem Khasanov
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
27
|
Zhang YC. Superfluid density, Josephson relation and pairing fluctuations in a multi-component fermion superfluid. Sci Rep 2021; 11:21847. [PMID: 34750432 PMCID: PMC8575947 DOI: 10.1038/s41598-021-01261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022] Open
Abstract
In this work, a Josephson relation is generalized to a multi-component fermion superfluid. Superfluid density is expressed through a two-particle Green function for pairing states. When the system has only one gapless collective excitation mode, the Josephson relation is simplified, which is given in terms of the superfluid order parameters and the trace of two-particle normal Green function. In addition, it is found that the matrix elements of two-particle Green function is directly related to the matrix elements of the pairing fluctuations of superfluid order parameters. Furthermore, in the presence of inversion symmetry, the superfluid density is given in terms of the pairing fluctuation matrix. The results of the superfluid density in Haldane model show that the generalized Josephson relation can be also applied to a multi-band fermion superfluid in lattice.
Collapse
Affiliation(s)
- Yi-Cai Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
28
|
Ma LA, Palm R, Nocerino E, Forslund OK, Matsubara N, Cottrell S, Yokoyama K, Koda A, Sugiyama J, Sassa Y, Månsson M, Younesi R. Na-ion mobility in P2-type Na 0.5Mg xNi 0.17-xMn 0.83O 2 (0 ≤ x ≤ 0.07) from electrochemical and muon spin relaxation studies. Phys Chem Chem Phys 2021; 23:24478-24486. [PMID: 34698733 DOI: 10.1039/d1cp03115e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sodium transition metal oxides with a layered structure are one of the most widely studied cathode materials for Na+-ion batteries. Since the mobility of Na+ in such cathode materials is a key factor that governs the performance of material, electrochemical and muon spin rotation and relaxation techniques are here used to reveal the Na+-ion mobility in a P2-type Na0.5MgxNi0.17-xMn0.83O2 (x = 0, 0.02, 0.05 and 0.07) cathode material. Combining electrochemical techniques such as galvanostatic cycling, cyclic voltammetry, and the galvanostatic intermittent titration technique with μ+SR, we have successfully extracted both self-diffusion and chemical-diffusion under a potential gradient, which are essential to understand the electrode material from an atomic-scale viewpoint. The results indicate that a small amount of Mg substitution has strong effects on the cycling performance and the Na+ mobility. Amongst the tested cathode systems, it was found that the composition with a Mg content of x = 0.02 resulted in the best cycling stability and highest Na+ mobility based on electrochemical and μ+SR results. The current study clearly shows that for developing a new generation of sustainable energy-storage devices, it is crucial to study and understand both the structure as well as dynamics of ions in the material on an atomic level.
Collapse
Affiliation(s)
- Le Anh Ma
- Department of Chemistry, Ångström Laboratory, Uppsala, Sweden.
| | - Rasmus Palm
- Department of Applied Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Elisabetta Nocerino
- Department of Applied Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Ola Kenji Forslund
- Department of Applied Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Nami Matsubara
- Department of Applied Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Stephen Cottrell
- ISIS Pulsed Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, UK
| | - Koji Yokoyama
- ISIS Pulsed Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, UK
| | - Akihiro Koda
- High Energy Accelerator Research Organization (KEK), Tokai, Ibaraki 319-1106, Japan
| | - Jun Sugiyama
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan.,Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Yasmine Sassa
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Martin Månsson
- Department of Applied Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Reza Younesi
- Department of Chemistry, Ångström Laboratory, Uppsala, Sweden.
| |
Collapse
|
29
|
Pressure-Tuned Superconducting Dome in Chemically-Substituted κ-(BEDT-TTF)2Cu2(CN)3. CRYSTALS 2021. [DOI: 10.3390/cryst11070817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The quantum spin liquid candidate κ-(BEDT-TTF)2Cu2(CN)3 has been established as the prime example of a genuine Mott insulator that can be tuned across the first-order insulator–metal transition either by chemical substitution or by physical pressure. Here, we explore the superconducting state that occurs at low temperatures, when both methods are combined, i.e., when κ-[(BEDT-TTF)1−x(BEDT-STF)x]2Cu2(CN)3 is pressurized. We discovered superconductivity for partial BEDT-STF substitution with x = 0.10–0.12 even at ambient pressure, i.e., a superconducting state is realized in the range between a metal and a Mott insulator without magnetic order. Furthermore, we observed the formation of a superconducting dome by pressurizing the substituted crystals; we assigned this novel behavior to disorder emanating from chemical tuning.
Collapse
|
30
|
Takenaka T, Ishihara K, Roppongi M, Miao Y, Mizukami Y, Makita T, Tsurumi J, Watanabe S, Takeya J, Yamashita M, Torizuka K, Uwatoko Y, Sasaki T, Huang X, Xu W, Zhu D, Su N, Cheng JG, Shibauchi T, Hashimoto K. Strongly correlated superconductivity in a copper-based metal-organic framework with a perfect kagome lattice. SCIENCE ADVANCES 2021; 7:7/12/eabf3996. [PMID: 33731356 PMCID: PMC7968839 DOI: 10.1126/sciadv.abf3996] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/29/2021] [Indexed: 05/26/2023]
Abstract
Metal-organic frameworks (MOFs), which are self-assemblies of metal ions and organic ligands, provide a tunable platform to search a new state of matter. A two-dimensional (2D) perfect kagome lattice, whose geometrical frustration is a key to realizing quantum spin liquids, has been formed in the π - d conjugated 2D MOF [Cu3(C6S6)] n (Cu-BHT). The recent discovery of its superconductivity with a critical temperature T c of 0.25 kelvin raises fundamental questions about the nature of electron pairing. Here, we show that Cu-BHT is a strongly correlated unconventional superconductor with extremely low superfluid density. A nonexponential temperature dependence of superfluid density is observed, indicating the possible presence of superconducting gap nodes. The magnitude of superfluid density is much smaller than those in conventional superconductors and follows the Uemura's relation of strongly correlated superconductors. These results imply that the unconventional superconductivity in Cu-BHT originates from electron correlations related to spin fluctuations of kagome lattice.
Collapse
Affiliation(s)
- T Takenaka
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - K Ishihara
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - M Roppongi
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Y Miao
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Y Mizukami
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - T Makita
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - J Tsurumi
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - S Watanabe
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - J Takeya
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - M Yamashita
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - K Torizuka
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Department of Physics, Nippon Institute of Technology, Miyashiro, Saitama 345-8501, Japan
| | - Y Uwatoko
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - T Sasaki
- Institute for Materials Research, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - X Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - W Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - D Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - N Su
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - J-G Cheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - T Shibauchi
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan.
| | - K Hashimoto
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan.
| |
Collapse
|
31
|
de Mello EVL. The charge-density-wave signature on the superfluid density of cuprate superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:145503. [PMID: 33395674 DOI: 10.1088/1361-648x/abd812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The superfluid density or superconducting (SC) carrier concentrationnscof cuprates has been the subject of intense investigations but there is not any single theory capable to explain all the available data. Here we show that the behavior ofnscin under and overdoped cuprates are a consequence of an SC interaction based on charge fluctuations in the incommensurate charge-density-waves (CDW) domains. We have shown that this interaction scales with the CDW amplitude or the pseudogap (PG) energy, yielding local SC amplitudes and Josephson currents. The average Josephson energyEJis proportional to the phase stiffness or superfluid densityρsc∝nsc. We find thatnsc(p) increases almost linearly with dopingpin the underdoped region and in the charge abundant overdoped only a few fractions of the holes condense leading to two kinds of carriers, a recently confirmed feature. The calculations and theρscdata uncover how the PG-CDW-SC intertwined orders operate to yield cuprates properties.
Collapse
Affiliation(s)
- E V L de Mello
- Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói, RJ, Brazil
| |
Collapse
|
32
|
Das S, Wang Y, Dai Y, Li S, Sun Z. Ultrafast transient sub-bandgap absorption of monolayer MoS 2. LIGHT, SCIENCE & APPLICATIONS 2021; 10:27. [PMID: 33514690 PMCID: PMC7846580 DOI: 10.1038/s41377-021-00462-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 05/23/2023]
Abstract
The light-matter interaction in materials is of remarkable interest for various photonic and optoelectronic applications, which is intrinsically determined by the bandgap of the materials involved. To extend the applications beyond the bandgap limit, it is of great significance to study the light-matter interaction below the material bandgap. Here, we report the ultrafast transient absorption of monolayer molybdenum disulfide in its sub-bandgap region from ~0.86 µm to 1.4 µm. Even though this spectral range is below the bandgap, we observe a significant absorbance enhancement up to ~4.2% in the monolayer molybdenum disulfide (comparable to its absorption within the bandgap region) due to pump-induced absorption by the excited carrier states. The different rise times of the transient absorption at different wavelengths indicate the various contributions of the different carrier states (i.e., real carrier states in the short-wavelength region of ~<1 µm, and exciton states in the long wavelength region of ~>1 µm). Our results elucidate the fundamental understanding regarding the optical properties, excited carrier states, and carrier dynamics in the technologically important near-infrared region, which potentially leads to various photonic and optoelectronic applications (e.g., excited-state-based photodetectors and modulators) of two-dimensional materials and their heterostructures beyond their intrinsic bandgap limitations.
Collapse
Affiliation(s)
- Susobhan Das
- Department of Electronics and Nanoengineering, Aalto University, 02150, Espoo, Finland.
| | - Yadong Wang
- Department of Electronics and Nanoengineering, Aalto University, 02150, Espoo, Finland
| | - Yunyun Dai
- Department of Electronics and Nanoengineering, Aalto University, 02150, Espoo, Finland
| | - Shisheng Li
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, 02150, Espoo, Finland.
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, Finland.
| |
Collapse
|
33
|
From SrTiO3 to Cuprates and Back to SrTiO3: A Way Along Alex Müller’s Scientific Career. CONDENSED MATTER 2020. [DOI: 10.3390/condmat6010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
K.A. Müller took a long route in science leaving many traces and imprints, which have been and are still today initiations for further research activities. We “walk” along this outstanding path but are certainly not able to provide a complete picture of it, since the way was not always straight, often marked by unintended detours, which had novel impact on the international research society.
Collapse
|
34
|
Kang BL, Shi MZ, Li SJ, Wang HH, Zhang Q, Zhao D, Li J, Song DW, Zheng LX, Nie LP, Wu T, Chen XH. Preformed Cooper Pairs in Layered FeSe-Based Superconductors. PHYSICAL REVIEW LETTERS 2020; 125:097003. [PMID: 32915588 DOI: 10.1103/physrevlett.125.097003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/06/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Superconductivity arises from two distinct quantum phenomena: electron pairing and long-range phase coherence. In conventional superconductors, the two quantum phenomena generally take place simultaneously, while in the underdoped high- T_{c} cuprate superconductors, the electron pairing occurs at higher temperature than the long-range phase coherence. Recently, whether electron pairing is also prior to long-range phase coherence in single-layer FeSe film on SrTiO_{3} substrate is under debate. Here, by measuring Knight shift and nuclear spin-lattice relaxation rate, we unambiguously reveal a pseudogap behavior below T_{p}∼60 K in two kinds of layered FeSe-based superconductors with quasi2D nature. In the pseudogap regime, a weak diamagnetic signal and a remarkable Nernst effect are also observed, which indicates that the observed pseudogap behavior is related to superconducting fluctuations. These works confirm that strong phase fluctuation is an important character in the 2D iron-based superconductors as widely observed in high-T_{c} cuprate superconductors.
Collapse
Affiliation(s)
- B L Kang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - M Z Shi
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - S J Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - H H Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Q Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - D Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - J Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - D W Song
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - L X Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - L P Nie
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - T Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei, Anhui 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - X H Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei, Anhui 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
35
|
Abstract
Emergent electronic phenomena in iron-based superconductors have been at the forefront of condensed matter physics for more than a decade. Much has been learned about the origins and intertwined roles of ordered phases, including nematicity, magnetism, and superconductivity, in this fascinating class of materials. In recent years, focus has been centered on the peculiar and highly unusual properties of FeSe and its close cousins. This family of materials has attracted considerable attention due to the discovery of unexpected superconducting gap structures, a wide range of superconducting critical temperatures, and evidence for nontrivial band topology, including associated spin-helical surface states and vortex-induced Majorana bound states. Here, we review superconductivity in iron chalcogenide superconductors, including bulk FeSe, doped bulk FeSe, FeTe1−xSex, intercalated FeSe materials, and monolayer FeSe and FeTe1−xSex on SrTiO3. We focus on the superconducting properties, including a survey of the relevant experimental studies, and a discussion of the different proposed theoretical pairing scenarios. In the last part of the paper, we review the growing recent evidence for nontrivial topological effects in FeSe-related materials, focusing again on interesting implications for superconductivity.
Collapse
|
36
|
Abstract
In this contribution to the MDPI Condensed Matter issue in Honor of Nobel Laureate Professor K.A. Müller I review recent experimental progress on magnetism of semiconducting transition metal dichalcogenides (TMDs) from the local-magnetic probe point of view such as muon-spin rotation and discuss prospects for the creation of unique new device concepts with these materials. TMDs are the prominent class of layered materials, that exhibit a vast range of interesting properties including unconventional semiconducting, optical, and transport behavior originating from valley splitting. Until recently, this family has been missing one crucial member: magnetic semiconductor. The situation has changed over the past few years with the discovery of layered semiconducting magnetic crystals, for example CrI 3 and VI 2 . We have also very recently discovered unconventional magnetism in semiconducting Mo-based TMD systems 2H-MoTe 2 and 2H-MoSe 2 [Guguchia et. al., Science Advances 2018, 4(12)]. Moreover, we also show the evidence for the involvement of magnetism in semiconducting tungsten diselenide 2H-WSe 2 . These results open a path to studying the interplay of 2D physics, semiconducting properties and magnetism in TMDs. It also opens up a host of new opportunities to obtain tunable magnetic semiconductors, forming the basis for spintronics.
Collapse
|
37
|
Xie F, Song Z, Lian B, Bernevig BA. Topology-Bounded Superfluid Weight in Twisted Bilayer Graphene. PHYSICAL REVIEW LETTERS 2020; 124:167002. [PMID: 32383962 DOI: 10.1103/physrevlett.124.167002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/21/2020] [Indexed: 06/11/2023]
Abstract
While regular flat bands are good for enhancing the density of states and hence the gap, they are detrimental to the superfluid weight. We show that the predicted nontrivial topology of the two lowest flat bands of twisted bilayer graphene (TBLG) plays an important role in the enhancement of the superfluid weight and hence of superconductivity. We derive the superfluid weight (phase stiffness) of the TBLG superconducting flat bands with a uniform pairing, and show that it can be expressed as an integral of the Fubini-Study metric of the flat bands. This mirrors results already obtained for nonzero Chern number bands even though the TBLG flat bands have zero Chern number. We further show that the metric integral is lower bounded by the topological C_{2z}T Wilson loop winding number of TBLG flat bands, which renders that the superfluid weight is also bounded by this topological index. In contrast, trivial flat bands have a zero superfluid weight. The superfluid weight is crucial in determining the Berezinskii-Kosterlitz-Thouless transition temperature of the superconductor. Based on the transition temperature measured in TBLG experiments, we estimate the topological contribution of the superfluid weight in TBLG.
Collapse
Affiliation(s)
- Fang Xie
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Zhida Song
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Biao Lian
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
| | - B Andrei Bernevig
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Physics Department, Freie Universitat Berlin, Arnimallee 14, 14195 Berlin, Germany
- Max Planck Institute of Microstructure Physics, 06120 Halle, Germany
| |
Collapse
|
38
|
Abstract
A translation-invariant (TI) bipolaron theory of superconductivity based, like Bardeen–Cooper–Schrieffer theory, on Fröhlich Hamiltonian is presented. Here the role of Cooper pairs belongs to TI bipolarons which are pairs of spatially delocalized electrons whose correlation length of a coupled state is small. The presence of Fermi surface leads to the stabilization of such states in its vicinity and a possibility of their Bose–Einstein condensation (BEC). The theory provides a natural explanation of the existence of a pseudogap phase preceding the superconductivity and enables one to estimate the temperature of a transition T * from a normal state to a pseudogap one. It is shown that the temperature of BEC of TI bipolarons determines the temperature of a superconducting transition T c which depends not on the bipolaron effective mass but on the ordinary mass of a band electron. This removes restrictions on the upper limit of T c for a strong electron-phonon interaction. A natural explanation is provided for the angular dependence of the superconducting gap which is determined by the angular dependence of the phonon spectrum. It is demonstrated that a lot of experiments on thermodynamic and transport characteristics, Josephson tunneling and angle-resolved photoemission spectroscopy (ARPES) of high-temperature superconductors does not contradict the concept of a TI bipolaron mechanism of superconductivity in these materials. Possible ways of enhancing T c and producing new room-temperature superconductors are discussed on the basis of the theory suggested.
Collapse
|
39
|
Mallik AV, Gupta GK, Shenoy VB, Krishnamurthy HR. Surprises in the t-J Model: Implications for Cuprates. PHYSICAL REVIEW LETTERS 2020; 124:147002. [PMID: 32338957 DOI: 10.1103/physrevlett.124.147002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 02/09/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Many strongly correlated systems, such as the cuprate superconductors, have the interesting physics of low dimensionality and hence enhanced fluctuation effects. We perform an analysis of the t-J model in the slave boson formulation which accounts for strong correlations, focusing on fluctuation effects that have hitherto not received the attention they deserve. We find several interesting results including the instability of the d-wave superconducting state to internal phase fluctuations giving way to a time reversal broken d+is^{*} superconductor at low doping. This offers an explanation for some recent experimental findings in the cuprate superconductors, including the observation of nodeless superconductivity at low doping. We also suggest further experiments that can validate our claims. On a broader perspective, this work points to the importance of considering fluctuation effects in other two-dimensional strongly correlated systems opening up a plethora of possibilities.
Collapse
Affiliation(s)
- Aabhaas V Mallik
- Department of Physics, Center for Condensed Matter Theory, Indian Institute of Science, Bengaluru 560012, India
| | - Gaurav K Gupta
- Department of Physics, Center for Condensed Matter Theory, Indian Institute of Science, Bengaluru 560012, India
| | - Vijay B Shenoy
- Department of Physics, Center for Condensed Matter Theory, Indian Institute of Science, Bengaluru 560012, India
| | - H R Krishnamurthy
- Department of Physics, Center for Condensed Matter Theory, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
40
|
Bhattacharyya A, Panda K, Adroja DT, Kase N, Biswas PK, Saha S, Das T, Lees MR, Hillier AD. Investigation of superconducting gap structure in HfIrSi using muon spin relaxation/rotation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:085601. [PMID: 31689696 DOI: 10.1088/1361-648x/ab549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have investigated the superconducting state of HfIrSi using magnetization, specific heat, muon spin rotation and relaxation ([Formula: see text]SR) measurements. Superconductivity was observed at [Formula: see text] K in both specific heat and magnetization measurements. From an analysis of the transverse-field [Formula: see text]SR data, it is clear that the temperature variation of superfluid density is well fitted by an isotropic Bardeen-Cooper-Schrieffer (BCS) type s-wave gap structure. The superconducting carrier density [Formula: see text] m-3, the magnetic penetration depth, [Formula: see text] nm, and the effective mass, [Formula: see text], were calculated from the TF-[Formula: see text]SR data. Zero-field [Formula: see text]SR data for HfIrSi reveal the absence of any spontaneous magnetic moments below [Formula: see text], indicating that time-reversal symmetry (TRS) is preserved in the superconducting state of HfIrSi. Theoretical investigations suggest that the Hf and Ir atoms hybridize strongly along the c-axis, and that this is responsible for the strong three-dimensionality of this system which screens the Coulomb interaction. As a result, despite the presence of d-electrons in HfIrSi, these correlation effects are weakened, making the electron-phonon coupling more important.
Collapse
Affiliation(s)
- A Bhattacharyya
- Department of Physics, Ramakrishna Mission Vivekananda Educational and Research Institute, Howrah 711202, West Bengal, India
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Talantsev EF, Mataira RC, Crump WP. Classifying superconductivity in Moiré graphene superlattices. Sci Rep 2020; 10:212. [PMID: 31937784 PMCID: PMC6959361 DOI: 10.1038/s41598-019-57055-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/20/2019] [Indexed: 11/08/2022] Open
Abstract
Several research groups have reported on the observation of superconductivity in bilayer graphene structures where single atomic layers of graphene are stacked and then twisted at angles θ forming Moiré superlattices. The characterization of the superconducting state in these 2D materials is an ongoing task. Here we investigate the pairing symmetry of bilayer graphene Moiré superlattices twisted at θ = 1.05°, 1.10° and 1.16° for carrier doping states varied in the range of n = (0.5 - 1.5) · 1012 cm-2 (where superconductivity can be realized) by analyzing the temperature dependence of the upper critical field Bc2(T) and the self-field critical current Jc(sf,T) within currently available models - all of which start from phonon-mediated BCS theory - for single- and two-band s-, d-, p- and d + id-wave gap symmetries. Extracted superconducting parameters show that only s-wave and a specific kind of p-wave symmetries are likely to be dominant in bilayer graphene Moiré superlattices. More experimental data is required to distinguish between the s- and remaining p-wave symmetries as well as the suspected two-band superconductivity in these 2D superlattices.
Collapse
Affiliation(s)
- E F Talantsev
- M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18, S. Kovalevskoy St., Ekaterinburg, 620108, Russia.
- NANOTECH Centre, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia.
| | - R C Mataira
- Robinson Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt, 5040, New Zealand
| | - W P Crump
- Robinson Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt, 5040, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, P.O. Box 33436, Lower Hutt, 5046, New Zealand
- Aalto University, Foundation sr, PO Box 11000, FI-00076, AALTO, Finland
| |
Collapse
|
42
|
Singh D, Sajilesh KP, Marik S, Biswas PK, Hillier AD, Singh RP. Nodeless s-wave superconductivity in the [Formula: see text]-Mn structure type noncentrosymmetric superconductor TaOs: a [Formula: see text]SR study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:015602. [PMID: 31509816 DOI: 10.1088/1361-648x/ab43a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Noncentrosymmetric superconductors can lead to a variety of exotic properties in the superconducting state such as line nodes, multigap behavior, and time-reversal symmetry breaking. In this paper, we report the properties of a new noncentrosymmetric superconductor TaOs, using muon spin relaxation and rotation measurements. It is shown using the zero-field muon experiment that TaOs preserve the time-reversal symmetry in the superconducting state. From the transverse field muon measurements, we extract the temperature dependence of [Formula: see text], which is proportional to the superfluid density. This data can be fit with a fully gapped s-wave model for [Formula: see text] = 2.01 [Formula: see text] 0.02. Furthermore, the value of magnetic penetration depth is found to be 5919 [Formula: see text] 45 [Formula: see text], which is consistent with the value obtained from the bulk measurements.
Collapse
Affiliation(s)
- D Singh
- Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | | | | | | | | | | |
Collapse
|
43
|
Yao G, Duan MC, Liu N, Wu Y, Guan DD, Wang S, Zheng H, Li YY, Liu C, Jia JF. Diamagnetic Response of Potassium-Adsorbed Multilayer FeSe Film. PHYSICAL REVIEW LETTERS 2019; 123:257001. [PMID: 31922797 DOI: 10.1103/physrevlett.123.257001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Intrigued by the discovery of high-temperature superconductivity in a single unit-cell layer of FeSe film on SrTiO_{3}, researchers recently found large superconductinglike energy gaps in K-adsorbed multilayer FeSe films by angle-resolved photoemission and scanning tunneling spectroscopy. However, the existence and nature of the high-temperature superconductivity inferred by the spectroscopic studies has not been investigated by measurements of zero resistance or the Meissner effect due to the fragility of K atoms in air. Using a self-developed multifunctional scanning tunneling microscope, we succeed in observing the diamagnetic response of K-adsorbed multilayer FeSe films, and thus find a dome-shaped relation between the critical temperature (T_{c}) and K coverage. Intriguingly, T_{c} exhibits an approximately linear dependence on the superfluid density in the whole K adsorbed region. Moreover, the quadratic low-temperature variation in the London penetration depth indicates a sign-reversal order parameter. These results provide compelling information towards further understanding of the high-temperature superconductivity in FeSe-derived superconductors.
Collapse
Affiliation(s)
- Gang Yao
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ming-Chao Duan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ningning Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanfu Wu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dan-Dan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Hao Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Yao-Yi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Canhua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Tsung-Dao Lee Institute, Shanghai 200240, China
| | - Jin-Feng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Tsung-Dao Lee Institute, Shanghai 200240, China
| |
Collapse
|
44
|
von Rohr FO, Orain JC, Khasanov R, Witteveen C, Shermadini Z, Nikitin A, Chang J, Wieteska AR, Pasupathy AN, Hasan MZ, Amato A, Luetkens H, Uemura YJ, Guguchia Z. Unconventional scaling of the superfluid density with the critical temperature in transition metal dichalcogenides. SCIENCE ADVANCES 2019; 5:eaav8465. [PMID: 31819897 PMCID: PMC6884407 DOI: 10.1126/sciadv.aav8465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
We report on muon spin rotation experiments probing the magnetic penetration depth λ(T) in the layered superconductors in 2H-NbSe2 and 4H-NbSe2. The current results, along with our earlier findings on 1T'-MoTe2 (Guguchia et al.), demonstrate that the superfluid density scales linearly with T c in the three transition metal dichalcogenide superconductors. Upon increasing pressure, we observe a substantial increase of the superfluid density in 2H-NbSe2, which we find to correlate with T c. The correlation deviates from the abovementioned linear trend. A similar deviation from the Uemura line was also observed in previous pressure studies of optimally doped cuprates. This correlation between the superfluid density and T c is considered a hallmark feature of unconventional superconductivity. Here, we show that this correlation is an intrinsic property of the superconductivity in transition metal dichalcogenides, whereas the ratio T c/T F is approximately a factor of 20 lower than the ratio observed in hole-doped cuprates. We, furthermore, find that the values of the superconducting gaps are insensitive to the suppression of the charge density wave state.
Collapse
Affiliation(s)
- F. O. von Rohr
- Department of Chemistry, University of Zürich, CH-8057 Zürich, Switzerland
- Physik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - J.-C. Orain
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - R. Khasanov
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - C. Witteveen
- Department of Chemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | - Z. Shermadini
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - A. Nikitin
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - J. Chang
- Physik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - A. R. Wieteska
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - A. N. Pasupathy
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - M. Z. Hasan
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - A. Amato
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - H. Luetkens
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Y. J. Uemura
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Z. Guguchia
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Department of Physics, Columbia University, New York, NY 10027, USA
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
45
|
Classifying Induced Superconductivity in Atomically Thin Dirac-Cone Materials. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4030083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, Kayyalha et al. (Phys. Rev. Lett., 2019, 122, 047003) reported on the anomalous enhancement of the self-field critical currents (Ic (sf, T)) at low temperatures in Nb/BiSbTeSe2-nanoribbon/Nb Josephson junctions. The enhancement was attributed to the low-energy Andreev-bound states arising from the winding of the electronic wave function around the circumference of the topological insulator BiSbTeSe2 nanoribbon. It should be noted that identical enhancement in Ic (sf, T) and in the upper critical field (Bc2 (T)) in approximately the same reduced temperatures, were reported by several research groups in atomically thin junctions based on a variety of Dirac-cone materials (DCM) earlier. The analysis shows that in all these S/DCM/S systems, the enhancement is due to a new superconducting band opening. Taking into account that several intrinsic superconductors also exhibit the effect of new superconducting band(s) opening when sample thickness becomes thinner than the out-of-plane coherence length (c (0)), we reaffirm our previous proposal that there is a new phenomenon of additional superconducting band(s) opening in atomically thin films.
Collapse
|
46
|
Tc and Other Cuprate Properties in Relation to Planar Charges as Measured by NMR. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4030067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nuclear magnetic resonance (NMR) in cuprate research is a prominent bulk local probe of magnetic properties. NMR also, as was shown over the last years, actually provides a quantitative measure of local charges in the CuO 2 plane. This has led to fundamental insights, e.g., that the maximum T c is determined by the sharing of the parent planar hole between Cu and O. Using bonding orbital hole contents on planar Cu and O measured by NMR, instead of the total doping x, the thus defined two-dimensional cuprate phase diagram reveals significant differences between the various cuprate materials. Even more importantly, the reflected differences in material chemistry appear to set a number of electronic properties as we discuss here, for undoped, underdoped and optimally doped cuprates. These relations should advise attempts at a theoretical understanding of cuprate physics as well as inspire material chemists towards new high- T c materials. Probing planar charges, NMR is also sensitive to charge variations or ordering phenomena in the CuO 2 plane. Thereby, local charge order on planar O in optimally doped YBCO could recently be proven. Charge density variations seen by NMR in both planar bonding orbitals with amplitudes between 1% to 5% appear to be omnipresent in the doped CuO 2 plane, i.e., not limited to underdoped cuprates and low temperatures.
Collapse
|
47
|
Li WM, Zhao JF, Cao LP, Hu Z, Huang QZ, Wang XC, Liu Y, Zhao GQ, Zhang J, Liu QQ, Yu RZ, Long YW, Wu H, Lin HJ, Chen CT, Li Z, Gong ZZ, Guguchia Z, Kim JS, Stewart GR, Uemura YJ, Uchida S, Jin CQ. Superconductivity in a unique type of copper oxide. Proc Natl Acad Sci U S A 2019; 116:12156-12160. [PMID: 31109998 PMCID: PMC6589659 DOI: 10.1073/pnas.1900908116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of superconductivity in cuprates remains one of the big challenges of condensed matter physics. High-T c cuprates crystallize into a layered perovskite structure featuring copper oxygen octahedral coordination. Due to the Jahn Teller effect in combination with the strong static Coulomb interaction, the octahedra in high-T c cuprates are elongated along the c axis, leading to a 3dx 2-y 2 orbital at the top of the band structure wherein the doped holes reside. This scenario gives rise to 2D characteristics in high-T c cuprates that favor d-wave pairing symmetry. Here, we report superconductivity in a cuprate Ba2CuO4-y , wherein the local octahedron is in a very exceptional compressed version. The Ba2CuO4-y compound was synthesized at high pressure at high temperatures and shows bulk superconductivity with critical temperature (T c ) above 70 K at ambient conditions. This superconducting transition temperature is more than 30 K higher than the T c for the isostructural counterparts based on classical La2CuO4 X-ray absorption measurements indicate the heavily doped nature of the Ba2CuO4-y superconductor. In compressed octahedron, the 3d3z 2-r 2 orbital will be lifted above the 3dx 2-y 2 orbital, leading to significant 3D nature in addition to the conventional 3dx 2-y 2 orbital. This work sheds important light on advancing our comprehensive understanding of the superconducting mechanism of high T c in cuprate materials.
Collapse
Affiliation(s)
- W M Li
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
- Materials Research Lab at Songshan Lake, 523808 Dongguan, China
| | - J F Zhao
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
| | - L P Cao
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
| | - Z Hu
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straβe 40, 01187 Dresden, Germany
| | - Q Z Huang
- NIST Center for Neutron Research, Gaithersburg, MD 20899
| | - X C Wang
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
- Materials Research Lab at Songshan Lake, 523808 Dongguan, China
| | - Y Liu
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
| | - G Q Zhao
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
| | - J Zhang
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
| | - Q Q Liu
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
| | - R Z Yu
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
- Materials Research Lab at Songshan Lake, 523808 Dongguan, China
| | - Y W Long
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
- Materials Research Lab at Songshan Lake, 523808 Dongguan, China
| | - H Wu
- NIST Center for Neutron Research, Gaithersburg, MD 20899
| | - H J Lin
- National Synchrotron Radiation Research Center, 30076 Hsinchu, Taiwan
| | - C T Chen
- National Synchrotron Radiation Research Center, 30076 Hsinchu, Taiwan
| | - Z Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Z Z Gong
- Department of Physics, Columbia University, New York, NY 10027
| | - Z Guguchia
- Department of Physics, Columbia University, New York, NY 10027
| | - J S Kim
- Department of Physics, University of Florida, Gainesville, FL 32611
| | - G R Stewart
- Department of Physics, University of Florida, Gainesville, FL 32611
| | - Y J Uemura
- Department of Physics, Columbia University, New York, NY 10027
| | - S Uchida
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- Department of Physics, University of Tokyo, 113-0033 Tokyo, Japan
| | - C Q Jin
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China;
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
- Materials Research Lab at Songshan Lake, 523808 Dongguan, China
| |
Collapse
|
48
|
Abstract
The phenomenon of superconductivity occurs in the phase space of three principal parameters: temperature T, magnetic field B, and current density j. The critical temperature T c is one of the first parameters that is measured and in a certain way defines the superconductor. From the practical applications point of view, of equal importance is the upper critical magnetic field B c 2 and conventional critical current density j c (above which the system begins to show resistance without entering the normal state). However, a seldom-measured parameter, the depairing current density j d , holds the same fundamental importance as T c and B c 2 , in that it defines a boundary between the superconducting and normal states. A study of j d sheds unique light on other important characteristics of the superconducting state such as the superfluid density and the nature of the normal state below T c , information that can play a key role in better understanding newly-discovered superconducting materials. From a measurement perspective, the extremely high values of j d make it difficult to measure, which is the reason why it is seldom measured. Here, we will review the fundamentals of current-induced depairing and the fast-pulsed current technique that facilitates its measurement and discuss the results of its application to the topological-insulator/chalcogenide interfacial superconducting system.
Collapse
|
49
|
De Renzi R, Coneri F, Mezzadri F, Allodi G, Calestani G, Righi L, Lopez GM, Fiorentini V, Filippetti A, Sanna S. Singling out the effect of quenched disorder in the phase diagram of cuprates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:184002. [PMID: 30731435 DOI: 10.1088/1361-648x/ab053c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigate the specific influence of structural disorder on the suppression of antiferromagnetic order and on the emergence of cuprate superconductivity. We single out pure disorder, by focusing on a series of [Formula: see text] samples at fixed oxygen content y = 0.35, in the range [Formula: see text]. The gradual Y/Eu isovalent substitution smoothly drives the system through the Mott-insulator to superconductor transition from a full antiferromagnet with Néel transition [Formula: see text] K at z = 0 to a bulk superconductor with superconducting critical temperature [Formula: see text] K at z = 1, [Formula: see text]. The electronic properties are finely tuned by gradual lattice deformations induced by the different cationic radii of the two lanthanides, inducing a continuous change of the basal Cu(1)-O chain length, as well as a controlled amount of disorder in the active Cu(2)O2 bilayers. We check that internal charge transfer from the basal to the active plane is entirely responsible for the doping of the latter and we show that superconductivity emerges with orthorhombicity. By comparing transition temperatures with those of the isoelectronic clean system we determine the influence of pure structural disorder connected with the Y/Eu alloy.
Collapse
Affiliation(s)
- R De Renzi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco delle Scienze 7/a, 43124 Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Superconducting Properties of 3D Low-Density TI-Bipolaron Gas in Magnetic Field. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4020043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Consideration is given to thermodynamical properties of a three-dimensional Bose-condensate of translation-invariant bipolarons (TI-bipolarons) in magnetic field. The critical temperature of transition, critical magnetic fields, energy, heat capacity and the transition heat of TI-bipolaron gas are calculated. Such values as maximum magnetic field, London penetration depth and their temperature dependencies are calculated. The results obtained are used to explain experiments on high-temperature superconductors.
Collapse
|