Loading…
Login
Scholar Register
Business Register
Subscribe
Loading…
Article Title
Abstract
Keyword
Category
MESH Heading
Grant Agency
RCAID
DOI
PMID
PMCID
Author
Affiliation
Email
Journal Title
ISSN
Publisher
Loading…
Contains
Equals
Find an Article
Find an Article (55776679)
Find a Category (125)
Find a Journal (6165)
Find a Scholar (3723)
Find an Academic Assistant (18)
Find an Article PDF (4646905)
Today's Articles (613)
Subscriber (50666)
Citation(s) in
RCA
12
(from Reference Citation Analysis)
Indexed Articles
Today (0)
Yesterday (0)
This Week (0)
Last Week (0)
Current Month (0)
Last Month (0)
Ranked By
Impact Index Per Article
Citation(s) in
RCA
Results Analysis
Year Published Analysis
Article Type Analysis
Journal Title Analysis
Category Analysis
Results Analysis
Year Published
2021 (1)
2018 (1)
2017 (1)
2010 (1)
2008 (1)
2007 (1)
2002 (1)
1997 (1)
1996 (2)
1995 (2)
Show more
Refine
Article Statistics
RCA (4)
SCIE (4)
Refine
Publication Titles
PHYSICAL REVIEW LETTERS (4)
THE REVIEW OF SCIENTIFIC INSTRUMENTS (4)
ACTA ACUSTICA UNITED WITH ACUSTICA (1)
FUSION ENGINEERING AND DESIGN (1)
FUSION SCIENCE AND TECHNOLOGY (1)
JOURNAL OF FUSION ENERGY (1)
Show more
Refine
Category
Nuclear Science & Technology (3)
Multidisciplinary Sciences (1)
Show more
Refine
For:
McKee G
, Fonck R, Stratton B, Bell R, Budny R, Bush C, Grek B, Johnson D, Park H, Ramsey A, Synakowski E, Taylor G.
Confined alpha distribution measurements in a deuterium-tritium tokamak plasma.
Phys Rev Lett
1995;
75
:649-652. [PMID:
10060079
DOI:
10.1103/physrevlett.75.649
]
[
Citation(s) in
RCA
: 6
]
[
Impact Index Per Article: 0.2
]
[
Reference Citation Analysis
]
[
What about the content of this article? (
0
)
]
[
Track Full Text
]
[
Subscribe
]
[
Scholar Register
]
[Indexed: 05/23/2023]
Number
Cited by Other Article(s)
1
Kimura K
, Matsuura H, Kawamoto Y, Oishi T, Goto M, Ogawa K, Nishitani T, Isobe M, Osakabe M. Fast deuteron diagnostics using visible light spectra of
3
He produced by deuteron-deuteron reaction in deuterium plasmas.
THE REVIEW OF SCIENTIFIC INSTRUMENTS
2021;
92
:053524. [PMID:
34243281
DOI:
10.1063/5.0034683
]
[
Citation(s) in
RCA
: 0
]
[
Impact Index Per Article: 0
]
[
Reference Citation Analysis
]
[
Abstract
]
[
Track Full Text
]
[
Subscribe
]
[
Scholar Register
]
[Received: 10/22/2020]
[Accepted: 04/23/2021]
[Indexed: 06/13/2023]
Abstract
The fast deuteron (non-Maxwellian component) diagnostic method, which is based on the higher resolution optical spectroscopic measurement, has been developed as a powerful tool. Owing to a decrease in the D-H charge-exchange cross section, the diagnostic ability of conventional optical diagnostic methods should be improved for ∼MeV energy deuterons. Because the
3
He-H charge-exchange cross section is much larger than that of D-H in the ∼MeV energy range, the visible light (VIS) spectrum of
3
He produced by the dueteron-dueteron (DD) reaction may be a useful tool. Although the density of
3
He is small because it is produced via the DD reaction, improvement of the emissivity of the VIS spectrum of
3
He can be expected by using a high-energy beam. We evaluate the VIS spectrum of
3
He for the cases when a fast deuteron tail is formed and not formed in the ITER-like beam injected deuterium plasma. Even when the beam energy is in the MeV energy range, a large change appears in the half width at half maximum of the VIS spectrum. The emissivity of the VIS spectrum of
3
He and the emissivity of bremsstrahlung are compared, and the measurable VIS spectrum is obtained. It is shown that the VIS spectrum of
3
He is a useful tool for the MeV beam deuteron tail diagnostics.
Collapse
Key Words
Collapse
MESH Headings
Collapse
Grants
Collapse
Affiliation(s)
K Kimura
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
H Matsuura
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
Y Kawamoto
National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki 509-5292, Japan
T Oishi
National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki 509-5292, Japan
M Goto
National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki 509-5292, Japan
K Ogawa
National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki 509-5292, Japan
T Nishitani
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
M Isobe
National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki 509-5292, Japan
M Osakabe
National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki 509-5292, Japan
Collapse
2
Hawryluk R
, Barnes CW, Batha S, Beer M, Bell M, Bell R, Berk H, Bitter M, Bretz N, Budny R, Bush C, Cauffman S, Chang CS, Chang Z, Cheng C, Darrow D, Dendy R, Dorland W, Dudek L, Duong H, Durst R, Efthimion P, Evenson H, Fisch N, Fisher R, Fonck R, Forrest C, Fredrickson E, Fu G, Furth H, Gorelenkov N, Grek B, Grisham L, Hammett G, Heidbrink W, Herrmann H, Herrmann M, Hill K, Hooper B, Hosea J, Houlberg W, Hughes M, Jassby D, Jobes F, Johnson D, Kaita R, Kamperschroer J, Kesner J, Krazilniknov A, Kugel H, Kumar A, LaMarche P, LeBlanc B, Levine J, Levinton F, Lin Z, Machuzak J, Majeski R, Mansfield D, Mazzucato E, Mauel M, McChesney J, McGuire K, McKee G, Meade D, Medley S, Mikkelsen D, Mimov S, Mueller D, Navratil G, Nazikian R, Nevins B, Okabayashi M, Osakabe M, Owens D, Park H, Park W, Paul S, Petrov M, Phillips C, Phillips M, Phillips P, Ramsey A, Redi M, Rewoldt G, Rice B, Rogers J, Roquemore A, Ruskov E, Sabbagh S, Sasao M, Schilling G, Schmidt G, Scott S, Semenov I, Skinner C, Spong D, Strachan J, Strait E, Stratton B, Synakowski E, Takahashi H, Tang W, Taylor G, Goeler SV, Halle AV, White R, Williams M, Wilson J, Wong K, Wurden G, Young K, Zarnstorff M, Zweben S. Review of D-T Results from TFTR.
ACTA ACUST UNITED AC
2018. [DOI:
10.13182/fst96-a11963011
]
[
Citation(s) in
RCA
: 3
]
[
Impact Index Per Article: 0.5
]
[
Reference Citation Analysis
]
[
Track Full Text
]
[
Journal Information
]
[
Subscribe
]
[
Scholar Register
]
[Indexed: 11/12/2022]
Abstract
Collapse
Key Words
Collapse
MESH Headings
Collapse
Grants
Collapse
Affiliation(s)
R.J. Hawryluk
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Cris W. Barnes
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Los Alamos National Laboratory Los Alamos New Mexico
S. Batha
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Fusion Physics and Technology Torrance California
M. Beer
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
M.G. Bell
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
R. Bell
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
H. Berk
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
University of Texas, Fusion Research Center Austin Texas
M. Bitter
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
N.L. Bretz
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
R. Budny
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
C.E. Bush
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Oak Ridge National Laboratory Oak Ridge Tennessee
S. Cauffman
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
C. S. Chang
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Courant Institute, New York University New York New York
Z. Chang
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
C.Z. Cheng
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
D.S. Darrow
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
R. Dendy
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Culham Laboratory Abingdon Oxford England
W. Dorland
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
L. Dudek
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
H. Duong
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
General Atomics San Diego California
R. Durst
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
University of Wisconsin Madison Wisconsin
P.C. Efthimion
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
H. Evenson
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
University of Wisconsin Madison Wisconsin
N. Fisch
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
R. Fisher
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
General Atomics San Diego California
R.J. Fonck
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
University of Wisconsin Madison Wisconsin
C. Forrest
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
General Atomics San Diego California
E. Fredrickson
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
G.Y. Fu
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
H.P. Furth
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
N. Gorelenkov
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
TRINITI Moscow Russia
B. Grek
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
L.R. Grisham
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
G. Hammett
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
W. Heidbrink
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
University of California Irvine California
H.W. Herrmann
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
M. Herrmann
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
K.W. Hill
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
B. Hooper
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Lawrence Livermore National Laboratory Livermore CA
J. Hosea
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
W.A. Houlberg
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Oak Ridge National Laboratory Oak Ridge Tennessee
M. Hughes
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Grumman Corporation Princeton New Jersey
D.L. Jassby
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
F.C. Jobes
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
D.W. Johnson
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
R. Kaita
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
J. Kamperschroer
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
J. Kesner
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Massachusetts Institute of Technology Cambridge Massachusetts
A. Krazilniknov
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
TRINITI Moscow Russia
H. Kugel
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
A. Kumar
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
University of CA Los Angeles CA
P.H. LaMarche
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
B. LeBlanc
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
J. Levine
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
F.M. Levinton
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Fusion Physics and Technology Torrance California
Z. Lin
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
J. Machuzak
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Massachusetts Institute of Technology Cambridge Massachusetts
R. Majeski
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
D.K. Mansfield
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
E. Mazzucato
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
M. Mauel
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Columbia University New York New York
J. McChesney
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
General Atomics San Diego California
K.M. McGuire
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
G. McKee
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
University of Wisconsin Madison Wisconsin
D.M. Meade
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
S.S. Medley
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
D.R. Mikkelsen
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
S.V. Mimov
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
TRINITI Moscow Russia
D. Mueller
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
G. Navratil
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Columbia University New York New York
R. Nazikian
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
B. Nevins
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Lawrence Livermore National Laboratory Livermore CA
M. Okabayashi
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
M. Osakabe
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
National Institute of Fusion Studies Nagoya Japan
D.K. Owens
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
H. Park
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
W. Park
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
S.F. Paul
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
M. Petrov
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Ioffe Physical-Technical Institute St. Petersburg Russia
C.K. Phillips
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
M. Phillips
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Grumman Corporation Princeton New Jersey
P. Phillips
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
University of Texas, Fusion Research Center Austin Texas
A. Ramsey
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
M.H. Redi
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
G. Rewoldt
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
B. Rice
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Lawrence Livermore National Laboratory Livermore CA
J. Rogers
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
A.L. Roquemore
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
E. Ruskov
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
University of California Irvine California
S.A. Sabbagh
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Columbia University New York New York
M. Sasao
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
National Institute of Fusion Studies Nagoya Japan
G. Schilling
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
G.L. Schmidt
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
S.D. Scott
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
I. Semenov
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
TRINITI Moscow Russia
C.H. Skinner
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
D. Spong
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Oak Ridge National Laboratory Oak Ridge Tennessee
J.D. Strachan
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
E.J. Strait
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
General Atomics San Diego California
B.C. Stratton
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
E. Synakowski
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
H. Takahashi
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
W. Tang
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
G. Taylor
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
S. von Goeler
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
A. von Halle
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
R.B. White
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
M.D. Williams
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
J.R. Wilson
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
K.L. Wong
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
G.A. Wurden
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Los Alamos National Laboratory Los Alamos New Mexico
K.M. Young
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
M.C. Zarnstorff
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
S.J. Zweben
Plasma Physics Laboratory Princeton University Princeton New Jersey 08543 USA
Collapse
3
Sasao M
, Nishitani T, Krasilnilov A, Popovichev S, Kiptily V, Kallne J. Chapter 9: Fusion Product Diagnostics.
FUSION SCIENCE AND TECHNOLOGY
2017. [DOI:
10.13182/fst08-a1681
]
[
Citation(s) in
RCA
: 29
]
[
Impact Index Per Article: 4.1
]
[
Reference Citation Analysis
]
[
Track Full Text
]
[
Subscribe
]
[
Scholar Register
]
[Indexed: 11/12/2022]
Abstract
Collapse
Key Words
Collapse
MESH Headings
Collapse
Grants
Collapse
Affiliation(s)
M. Sasao
Tohoku University, Sendai 980-8579, Japan
T. Nishitani
Japan Atomic Energy Agency, Naka, Ibaraki 319-0195, Japan
A. Krasilnilov
SRC RF TRINITI, Troitsk, Russia
S. Popovichev
EURATOM-UKAEA Fusion Association Culham S.C., OX14 3DB, United Kingdom
V. Kiptily
EURATOM-UKAEA Fusion Association Culham S.C., OX14 3DB, United Kingdom
J. Kallne
Uppsala University, Department of Neutron Research, Uppsala, Sweden
Collapse
4
Heidbrink WW
. Fast-ion Dα measurements of the fast-ion distribution (invited).
THE REVIEW OF SCIENTIFIC INSTRUMENTS
2010;
81
:10D727. [PMID:
21033920
DOI:
10.1063/1.3478739
]
[
Citation(s) in
RCA
: 29
]
[
Impact Index Per Article: 2.1
]
[
Reference Citation Analysis
]
[
Abstract
]
[
Track Full Text
]
[
Subscribe
]
[
Scholar Register
]
[Indexed: 05/30/2023]
Abstract
The fast-ion Dα (FIDA) diagnostic is an application of charge-exchange recombination spectroscopy. Fast ions that neutralize in an injected neutral beam emit Balmer-α light with a large Doppler shift. The spectral shift is exploited to distinguish the FIDA emission from other bright sources of Dα light. Background subtraction is the main technical challenge. A spectroscopic diagnostic typically achieves temporal, energy, and transverse spatial resolution of ∼1 ms, ∼10 keV, and ∼2 cm, respectively. Installations that use narrow-band filters achieve high spatial and temporal resolution at the expense of spectral information. For high temporal resolution, the bandpass-filtered light goes directly to a photomultiplier, allowing detection of ∼50 kHz oscillations in FIDA signal. For two-dimensional spatial profiles, the bandpass-filtered light goes to a charge-coupled device camera; detailed images of fast-ion redistribution at instabilities are obtained. Qualitative and quantitative models relate the measured FIDA signals to the fast-ion distribution function. The first quantitative comparisons between theory and experiment found excellent agreement in beam-heated magnetohydrodynamics (MHD)-quiescent plasmas. FIDA diagnostics are now in operation at magnetic-fusion facilities worldwide. They are used to study fast-ion acceleration by ion cyclotron heating, to detect fast-ion transport by MHD modes and microturbulence, and to study fast-ion driven instabilities.
Collapse
Key Words
Collapse
MESH Headings
Collapse
Grants
Collapse
Affiliation(s)
W W Heidbrink
University of California, Irvine, California 92697, USA.
Collapse
5
Delabie E
, Jaspers RJE, von Hellermann MG, Nielsen SK, Marchuk O. Charge exchange spectroscopy as a fast ion diagnostic on TEXTOR.
THE REVIEW OF SCIENTIFIC INSTRUMENTS
2008;
79
:10E522. [PMID:
19044504
DOI:
10.1063/1.2955575
]
[
Citation(s) in
RCA
: 1
]
[
Impact Index Per Article: 0.1
]
[
Reference Citation Analysis
]
[
Abstract
]
[
Track Full Text
]
[
Subscribe
]
[
Scholar Register
]
[Indexed: 05/27/2023]
Abstract
An upgraded charge exchange spectroscopy diagnostic has been taken into operation at the TEXTOR tokamak. The angles of the viewing lines with the toroidal magnetic field are close to the pitch angles at birth of fast ions injected by one of the neutral beam injectors. Using another neutral beam for active spectroscopy, injected counter the direction in which fast ions injected by the first beam are circulating, we can simultaneously measure a fast ion tail on the blue wing of the D(alpha) spectrum while the beam emission spectrum is Doppler shifted to the red wing. An analysis combining the two parts of the spectrum offers possibilities to improve the accuracy of the absolute (fast) ion density profiles. Fast beam modulation or passive viewing lines cannot be used for background subtraction on this diagnostic setup and therefore the background has to be modeled and fitted to the data together with a spectral model for the slowing down feature. The analysis of the fast ion D(alpha) spectrum obtained with the new diagnostic is discussed.
Collapse
Key Words
Collapse
MESH Headings
Collapse
Grants
Collapse
Affiliation(s)
E Delabie
FOM-Rijnhuizen, EURATOM-FOM, NL-3430 BE Nieuwegein, The Netherlands.
R J E Jaspers
M G von Hellermann
S K Nielsen
O Marchuk
Collapse
6
Luo Y
, Heidbrink WW, Burrell KH, Kaplan DH, Gohil P. Measurement of the D alpha spectrum produced by fast ions in DIII-D.
THE REVIEW OF SCIENTIFIC INSTRUMENTS
2007;
78
:033505. [PMID:
17411183
DOI:
10.1063/1.2712806
]
[
Citation(s) in
RCA
: 1
]
[
Impact Index Per Article: 0.1
]
[
Reference Citation Analysis
]
[
Abstract
]
[
Track Full Text
]
[
Subscribe
]
[
Scholar Register
]
[Indexed: 05/14/2023]
Abstract
Fast ions are produced by neutral beam injection and ion cyclotron heating in toroidal magnetic fusion devices. As deuterium fast ions orbit around the device and pass through a neutral beam, some deuterons neutralize and emit D(alpha) light. For a favorable viewing geometry, the emission is Doppler shifted away from other bright interfering signals. In the 2005 campaign, we built a two channel charge-coupled device based diagnostic to measure the fast-ion velocity distribution and spatial profile under a wide variety of operating conditions. Fast-ion data are acquired with a time resolution of approximately 1 ms, spatial resolution of approximately 5 cm, and energy resolution of approximately 10 keV. Background subtraction and fitting techniques eliminate various contaminants in the spectrum. Neutral particle and neutron diagnostics corroborate the D(alpha) measurement. Examples of fast-ion slowing down and pitch angle scattering in quiescent plasma and fast-ion acceleration by high harmonic ion cyclotron heating are presented.
Collapse
Key Words
Collapse
MESH Headings
Collapse
Grants
Collapse
Affiliation(s)
Y Luo
University of California, Irvine, CA 92697, USA
W W Heidbrink
K H Burrell
D H Kaplan
P Gohil
Collapse
7
Mantsinen MJ
, Mayoral ML, Kiptily VG, Sharapov SE, Alper B, Bickley A, de Baar M, Eriksson LG, Gondhalekar A, Hellsten T, Lawson K, Nguyen F, Noterdaeme JM, Righi E, Tuccillo AA, Zerbini M. Alpha-tail production with ion-cyclotron-resonance heating of 4He-beam ions in JET plasmas.
PHYSICAL REVIEW LETTERS
2002;
88
:105002. [PMID:
11909363
DOI:
10.1103/physrevlett.88.105002
]
[
Citation(s) in
RCA
: 7
]
[
Impact Index Per Article: 0.3
]
[
Reference Citation Analysis
]
[
Abstract
]
[
Track Full Text
]
[
Subscribe
]
[
Scholar Register
]
[Received: 11/30/2001]
[Indexed: 05/23/2023]
Abstract
Third-harmonic ion-cyclotron-resonance heating of 4He-beam ions has produced for the first time on the JET tokamak high-energy populations of 4He ions to simulate 3.5 MeV fusion-born alpha (alpha) particles. Acceleration of 4He ions to the MeV energy range is confirmed by gamma-ray emission from the nuclear reaction 9Be(alpha,ngamma) 12C and excitation of Alfvén eigenmodes. Concomitant electron heating and sawtooth stabilization are observed. The scheme could be used in next-step tokamaks to gain information on trapped alpha particles and to test alpha diagnostics in the early nonactivated phase of operation.
Collapse
Key Words
Collapse
MESH Headings
Collapse
Grants
Collapse
Affiliation(s)
M J Mantsinen
Helsinki University of Technology, Association Euratom-Tekes, Finland
M-L Mayoral
V G Kiptily
S E Sharapov
B Alper
A Bickley
M de Baar
L-G Eriksson
A Gondhalekar
T Hellsten
K Lawson
F Nguyen
J-M Noterdaeme
E Righi
A A Tuccillo
M Zerbini
Collapse
8
Young KM
. Advanced tokamak diagnostics.
FUSION ENGINEERING AND DESIGN
1997. [DOI:
10.1016/s0920-3796(96)00676-x
]
[
Citation(s) in
RCA
: 2
]
[
Impact Index Per Article: 0.1
]
[
Reference Citation Analysis
]
[
Track Full Text
]
[
Subscribe
]
[
Scholar Register
]
[Indexed: 11/24/2022]
Abstract
Collapse
Key Words
Collapse
MESH Headings
Collapse
Grants
Collapse
Affiliation(s)
Collapse
9
Recent progress on the Tokamak Fusion Test Reactor.
JOURNAL OF FUSION ENERGY
1996. [DOI:
10.1007/bf02266930
]
[
Citation(s) in
RCA
: 2
]
[
Impact Index Per Article: 0.1
]
[
Reference Citation Analysis
]
[
Track Full Text
]
[
Subscribe
]
[
Scholar Register
]
[Indexed: 10/25/2022]
Abstract
Collapse
Key Words
Collapse
MESH Headings
Collapse
Grants
Collapse
Affiliation(s)
Collapse
10
Taylor G
, Strachan JD, Budny RV, Ernst DR. Fusion heating in a deuterium-tritium tokamak plasma.
PHYSICAL REVIEW LETTERS
1996;
76
:2722-2725. [PMID:
10060772
DOI:
10.1103/physrevlett.76.2722
]
[
Citation(s) in
RCA
: 4
]
[
Impact Index Per Article: 0.1
]
[
Reference Citation Analysis
]
[
Track Full Text
]
[
Subscribe
]
[
Scholar Register
]
[Indexed: 05/23/2023]
Abstract
Collapse
Key Words
Collapse
MESH Headings
Collapse
Grants
Collapse
Affiliation(s)
Collapse
11
Synakowski EJ
, Bell RE, Budny RV, Bush CE, Efthimion PC, Grek B, Johnson DW, Johnson LC, LeBlanc B, Park H, Ramsey AT, Taylor G. Measurements of the production and transport of helium ash in the TFTR tokamak.
PHYSICAL REVIEW LETTERS
1995;
75
:3689-3692. [PMID:
10059702
DOI:
10.1103/physrevlett.75.3689
]
[
Citation(s) in
RCA
: 4
]
[
Impact Index Per Article: 0.1
]
[
Reference Citation Analysis
]
[
Track Full Text
]
[
Subscribe
]
[
Scholar Register
]
[Indexed: 05/23/2023]
Abstract
Collapse
Key Words
Collapse
MESH Headings
Collapse
Grants
Collapse
Affiliation(s)
Collapse
12
Fisher RK
, McChesney JM, Parks PB, Duong HH, Medley SS, Roquemore AL, Mansfield DK, Budny RV, Petrov MP, Olson RE. Measurements of fast confined alphas on TFTR.
PHYSICAL REVIEW LETTERS
1995;
75
:846-849. [PMID:
10060133
DOI:
10.1103/physrevlett.75.846
]
[
Citation(s) in
RCA
: 10
]
[
Impact Index Per Article: 0.3
]
[
Reference Citation Analysis
]
[
Track Full Text
]
[
Subscribe
]
[
Scholar Register
]
[Indexed: 05/23/2023]
Abstract
Collapse
Key Words
Collapse
MESH Headings
Collapse
Grants
Collapse
Affiliation(s)
Collapse
Page 1 of 1
1
Loading…
Loading…
Export Articles to File
Export Citation Analysis
Export Citation Analysis
Article Number From
to
A maximum of 600 records can be exported at a time.
Format:
*
Excel
Plain Text
PDF
WORD
Invalid value
Loading…
Click to Download the Exported File
Loading…
Loading…
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
Select the Category
Loading…
Loading…
Impact Index Per Article
Calculation for Impact Index Per Article
Times Cited ÷ Number of Years = Impact Index Per Article
TM
Loading…