1
|
Naranjo-Montoya OA, Bridger M, Bhar R, Kalkhoff L, Schleberger M, Wende H, Tarasevitch A, Bovensiepen U. Table-top source for x-ray absorption spectroscopy with photon energies up to 350 eV. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:103001. [PMID: 39356188 DOI: 10.1063/5.0219921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
We present a table-top setup for x-ray absorption spectroscopy (XAS) based on high harmonic generation (HHG) in noble gases. Using sub-millijoule pump pulses at a central wavelength of 1550 nm, broadband HHG in the range of 70-350 eV was demonstrated. The HHG coherence lengths of several millimeters were achieved by reaching the nonadiabatic regime of harmonic generation. Near edge x-ray absorption fine structure spectroscopy experiments on the boron K edge of a boron foil and a hexagonal boron nitride (hBN) 2D material demonstrate the capabilities of the setup. Femtosecond pulse duration makes pump-probe XAS experiments with corresponding time resolution possible.
Collapse
Affiliation(s)
- O A Naranjo-Montoya
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - M Bridger
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - R Bhar
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - L Kalkhoff
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - M Schleberger
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - H Wende
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - A Tarasevitch
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - U Bovensiepen
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| |
Collapse
|
2
|
Fu Z, Chen Y, Peng S, Zhu B, Li B, Martín-Hernández R, Fan G, Wang Y, Hernández-García C, Jin C, Murnane M, Kapteyn H, Tao Z. Extension of the bright high-harmonic photon energy range via nonadiabatic critical phase matching. SCIENCE ADVANCES 2022; 8:eadd7482. [PMID: 36563146 PMCID: PMC9788764 DOI: 10.1126/sciadv.add7482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The concept of critical ionization fraction has been essential for high-harmonic generation, because it dictates the maximum driving laser intensity while preserving the phase matching of harmonics. In this work, we reveal a second, nonadiabatic critical ionization fraction, which substantially extends the phase-matched harmonic energy, arising because of the strong reshaping of the intense laser field in a gas plasma. We validate this understanding through a systematic comparison between experiment and theory for a wide range of laser conditions. In particular, the properties of the high-harmonic spectrum versus the laser intensity undergoes three distinctive scenarios: (i) coincidence with the single-atom cutoff, (ii) strong spectral extension, and (iii) spectral energy saturation. We present an analytical model that predicts the spectral extension and reveals the increasing importance of the nonadiabatic effects for mid-infrared lasers. These findings are important for the development of high-brightness soft x-ray sources for applications in spectroscopy and imaging.
Collapse
Affiliation(s)
- Zongyuan Fu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yudong Chen
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Sainan Peng
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Bingbing Zhu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Baochang Li
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Rodrigo Martín-Hernández
- Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada, Universidad de Salamanca, E- 37008 Salamanca, Spain
| | - Guangyu Fan
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
- The Hamburg Centre for Ultrafast Imaging CUI, Universität Hamburg, 149 Luruper Chaussee, 22761 Hamburg, Germany
| | - Yihua Wang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Carlos Hernández-García
- Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada, Universidad de Salamanca, E- 37008 Salamanca, Spain
| | - Cheng Jin
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Margaret Murnane
- Department of Physics and JILA, University of Colorado and NIST, Boulder, CO 80309, USA
| | - Henry Kapteyn
- Department of Physics and JILA, University of Colorado and NIST, Boulder, CO 80309, USA
| | - Zhensheng Tao
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Zhu B, Fu Z, Chen Y, Peng S, Jin C, Fan G, Zhang S, Wang S, Ru H, Tian C, Wang Y, Kapteyn H, Murnane M, Tao Z. Spatially homogeneous few-cycle compression of Yb lasers via all-solid-state free-space soliton management. OPTICS EXPRESS 2022; 30:2918-2932. [PMID: 35209423 DOI: 10.1364/oe.443942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The high power and variable repetition-rate of Yb femtosecond lasers makes them very attractive for ultrafast science. However, for capturing sub-200 fs dynamics, efficient, high-fidelity and high-stability pulse compression techniques are essential. Spectral broadening using an all-solid-state free-space geometry is particularly attractive, as it is simple, robust and low-cost. However, spatial and temporal losses caused by spatio-spectral inhomogeneities have been a major challenge to date, due to coupled space-time dynamics associated with unguided nonlinear propagation. In this work, we use all-solid-state free-space compressors to demonstrate compression of 170 fs pulses at a wavelength of 1030nm from a Yb:KGW laser to ∼9.2 fs, with a highly spatially homogeneous mode. This is achieved by ensuring that the nonlinear beam propagation in periodic layered Kerr media occurs in spatial soliton modes, and by confining the nonlinear phase through each material layer to less than 1.0 rad. A remarkable spatio-spectral homogeneity of ∼0.87 can be realized, which yields a high efficiency of >50% for few-cycle compression. The universality of the method is demonstrated by implementing high-quality pulse compression under a wide range of laser conditions. The high spatiotemporal quality and the exceptional stability of the compressed pulses are further verified by high-harmonic generation. Our predictive method offers a compact and cost-effective solution for high-quality few-cycle-pulse generation from Yb femtosecond lasers, and will enable broad applications in ultrafast science and extreme nonlinear optics.
Collapse
|
4
|
Chevreuil PA, Brunner F, Hrisafov S, Pupeikis J, Phillips CR, Keller U, Gallmann L. Water-window high harmonic generation with 0.8-µm and 2.2-µm OPCPAs at 100 kHz. OPTICS EXPRESS 2021; 29:32996-33008. [PMID: 34809120 DOI: 10.1364/oe.440273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
We compare the generation of high-order harmonics in the water window (283-543 eV) with 0.8-µm and 2.2-µm few-cycle lasers at a pulse repetition rate of 100 kHz. Using conventional phase matching with the 2.2-µm driver and what we attribute to nonadiabatic self-phase-matching with the 0.8-µm driver, photons up to 0.6 keV (2 nm) are generated in both cases. Special attention is paid to the understanding of the generation mechanism with the 0.8-µm laser amplifier system. We use the same beamline and pump laser for both drivers, which allows for a direct flux comparison at the two driving wavelengths. For photon energies around 280 eV, a 10-100 times higher flux is obtained from the 2.2-µm versus the 0.8-µm laser system in helium and neon. The crossover at which the 2.2-µm yields a higher flux compared to the 0.8-µm driver is found to be as high as 0.2 keV. Our study supports the common approach of using long-wavelength lasers in a phase-matched regime for efficient generation of water-window harmonics, but also shows that the more widespread 0.8-µm wavelength can be used to generate water-window harmonics with an efficiency close to the one of a less common 2.2-µm source.
Collapse
|
5
|
Johnson AS, Avni T, Larsen EW, Austin DR, Marangos JP. Attosecond soft X-ray high harmonic generation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170468. [PMID: 30929634 PMCID: PMC6452054 DOI: 10.1098/rsta.2017.0468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
High harmonic generation (HHG) of an intense laser pulse is a highly nonlinear optical phenomenon that provides the only proven source of tabletop attosecond pulses, and it is the key technology in attosecond science. Recent developments in high-intensity infrared lasers have extended HHG beyond its traditional domain of the XUV spectral range (10-150 eV) into the soft X-ray regime (150 eV to 3 keV), allowing the compactness, stability and sub-femtosecond duration of HHG to be combined with the atomic site specificity and electronic/structural sensitivity of X-ray spectroscopy. HHG in the soft X-ray spectral region has significant differences from HHG in the XUV, which necessitate new approaches to generating and characterizing attosecond pulses. Here, we examine the challenges and opportunities of soft X-ray HHG, and we use simulations to examine the optimal generating conditions for the development of high-flux, attosecond-duration pulses in the soft X-ray spectral range. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Allan S. Johnson
- ICFO - The Institute of Photonic Sciences, Castelldefels (Barcelona) 08860, Spain
- e-mail:
| | - Timur Avni
- Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Esben W. Larsen
- Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Dane R. Austin
- Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Jon P. Marangos
- Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| |
Collapse
|
6
|
Wandel S, Lin MW, Yin Y, Xu G, Jovanovic I. Parametric generation and characterization of femtosecond mid-infrared pulses in ZnGeP 2. OPTICS EXPRESS 2016; 24:5287-5299. [PMID: 29092353 DOI: 10.1364/oe.24.005287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ultrafast mid-infrared (IR) coherent radiation plays an important role in strong-field physics, wherein the use of longer wavelengths has reduced the optical intensities needed to drive light-matter interactions by orders of magnitude in comparison to near-IR radiation. Optimizing parametric interactions for generation and characterization of mid-IR pulses is an enabling step for those applications. We report on the production of >50 µJ femtosecond pulses centered at 5 µm in a two-stage optical parametric amplifier (OPA) based on ZnGeP2, a high-performance optical material in this spectral region. The OPA is pumped by an ultrafast 2-µm source. Amplified pulses have been characterized by parametric upconversion, enabling the use of standard silicon detectors. A numerical model of the system has been developed and tested to control dispersion, group-velocity mismatch, and off-axis parametric fluorescence. The source architecture is suitable for production of mJ-level mid-IR ultrafast pulses without the use of chirped-pulse amplification, where convenient pumping could be realized directly by mid-IR laser sources based on materials such as Cr:ZnSe or Cr:ZnS.
Collapse
|
7
|
Schütte B, Weber P, Kovács K, Balogh E, Major B, Tosa V, Han S, Vrakking MJJ, Varjú K, Rouzée A. Bright attosecond soft X-ray pulse trains by transient phase-matching in two-color high-order harmonic generation. OPTICS EXPRESS 2015; 23:33947-55. [PMID: 26832053 DOI: 10.1364/oe.23.033947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We study two-color high-order harmonic generation in Neon with 790 nm and 1300 nm driving laser fields and observe an extreme-ultraviolet continuum that extends to photon energies of 160 eV. Using a 6-mm-long, high pressure gas cell, we optimize the HHG yield at high photon energies and investigate the effect of ionization and propagation under phase-matching conditions that allow us to control the temporal structure of the XUV emission. Numerical simulations that include the 3D propagation of the two-color laser pulse show that a bright isolated attosecond pulse with exceptionally high photon energies can be generated in our experimental conditions due to an efficient hybrid optical and phase-matching gating mechanism.
Collapse
|
8
|
Xu G, Wandel SF, Jovanovic I. Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-μm pulses using a mixed phase matching scheme. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:023102. [PMID: 24593344 DOI: 10.1063/1.4865132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We describe the production of 2.2-mJ, ∼6 optical-cycle-long mid-infrared laser pulses with a carrier wavelength of 2.05 μm in a two-stage β-BaB2O4 nondegenerate optical parametric amplifier design with a mixed phase matching scheme, which is pumped by a standard Ti:sapphire chirped-pulse amplification system. It is demonstrated that relatively high pulse energies, short pulse durations, high stability, and excellent beam profiles can be obtained using this simple approach, even without the use of optical parametric chirped-pulse amplification.
Collapse
Affiliation(s)
- Guibao Xu
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Scott F Wandel
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Jovanovic
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
9
|
Magerl E, Neppl S, Cavalieri AL, Bothschafter EM, Stanislawski M, Uphues T, Hofstetter M, Kleineberg U, Barth JV, Menzel D, Krausz F, Ernstorfer R, Kienberger R, Feulner P. A flexible apparatus for attosecond photoelectron spectroscopy of solids and surfaces. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:063104. [PMID: 21721671 DOI: 10.1063/1.3596564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We describe an apparatus for attosecond photoelectron spectroscopy of solids and surfaces, which combines the generation of isolated attosecond extreme-ultraviolet (XUV) laser pulses by high harmonic generation in gases with time-resolved photoelectron detection and surface science techniques in an ultrahigh vacuum environment. This versatile setup provides isolated attosecond pulses with photon energies of up to 140 eV and few-cycle near infrared pulses for studying ultrafast electron dynamics in a large variety of surfaces and interfaces. The samples can be prepared and characterized on an atomic scale in a dedicated flexible surface science end station. The extensive possibilities offered by this apparatus are demonstrated by applying attosecond XUV pulses with a central photon energy of ∼125 eV in an attosecond streaking experiment of a xenon multilayer grown on a Re(0001) substrate.
Collapse
Affiliation(s)
- E Magerl
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Schmidt BE, Shiner AD, Lassonde P, Kieffer JC, Corkum PB, Villeneuve DM, Légaré F. CEP stable 1.6 cycle laser pulses at 1.8 μm. OPTICS EXPRESS 2011; 19:6858-6864. [PMID: 21451713 DOI: 10.1364/oe.19.006858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
By using the novel approach for pulse compression that combines spectral broadening in hollow-core fiber (HCF) with linear propagation in fused silica (FS), we generate 1.6 cycle 0.24 mJ laser pulses at 1.8 μm wavelength with a repetition rate of 1 kHz. These pulses are obtained with a white light seeded optical parametric amplifier (OPA) and shown to be passively carrier envelope phase (CEP) stable.
Collapse
Affiliation(s)
- Bruno E Schmidt
- Institut National de la Recherche Scientifique, Centre Energie Matériaux et Télécommunications, Varennes, QC, Canada.
| | | | | | | | | | | | | |
Collapse
|
11
|
Serrat C, Biegert J. All-regions tunable high harmonic enhancement by a periodic static electric field. PHYSICAL REVIEW LETTERS 2010; 104:073901. [PMID: 20366884 DOI: 10.1103/physrevlett.104.073901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Indexed: 05/23/2023]
Abstract
Simulations show that a static electric field periodically distributed in space can be used to control the production of coherent light by high-order harmonic generation in a wide spectral range covering extreme-ultraviolet and soft x-ray radiation. The radiation yield is selectively enhanced due to symmetry breaking induced by a static electric field on the interaction between the driving laser and the medium. The spectral position of the enhancement is tuned by varying the periodicity of the static electric field which matches twice the coherence length of the harmonics in the desired region. We find that the static electric field strength inducing enhancement decreases for shorter wavelengths and predict an increase of more than two orders of magnitude for harmonics in the water window spectral range with a static electric field as weak as 1.12 MV/cm.
Collapse
Affiliation(s)
- Carles Serrat
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain.
| | | |
Collapse
|
12
|
Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc Natl Acad Sci U S A 2009; 106:10516-21. [PMID: 19541611 DOI: 10.1073/pnas.0903748106] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We show how bright, tabletop, fully coherent hard X-ray beams can be generated through nonlinear upconversion of femtosecond laser light. By driving the high-order harmonic generation process using longer-wavelength midinfrared light, we show that, in theory, fully phase-matched frequency upconversion can extend into the hard X-ray region of the spectrum. We verify our scaling predictions experimentally by demonstrating phase matching in the soft X-ray region of the spectrum around 330 eV, using ultrafast driving laser pulses at 1.3-microm wavelength, in an extended, high-pressure, weakly ionized gas medium. We also show through calculations that scaling of the overall conversion efficiency is surprisingly favorable as the wavelength of the driving laser is increased, making tabletop, fully coherent, multi-keV X-ray sources feasible. The rapidly decreasing microscopic single-atom yield, predicted for harmonics driven by longer-wavelength lasers, is compensated macroscopically by an increased optimal pressure for phase matching and a rapidly decreasing reabsorption of the generated X-rays.
Collapse
|
13
|
Seres J, Seres E, Spielmann C. Monitoring the He+ ion channel formation by high-order harmonic generation. OPTICS EXPRESS 2009; 17:1493-1501. [PMID: 19188978 DOI: 10.1364/oe.17.001493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The macroscopic build-up of the high-order harmonic signal depends on the free electron density in the generation medium. The free electrons affect the harmonic yield and spectral shape through modifying the refractive index and the phase matching conditions. These dependences allow studying the He(+) ion channel formation in a He gas jet. The evolution of an ion channel created by an ultrashort laser pulse via optical field ionization was monitored using the harmonic signal generated by a collinear propagating second laser pulse. From the measured high harmonic signal as function of the delay we are able to gain information about the free electron density. Under our experimental condition, the ion channel has been fully formed 300 fs after the first laser pulse, resulting in an enhancement of harmonic yield of the second laser pulse by two orders of magnitude.
Collapse
Affiliation(s)
- Jozsef Seres
- Universität Würzburg, Physikalisches Institut, Würzburg, Germany.
| | | | | |
Collapse
|
14
|
Zepf M, Dromey B, Landreman M, Foster P, Hooker SM. Bright quasi-phase-matched soft-X-ray harmonic radiation from argon ions. PHYSICAL REVIEW LETTERS 2007; 99:143901. [PMID: 17930671 DOI: 10.1103/physrevlett.99.143901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Indexed: 05/25/2023]
Abstract
Selective enhancement (>10(3)) of harmonics extending to the water window (approximately 4 nm) generated in an argon gas filled straight bore capillary waveguide is demonstrated. This enhancement is in good agreement with modeling which indicates that multimode quasi-phase-matching is achieved by rapid axial intensity modulations caused by beating between the fundamental and higher-order capillary modes. Substantial pulse energies (>10 nJ per pulse per harmonic order) at wavelengths beyond the carbon K edge (approximately 4.37 nm, approximately 284 eV) up to approximately 360 eV are observed from argon ions for the first time.
Collapse
Affiliation(s)
- M Zepf
- Department of Physics and Astronomy, Queens University Belfast, UK.
| | | | | | | | | |
Collapse
|
15
|
Cohen O, Zhang X, Lytle AL, Popmintchev T, Murnane MM, Kapteyn HC. Grating-assisted phase matching in extreme nonlinear optics. PHYSICAL REVIEW LETTERS 2007; 99:053902. [PMID: 17930753 DOI: 10.1103/physrevlett.99.053902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Indexed: 05/25/2023]
Abstract
We propose a new technique for phase matching high harmonic generation that can be used for generating bright, tabletop, tunable, and coherent x-ray sources at keV photon energies. A weak quasi-cw counterpropagating field induces a sinusoidal modulation in the phase of the emitted harmonics that can be used for correcting the large plasma-induced phase mismatch. We develop an analytical model that describes this grating-assisted x-ray phase matching and predicts that very modest intensities (<10(10) W/cm2) of quasi-cw counterpropagating fields are required for implementation.
Collapse
Affiliation(s)
- Oren Cohen
- Department of Physics and JILA, University of Colorado at Boulder and NIST, Boulder, Colorado 80309, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Cohen O, Popmintchev T, Gaudiosi DM, Murnane MM, Kapteyn HC. Unified microscopic-macroscopic formulation of high-order difference-frequency mixing in plasmas. PHYSICAL REVIEW LETTERS 2007; 98:043903. [PMID: 17358769 DOI: 10.1103/physrevlett.98.043903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Indexed: 05/14/2023]
Abstract
We investigate high-order difference-frequency mixing in plasmas, taking into account the microscopic rescattering physics and propagation effects for the first time. We show that phase matching can occur over a broad frequency range, up to very high photon energies, and that it is confined to specific temporal and spatial windows. This gated phase matching mechanism is driven by the continuous phase slip between two driving fields and can be employed for manipulating the temporal, spatial, and spectral properties of high harmonic emission.
Collapse
Affiliation(s)
- Oren Cohen
- JILA, University of Colorado, National Institute of Standards and Technology, Boulder, Colorado 80309, USA.
| | | | | | | | | |
Collapse
|
17
|
Seres E, Seres J, Krausz F, Spielmann C. Generation of coherent soft-X-ray radiation extending far beyond the titanium L edge. PHYSICAL REVIEW LETTERS 2004; 92:163002. [PMID: 15169224 DOI: 10.1103/physrevlett.92.163002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2003] [Indexed: 05/24/2023]
Abstract
Coherent soft-x-ray radiation up to photon energies of 700 eV is obtained by focusing several-mJ, 10-fs near infrared laser pulses into a He gas jet. The observed nearly constant photon yield over several hundred eVs may be attributed to nonadiabatic self-phase matching, originating from a substantial ionization within a fraction of the optical cycle of the driving laser pulse.
Collapse
Affiliation(s)
- Enikö Seres
- Institut für Photonik, Technische Universität Wien, Gusshausstrasse 27/387, 1040 Wien, Austria
| | | | | | | |
Collapse
|
18
|
Walser MW, Keitel CH, Scrinzi A, Brabec T. High harmonic generation beyond the electric dipole approximation. PHYSICAL REVIEW LETTERS 2000; 85:5082-5085. [PMID: 11102191 DOI: 10.1103/physrevlett.85.5082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2000] [Indexed: 05/23/2023]
Abstract
A generalization of the analytical theory of high harmonic generation in the long wavelength limit and in the single active electron approximation is developed taking into account the magnetic dipole and electric quadrupole interaction. Quantum mechanical and classical theories are found to be in excellent agreement, which allows one to explain the influence of multipole effects in terms of an intuitive picture. For Ti:S lasers ( 0.8 &mgr;m) multipole contributions are found to be small below an intensity of about 10(17) W/cm(2), at which harmonic radiation with photon energies of several keV is generated. This promises the extension of high harmonic generation well into the sub-nm wavelength regime.
Collapse
Affiliation(s)
- MW Walser
- Theoretische Quantendynamik, Fakultat fur Physik, Universitat Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
19
|
Schnurer M, Streli C, Wobrauschek P, Hentschel M, Kienberger R, Spielmann C, Krausz F. Femtosecond X-Ray fluorescence. PHYSICAL REVIEW LETTERS 2000; 85:3392-3395. [PMID: 11030904 DOI: 10.1103/physrevlett.85.3392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2000] [Indexed: 05/23/2023]
Abstract
Using few-cycle-driven coherent laser harmonics, K-shell vacancies have been created in light elements, such as boron (E(B) = 188 eV) and carbon (E(B) = 284 eV), on a time scale of a few femtoseconds for the first time. The capability of detecting x-ray fluorescence excited by few-femtosecond radiation with an accuracy of the order of 1 eV paves the way for probing the evolution of the microscopic environment of selected atoms in chemical and biochemical reactions on previously inaccessible time scales (<100 fs) by tracing the temporal evolution of the "chemical shift" of peaks associated with inner-shell electronic transitions in time-resolved x-ray fluorescence and photoelectron spectra.
Collapse
Affiliation(s)
- M Schnurer
- Institut fur Photonik, Technische Universitat Wien, Gusshausstrasse 27-29, A-1040 Wien, Austria
| | | | | | | | | | | | | |
Collapse
|