1
|
Lobo-Checa J, Hernández-López L, Otrokov MM, Piquero-Zulaica I, Candia AE, Gargiani P, Serrate D, Delgado F, Valvidares M, Cerdá J, Arnau A, Bartolomé F. Ferromagnetism on an atom-thick & extended 2D metal-organic coordination network. Nat Commun 2024; 15:1858. [PMID: 38424075 PMCID: PMC10904770 DOI: 10.1038/s41467-024-46115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Ferromagnetism is the collective alignment of atomic spins that retain a net magnetic moment below the Curie temperature, even in the absence of external magnetic fields. Reducing this fundamental property into strictly two-dimensions was proposed in metal-organic coordination networks, but thus far has eluded experimental realization. In this work, we demonstrate that extended, cooperative ferromagnetism is feasible in an atomically thin two-dimensional metal-organic coordination network, despite only ≈ 5% of the monolayer being composed of Fe atoms. The resulting ferromagnetic state exhibits an out-of-plane easy-axis square-like hysteresis loop with large coercive fields over 2 Tesla, significant magnetic anisotropy, and persists up to TC ≈ 35 K. These properties are driven by exchange interactions mainly mediated by the molecular linkers. Our findings resolve a two decade search for ferromagnetism in two-dimensional metal-organic coordination networks.
Collapse
Affiliation(s)
- Jorge Lobo-Checa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009, Zaragoza, Spain.
| | - Leyre Hernández-López
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009, Zaragoza, Spain
| | - Mikhail M Otrokov
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018, San Sebastián, Spain.
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018, San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, E-48011, Bilbao, Spain.
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
| | | | - Adriana E Candia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC-UNL-CONICET), 3000, Santa Fe, Argentina
- Instituto de Física del Litoral, Universidad Nacional del Litoral (IFIS-UNL-CONICET), 3000, Santa Fe, Argentina
| | | | - David Serrate
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009, Zaragoza, Spain
| | - Fernando Delgado
- Instituto de Estudios Avanzados IUDEA, Departamento de Física, Universidad de La Laguna, C/Astrofísico Francisco Sánchez, s/n, 38203, La Laguna, Spain
| | - Manuel Valvidares
- ALBA Synchrotron Light Source, E-08290, Cerdanyola del Vallès, Spain
| | - Jorge Cerdá
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Andrés Arnau
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018, San Sebastián, Spain.
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018, San Sebastian, Spain.
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Química UPV/EHU, 20080, Donostia-San Sebastián, Spain.
| | - Fernando Bartolomé
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009, Zaragoza, Spain.
| |
Collapse
|
2
|
Yang F, Tarakina N, Antonietti M. A Stunt of Sustainability: Artificial Humic Substances Can Generate and Stabilize Single Fe 0 Species on Mineral Surfaces. CHEMSUSCHEM 2023; 16:e202300385. [PMID: 37010131 DOI: 10.1002/cssc.202300385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/31/2023] [Indexed: 06/17/2023]
Abstract
Iron species are omnipresent in fertile soils and contribute to biological and geological redox processes. Here, we show by advanced electron microscopy techniques that an important, but previously not considered iron species, single atom Fe0 stabilized on clay mineral surfaces, is contained in soils when humic substances are present. As the concentration of neutral iron atoms is highest under frost logged soil conditions, their formation can be attributed to the action of a then reductive microbiome. The Fe0 /Fe2+ couple is with -0.04 V standard potential highly suited for natural environmental remediation and detoxification, and its occurrence can help to explain the sustained auto-detoxification of black soils.
Collapse
Affiliation(s)
- Fan Yang
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, P. R. China
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Nadezda Tarakina
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| |
Collapse
|
3
|
Martín-Fuentes C, Parreiras SO, Urgel JI, Rubio-Giménez V, Muñiz Cano B, Moreno D, Lauwaet K, Valvidares M, Valbuena MA, Gargiani P, Kuch W, Camarero J, Gallego JM, Miranda R, Martínez JI, Martí-Gastaldo C, Écija D. On-Surface Design of a 2D Cobalt-Organic Network Preserving Large Orbital Magnetic Moment. J Am Chem Soc 2022; 144:16034-16041. [PMID: 36007260 DOI: 10.1021/jacs.2c05894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of antiferromagnetic nanomaterials preserving large orbital magnetic moments is important to protect their functionalities against magnetic perturbations. Here, we exploit an archetype H6HOTP species for conductive metal-organic frameworks to design a Co-HOTP one-atom-thick metal-organic architecture on a Au(111) surface. Our multidisciplinary scanning probe microscopy, X-ray absorption spectroscopy, X-ray linear dichroism, and X-ray magnetic circular dichroism study, combined with density functional theory simulations, reveals the formation of a unique network design based on threefold Co+2 coordination with deprotonated ligands, which displays a large orbital magnetic moment with an orbital to effective spin moment ratio of 0.8, an in-plane easy axis of magnetization, and large magnetic anisotropy. Our simulations suggest an antiferromagnetic ground state, which is compatible with the experimental findings. Such a Co-HOTP metal-organic network exemplifies how on-surface chemistry can enable the design of field-robust antiferromagnetic materials.
Collapse
Affiliation(s)
- Cristina Martín-Fuentes
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - Sofia O Parreiras
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - José I Urgel
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - Víctor Rubio-Giménez
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, Spain
| | - Beatriz Muñiz Cano
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - Daniel Moreno
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - Koen Lauwaet
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | | | - Miguel A Valbuena
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | | | - Wolfgang Kuch
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Julio Camarero
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain.,Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid, Spain
| | - Rodolfo Miranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain.,Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José I Martínez
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid, Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, Spain
| | - David Écija
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| |
Collapse
|
4
|
Flach M, Hirsch K, Timm M, Ablyasova OS, da Silva Santos M, Kubin M, Bülow C, Gitzinger T, von Issendorff B, Lau JT, Zamudio-Bayer V. Iron L 3-edge energy shifts for the full range of possible 3d occupations within the same oxidation state of iron halides. Phys Chem Chem Phys 2022; 24:19890-19894. [PMID: 35959850 DOI: 10.1039/d2cp02448a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidation states are integer in number but dn configurations of transition metal centers vary continuously in polar bonds. We quantify the shifts of the iron L3 excitation energy, within the same formal oxidation state, in a systematic L-edge X-ray absorption spectroscopy study of diatomic gas-phase iron(II) halide cations, [FeX]+,where X = F, Cl, Br, I. These shifts correlate with the electronegativity of the halogen, and are attributed exclusively to a fractional increase in population of 3d-derived orbitals along the series as supported by charge transfer multiplet simulations and density functional theory calculations. We extract an excitation energy shift of 420 meV ± 60 meV spanning the full range of possible 3d occupations between the most ionic bond in [FeF]+ and covalently bonded [FeI]+.
Collapse
Affiliation(s)
- Max Flach
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany. .,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Konstantin Hirsch
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| | - Olesya S Ablyasova
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany. .,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Mayara da Silva Santos
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany. .,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Markus Kubin
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| | - Christine Bülow
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany. .,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Tim Gitzinger
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany. .,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Bernd von Issendorff
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - J Tobias Lau
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany. .,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| |
Collapse
|
5
|
Bellini V, Rusponi S, Kolorenč J, Mahatha SK, Valbuena MA, Persichetti L, Pivetta M, Sorokin BV, Merk D, Reynaud S, Sblendorio D, Stepanow S, Nistor C, Gargiani P, Betto D, Mugarza A, Gambardella P, Brune H, Carbone C, Barla A. Slow Magnetic Relaxation of Dy Adatoms with In-Plane Magnetic Anisotropy on a Two-Dimensional Electron Gas. ACS NANO 2022; 16:11182-11193. [PMID: 35770912 PMCID: PMC9330770 DOI: 10.1021/acsnano.2c04048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We report on the magnetic properties of Dy atoms adsorbed on the (001) surface of SrTiO3. X-ray magnetic circular dichroism reveals slow relaxation of the Dy magnetization on a time scale of about 800 s at 2.5 K, unusually associated with an easy-plane magnetic anisotropy. We attribute these properties to Dy atoms occupying hollow adsorption sites on the TiO2-terminated surface. Conversely, Ho atoms adsorbed on the same surface show paramagnetic behavior down to 2.5 K. With the help of atomic multiplet simulations and first-principles calculations, we establish that Dy populates also the top-O and bridge sites on the coexisting SrO-terminated surface. A simple magnetization relaxation model predicts these two sites to have an even longer magnetization lifetime than the hollow site. Moreover, the adsorption of Dy on the insulating SrTiO3 crystal leads, regardless of the surface termination, to the formation of a spin-polarized two-dimensional electron gas of Ti 3dxy character, together with an antiferromagnetic Dy-Ti coupling. Our findings support the feasibility of tuning the magnetic properties of the rare-earth atoms by acting on the substrate electronic gas with electric fields.
Collapse
Affiliation(s)
- Valerio Bellini
- S3-Istituto
di Nanoscienze-CNR, Via
Campi 213/A, I-41125 Modena, Italy
| | - Stefano Rusponi
- Institute
of Physics, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Jindřich Kolorenč
- Institute
of Physics (FZU), Czech Academy of Sciences, Na Slovance 2, CZ-182
21 Prague, Czech Republic
| | - Sanjoy K. Mahatha
- Istituto
di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche
(CNR), I-34149 Trieste, Italy
- School
of
Physics and Materials Science, Thapar Institute
of Engineering and Technology, Patiala 147004, India
| | - Miguel Angel Valbuena
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, Bellaterra, E-08193 Barcelona, Spain
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - Luca Persichetti
- Department
of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
- Dipartimento
di Fisica, Università di Roma “Tor
Vergata”, I-00133 Roma, Italy
| | - Marina Pivetta
- Institute
of Physics, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Boris V. Sorokin
- Institute
of Physics, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Darius Merk
- Institute
of Physics, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Sébastien Reynaud
- Institute
of Physics, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Dante Sblendorio
- Institute
of Physics, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | | | - Corneliu Nistor
- Department
of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | - Davide Betto
- European
Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | - Aitor Mugarza
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, Bellaterra, E-08193 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Barcelona E-08010, Spain
| | | | - Harald Brune
- Institute
of Physics, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Carlo Carbone
- Istituto
di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche
(CNR), I-34149 Trieste, Italy
| | - Alessandro Barla
- Istituto
di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche
(CNR), I-34149 Trieste, Italy
| |
Collapse
|
6
|
Singha A, Sostina D, Wolf C, Ahmed SL, Krylov D, Colazzo L, Gargiani P, Agrestini S, Noh WS, Park JH, Pivetta M, Rusponi S, Brune H, Heinrich AJ, Barla A, Donati F. Mapping Orbital-Resolved Magnetism in Single Lanthanide Atoms. ACS NANO 2021; 15:16162-16171. [PMID: 34546038 DOI: 10.1021/acsnano.1c05026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single lanthanide atoms and molecules are promising candidates for atomic data storage and quantum logic due to the long lifetime of their magnetic quantum states. Accessing and controlling these states through electrical transport requires precise knowledge of their electronic configuration at the level of individual atomic orbitals, especially of the outer shells involved in transport. However, no experimental techniques have so far shown the required sensitivity to probe single atoms with orbital selectivity. Here we resolve the magnetism of individual orbitals in Gd and Ho single atoms on MgO/Ag(100) by combining X-ray magnetic circular dichroism with multiplet calculations and density functional theory. In contrast to the usual assumption of bulk-like occupation of the different electronic shells, we establish a charge transfer mechanism leading to an unconventional singly ionized configuration. Our work identifies the role of the valence electrons in determining the quantum level structure and spin-dependent transport properties of lanthanide-based nanomagnets.
Collapse
Affiliation(s)
- Aparajita Singha
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Daria Sostina
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
| | - Safa L Ahmed
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Denis Krylov
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
| | - Luciano Colazzo
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
| | - Pierluigi Gargiani
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290 Catalonia, Spain
| | - Stefano Agrestini
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290 Catalonia, Spain
| | - Woo-Suk Noh
- MPPC-CPM, Max Planck POSTECH/Korea Research Initiative, Pohang 37673, Republic of Korea
| | - Jae-Hoon Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Marina Pivetta
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Station 3, CH-1015 Lausanne, Switzerland
| | - Stefano Rusponi
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Station 3, CH-1015 Lausanne, Switzerland
| | - Harald Brune
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Station 3, CH-1015 Lausanne, Switzerland
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Alessandro Barla
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), I-34149 Trieste, Italy
| | - Fabio Donati
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
7
|
Revealing noncollinear magnetic ordering at the atomic scale via XMCD. Sci Rep 2021; 11:2996. [PMID: 33542346 PMCID: PMC7862308 DOI: 10.1038/s41598-021-82518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/18/2021] [Indexed: 11/08/2022] Open
Abstract
Mass-selected V and Fe monomers, as well as the heterodimer \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{Fe}}_1{\text{V}}_1$$\end{document}Fe1V1, were deposited on a Cu(001) surface. Their electronic and magnetic properties were investigated via X-ray absorption (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopy. Anisotropies in the magnetic moments of the deposited species could be examined by means of angle resolving XMCD, i.e. changing the X-ray angle of incidence. A weak adatom-substrate-coupling was found for both elements and, using group theoretical arguments, the ground state symmetries of the adatoms were determined. For the dimer, a switching from antiparallel to parallel orientation of the respective magnetic moments was observed. We show that this is due to the existence of a noncollinear spin-flop phase in the deposited dimers, which could be observed for the first time in such a small system. Making use of the two magnetic sublattices model, we were able to find the relative orientations for the dimer magnetic moments for different incidence angles.
Collapse
|
8
|
Cuxart MG, Valbuena MA, Robles R, Moreno C, Bonell F, Sauthier G, Imaz I, Xu H, Nistor C, Barla A, Gargiani P, Valvidares M, Maspoch D, Gambardella P, Valenzuela SO, Mugarza A. Molecular Approach for Engineering Interfacial Interactions in Magnetic/Topological Insulator Heterostructures. ACS NANO 2020; 14:6285-6294. [PMID: 32293865 DOI: 10.1021/acsnano.0c02498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling interfacial interactions in magnetic/topological insulator heterostructures is a major challenge for the emergence of novel spin-dependent electronic phenomena. As for any rational design of heterostructures that rely on proximity effects, one should ideally retain the overall properties of each component while tuning interactions at the interface. However, in most inorganic interfaces, interactions are too strong, consequently perturbing, and even quenching, both the magnetic moment and the topological surface states at each side of the interface. Here, we show that these properties can be preserved using ligand chemistry to tune the interaction of magnetic ions with the surface states. By depositing Co-based porphyrin and phthalocyanine monolayers on the surface of Bi2Te3 thin films, robust interfaces are formed that preserve undoped topological surface states as well as the pristine magnetic moment of the divalent Co ions. The selected ligands allow us to tune the interfacial hybridization within this weak interaction regime. These results, which are in stark contrast with the observed suppression of the surface state at the first quintuple layer of Bi2Se3 induced by the interaction with Co phthalocyanines, demonstrate the capability of planar metal-organic molecules to span interactions from the strong to the weak limit.
Collapse
Affiliation(s)
- Marc G Cuxart
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
| | - Miguel Angel Valbuena
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
| | - Roberto Robles
- Centro de Fı́sica de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián Spain
| | - César Moreno
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
| | - Frédéric Bonell
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
| | - Guillaume Sauthier
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
| | - Heng Xu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
| | - Corneliu Nistor
- Department of Materials, ETH Zurich, Hönggerbergring 64, CH-8093 Zurich, Switzerland
| | - Alessandro Barla
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), I-34149 Trieste, Italy
| | - Pierluigi Gargiani
- ALBA Synchrotron Light Source, Carretera BP 1413km 3.3, E-08290 Cerdanyola del Vallès, Spain
| | - Manuel Valvidares
- ALBA Synchrotron Light Source, Carretera BP 1413km 3.3, E-08290 Cerdanyola del Vallès, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08070 Barcelona, Spain
| | - Pietro Gambardella
- Department of Materials, ETH Zurich, Hönggerbergring 64, CH-8093 Zurich, Switzerland
| | - Sergio O Valenzuela
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08070 Barcelona, Spain
| | - Aitor Mugarza
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08070 Barcelona, Spain
| |
Collapse
|
9
|
Strain effect on orbital and magnetic structures of Mn ions in epitaxial Nd 0.35Sr 0.65MnO 3/SrTiO 3 films using X-ray diffraction and absorption. Sci Rep 2019; 9:5160. [PMID: 30914713 PMCID: PMC6435741 DOI: 10.1038/s41598-019-41433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/08/2019] [Indexed: 11/08/2022] Open
Abstract
This study probes the temperature-dependent strain that is strongly correlated with the orbital and magnetic structures of epitaxial films of Nd0.35Sr0.65MnO3 (NSMO) that are fabricated by pulsed laser deposition with two thicknesses, 17 (NS17) and 103 nm (NS103) on SrTiO3 (STO) substrate. This investigation is probed using X-ray diffraction (XRD) and absorption-based techniques, X-ray linear dichroism (XLD) and the X-ray magnetic circular dichroism (XMCD). XRD indicates a significant shift in the (004) peak position that is associated with larger strain in NS17 relative to that of NS103 at both 30 and 300 K. Experimental and atomic multiplet simulated temperature-dependent Mn L3,2-edge XLD results reveal that the stronger strain in a thinner NS17 film causes less splitting of Mn 3d eg state at low temperature, indicating an enhancement of orbital fluctuations in the band above the Fermi level. This greater Mn 3d orbital fluctuation can be the cause of both the enhanced ferromagnetism (FM) as a result of spin moments and the reduced Néel temperature of C-type antiferromagnetism (AFM) in NS17, leading to the FM coupling of the canted-antiferromagnetism (FM-cAFM) state in NSMO/STO epitaxial films at low temperature (T = 30 K). These findings are also confirmed by Mn L3,2-edge XMCD measurements.
Collapse
|
10
|
Zamudio-Bayer V, Hirsch K, Langenberg A, Ławicki A, Terasaki A, von Issendorff B, Lau JT. Large orbital magnetic moments of small, free cobalt cluster ions Co[Formula: see text] with n [Formula: see text]. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:464002. [PMID: 30270848 DOI: 10.1088/1361-648x/aae54a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The size dependent electronic structure and separate spin and orbital magnetic moments of free Co[Formula: see text] ([Formula: see text]) cluster ions have been investigated by x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap. A very large orbital magnetic moment of [Formula: see text] per atom was determined for Co[Formula: see text], which is one order of magnitude larger than in the bulk metal. Large orbital magnetic moments per atom of ≈1 [Formula: see text] were also found for Co[Formula: see text], Co[Formula: see text], and Co[Formula: see text]. The orbital contribution to the total magnetic moment shows a non-monotonic cluster size dependence: The orbital contribution increases from a local minimum at n = 2 to a local maximum at n = 5 and then decreases with increasing cluster size. The 3d spin magnetic moment per atom is nearly constant and is solely defined by the number of 3d holes which shows that the 3d majority spin states are fully occupied, that is, 3d hole spin polarization is 100%.
Collapse
Affiliation(s)
- V Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany. Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany. Physikalisches Institut, Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Martins M, Wurth W. Magnetic properties of supported metal atoms and clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:503002. [PMID: 27783566 DOI: 10.1088/0953-8984/28/50/503002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Clusters are small systems ranging from a few atoms up to several thousand atoms. They are of high interest in basic research, but also for applications due to their specific electronic, magnetic or chemical properties depending on size and composition. For small clusters, quantum size effects play an important role and specific material properties might be tailored by choosing a special size or composition of the cluster. Here, we review the magnetic properties of adatoms and supported small mass-selected transition-metal clusters in the few-atom limit investigated by x-ray magnetic circular dichroism spectroscopy in the soft x-ray regime. The influence of cluster size, composition, the cluster-surface and intra-cluster interaction on the spin and orbital magnetic moments will be discussed.
Collapse
Affiliation(s)
- Michael Martins
- Department of Physics, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | | |
Collapse
|
12
|
Donati F, Rusponi S, Stepanow S, Wäckerlin C, Singha A, Persichetti L, Baltic R, Diller K, Patthey F, Fernandes E, Dreiser J, Šljivančanin Ž, Kummer K, Nistor C, Gambardella P, Brune H. Magnetic remanence in single atoms. Science 2016; 352:318-21. [PMID: 27081065 DOI: 10.1126/science.aad9898] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/08/2016] [Indexed: 11/02/2022]
Abstract
A permanent magnet retains a substantial fraction of its saturation magnetization in the absence of an external magnetic field. Realizing magnetic remanence in a single atom allows for storing and processing information in the smallest unit of matter. We show that individual holmium (Ho) atoms adsorbed on ultrathin MgO(100) layers on Ag(100) exhibit magnetic remanence up to a temperature of 30 kelvin and a relaxation time of 1500 seconds at 10 kelvin. This extraordinary stability is achieved by the realization of a symmetry-protected magnetic ground state and by decoupling the Ho spin from the underlying metal by a tunnel barrier.
Collapse
Affiliation(s)
- F Donati
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - S Rusponi
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - S Stepanow
- Department of Materials, ETH Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - C Wäckerlin
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - A Singha
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - L Persichetti
- Department of Materials, ETH Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - R Baltic
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - K Diller
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - F Patthey
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - E Fernandes
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - J Dreiser
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland. Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Ž Šljivančanin
- Vinča Institute of Nuclear Sciences (020), Post Office Box 522, 11001 Belgrade, Serbia. Texas A&M University at Qatar, Doha, Qatar
| | - K Kummer
- European Synchrotron Radiation Facility (ESRF), F-38043 Grenoble, France
| | - C Nistor
- Department of Materials, ETH Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - P Gambardella
- Department of Materials, ETH Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland.
| | - H Brune
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
13
|
Kummer K, Fondacaro A, Jimenez E, Velez-Fort E, Amorese A, Aspbury M, Yakhou-Harris F, van der Linden P, Brookes NB. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:464-73. [PMID: 26917134 PMCID: PMC5297906 DOI: 10.1107/s160057751600179x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/29/2016] [Indexed: 05/27/2023]
Abstract
A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014.
Collapse
Affiliation(s)
- K Kummer
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, F-38043 Grenoble Cedex 9, France
| | - A Fondacaro
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, F-38043 Grenoble Cedex 9, France
| | - E Jimenez
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, F-38043 Grenoble Cedex 9, France
| | - E Velez-Fort
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, F-38043 Grenoble Cedex 9, France
| | - A Amorese
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, F-38043 Grenoble Cedex 9, France
| | - M Aspbury
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, F-38043 Grenoble Cedex 9, France
| | - F Yakhou-Harris
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, F-38043 Grenoble Cedex 9, France
| | - P van der Linden
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, F-38043 Grenoble Cedex 9, France
| | - N B Brookes
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, F-38043 Grenoble Cedex 9, France
| |
Collapse
|
14
|
Baumann S, Donati F, Stepanow S, Rusponi S, Paul W, Gangopadhyay S, Rau IG, Pacchioni GE, Gragnaniello L, Pivetta M, Dreiser J, Piamonteze C, Lutz CP, Macfarlane RM, Jones BA, Gambardella P, Heinrich AJ, Brune H. Origin of Perpendicular Magnetic Anisotropy and Large Orbital Moment in Fe Atoms on MgO. PHYSICAL REVIEW LETTERS 2015; 115:237202. [PMID: 26684139 DOI: 10.1103/physrevlett.115.237202] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 06/05/2023]
Abstract
We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0±0.3 meV/atom. This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.
Collapse
Affiliation(s)
- S Baumann
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - F Donati
- Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - S Stepanow
- Department of Materials, ETH Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - S Rusponi
- Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - W Paul
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
| | - S Gangopadhyay
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
- Department of Physics, University of California, Davis, California 95616, USA
| | - I G Rau
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
| | - G E Pacchioni
- Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - L Gragnaniello
- Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - M Pivetta
- Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - J Dreiser
- Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
- Swiss Light Source (SLS), Paul Scherrer Institute (PSI), CH-5232 Villigen PSI, Switzerland
| | - C Piamonteze
- Swiss Light Source (SLS), Paul Scherrer Institute (PSI), CH-5232 Villigen PSI, Switzerland
| | - C P Lutz
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
| | - R M Macfarlane
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
| | - B A Jones
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
| | - P Gambardella
- Department of Materials, ETH Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - A J Heinrich
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
| | - H Brune
- Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Hirsch K, Zamudio-Bayer V, Langenberg A, Niemeyer M, Langbehn B, Möller T, Terasaki A, Issendorff BV, Lau JT. Magnetic moments of chromium-doped gold clusters: the Anderson impurity model in finite systems. PHYSICAL REVIEW LETTERS 2015; 114:087202. [PMID: 25768776 DOI: 10.1103/physrevlett.114.087202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 05/26/2023]
Abstract
The magnetic moment of a single impurity atom in a finite free electron gas is studied in a combined x-ray magnetic circular dichroism spectroscopy, charge transfer multiplet calculation, and density functional theory study of size-selected free chromium-doped gold clusters. The observed size dependence of the local magnetic moment can be understood as a transition from a local moment to a mixed valence regime. This shows that the Anderson impurity model essentially describes finite systems even though the discrete density of states introduces a significant deviation from a bulk metal, and the free electron gas is only formed by less than 10 electrons. Electronic shell closure in the gold host minimizes the interaction of localized impurity states with the confined free electron gas and preserves the magnetic moment of 5 μ_{B} fully in CrAu_{2}^{+} and almost fully in CrAu_{6}^{+}. Even for open-shell species, large local moments are observed that scale with the energy gap of the gold cluster. This indicates that an energy gap in the free electron gas stabilizes the local magnetic moment of the impurity atom.
Collapse
Affiliation(s)
- K Hirsch
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - V Zamudio-Bayer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - A Langenberg
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - M Niemeyer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - B Langbehn
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - T Möller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - A Terasaki
- Cluster Research Laboratory, Toyota Technological Institute, 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan
- Department of Chemistry, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - B V Issendorff
- Physikalisches Institut, Universität Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
| | - J T Lau
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| |
Collapse
|
16
|
Donati F, Gragnaniello L, Cavallin A, Natterer FD, Dubout Q, Pivetta M, Patthey F, Dreiser J, Piamonteze C, Rusponi S, Brune H. Tailoring the magnetism of Co atoms on graphene through substrate hybridization. PHYSICAL REVIEW LETTERS 2014; 113:177201. [PMID: 25379935 DOI: 10.1103/physrevlett.113.177201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Indexed: 06/04/2023]
Abstract
We determine the magnetic properties of individual Co atoms adsorbed on graphene (G) with x-ray absorption spectroscopy and magnetic circular dichroism. The magnetic ground state of Co adatoms strongly depends on the choice of the metal substrate on which graphene is grown. Cobalt atoms on G/Ru(0001) feature exceptionally large orbital and spin moments, as well as an out-of-plane easy axis with large magnetic anisotropy. Conversely, the magnetic moments are strongly reduced for Co/G/Ir(111), and the magnetization is of the easy-plane type. We demonstrate how the Co magnetic properties, which ultimately depend on the degree of hybridization between the Co 3d orbitals and graphene π bands, can be tailored through the strength of the graphene-substrate coupling.
Collapse
Affiliation(s)
- F Donati
- Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - L Gragnaniello
- Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - A Cavallin
- Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - F D Natterer
- Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Q Dubout
- Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - M Pivetta
- Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - F Patthey
- Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - J Dreiser
- Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland and Swiss Light Source (SLS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
| | - C Piamonteze
- Swiss Light Source (SLS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
| | - S Rusponi
- Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - H Brune
- Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Rau IG, Baumann S, Rusponi S, Donati F, Stepanow S, Gragnaniello L, Dreiser J, Piamonteze C, Nolting F, Gangopadhyay S, Albertini OR, Macfarlane RM, Lutz CP, Jones BA, Gambardella P, Heinrich AJ, Brune H. Reaching the magnetic anisotropy limit of a 3d metal atom. Science 2014; 344:988-92. [PMID: 24812206 DOI: 10.1126/science.1252841] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Designing systems with large magnetic anisotropy is critical to realize nanoscopic magnets. Thus far, the magnetic anisotropy energy per atom in single-molecule magnets and ferromagnetic films remains typically one to two orders of magnitude below the theoretical limit imposed by the atomic spin-orbit interaction. We realized the maximum magnetic anisotropy for a 3d transition metal atom by coordinating a single Co atom to the O site of an MgO(100) surface. Scanning tunneling spectroscopy reveals a record-high zero-field splitting of 58 millielectron volts as well as slow relaxation of the Co atom's magnetization. This striking behavior originates from the dominating axial ligand field at the O adsorption site, which leads to out-of-plane uniaxial anisotropy while preserving the gas-phase orbital moment of Co, as observed with x-ray magnetic circular dichroism.
Collapse
Affiliation(s)
- Ileana G Rau
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| | - Susanne Baumann
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA. Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Stefano Rusponi
- Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Fabio Donati
- Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Sebastian Stepanow
- Department of Materials, Eidgenössische Technische Hochschule (ETH) Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Luca Gragnaniello
- Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Jan Dreiser
- Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland. Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Cinthia Piamonteze
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Frithjof Nolting
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | | | - Oliver R Albertini
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA. Department of Physics, Georgetown University, 3700 O Street NW, Washington, DC 20057, USA
| | | | | | - Barbara A Jones
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| | - Pietro Gambardella
- Department of Materials, Eidgenössische Technische Hochschule (ETH) Zürich, Hönggerbergring 64, CH-8093 Zürich, Switzerland.
| | | | - Harald Brune
- Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
18
|
Lee JS, Xie YW, Sato HK, Bell C, Hikita Y, Hwang HY, Kao CC. Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface. NATURE MATERIALS 2013; 12:703-706. [PMID: 23727948 DOI: 10.1038/nmat3674] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
A number of recent transport and magnetization studies have shown signs of ferromagnetism in the LaAlO3/SrTiO3 heterostructure, an unexpected property with no bulk analogue in the constituent materials. However, no experiment thus far has provided direct information on the host of the magnetism. Here we report spectroscopic investigations of the magnetism using element-specific techniques, including X-ray magnetic circular dichroism and X-ray absorption spectroscopy, along with corresponding model calculations. We find direct evidence for in-plane ferromagnetic order at the interface, with Ti(3+) character in the dxy orbital of the anisotropic t2g band. These findings establish a striking example of emergent phenomena at oxide interfaces.
Collapse
Affiliation(s)
- J-S Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Medel VM, Reveles JU, Islam MF, Khanna SN. Robust Magnetic Moments on Impurities in Metallic Clusters: Localized Magnetic States in Superatoms. J Phys Chem A 2013; 117:4297-303. [DOI: 10.1021/jp4012735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victor M. Medel
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - J. Ulises Reveles
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - M. Fhokrul Islam
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Shiv N. Khanna
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
20
|
Umbach TR, Bernien M, Hermanns CF, Krüger A, Sessi V, Fernandez-Torrente I, Stoll P, Pascual JI, Franke KJ, Kuch W. Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111). PHYSICAL REVIEW LETTERS 2012; 109:267207. [PMID: 23368613 DOI: 10.1103/physrevlett.109.267207] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Indexed: 06/01/2023]
Abstract
The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surroundings. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers.
Collapse
Affiliation(s)
- T R Umbach
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Niemeyer M, Hirsch K, Zamudio-Bayer V, Langenberg A, Vogel M, Kossick M, Ebrecht C, Egashira K, Terasaki A, Möller T, Issendorff BV, Lau JT. Spin coupling and orbital angular momentum quenching in free iron clusters. PHYSICAL REVIEW LETTERS 2012; 108:057201. [PMID: 22400954 DOI: 10.1103/physrevlett.108.057201] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Indexed: 05/31/2023]
Abstract
Magnetic spin and orbital moments of size-selected free iron cluster ions Fe{n}{+} (n=3-20) have been determined via x-ray magnetic circular dichroism spectroscopy. Iron atoms within the clusters exhibit ferromagnetic coupling except for Fe{13}{+}, where the central atom is coupled antiferromagnetically to the atoms in the surrounding shell. Even in very small clusters, the orbital magnetic moment is strongly quenched and reduced to 5%-25% of its atomic value while the spin magnetic moment remains at 60%-90%. This demonstrates that the formation of bonds quenches orbital angular momenta in homonuclear iron clusters already for coordination numbers much smaller than those of the bulk.
Collapse
Affiliation(s)
- M Niemeyer
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cornia A, Mannini M, Sainctavit P, Sessoli R. Chemical strategies and characterization tools for the organization of single molecule magnets on surfaces. Chem Soc Rev 2011; 40:3076-91. [DOI: 10.1039/c0cs00187b] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Ogale SB. Dilute doping, defects, and ferromagnetism in metal oxide systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:3125-3155. [PMID: 20535732 DOI: 10.1002/adma.200903891] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Over the past decade intensive research efforts have been carried out by researchers around the globe on exploring the effects of dilute doping of magnetic impurities on the physical properties of functional non-magnetic metal oxides such as TiO(2) and ZnO. This effort is aimed at inducing spin functionality (magnetism, spin polarization) and thereby novel magneto-transport and magneto-optic effects in such oxides. After an early excitement and in spite of some very promising results reported in the literature, this field of diluted magnetic semiconducting oxides (DMSO) has continued to be dogged by concerns regarding uniformity of dopant incorporation, the possibilities of secondary ferromagnetic phases, and contamination issues. The rather sensitive dependence of magnetism of the DMSO systems on growth methods and conditions has led to interesting questions regarding the specific role played by defects in the attendant phenomena. Indeed, it has also led to the rapid re-emergence of the field of defect ferromagnetism. Many theoretical studies have contributed to the analysis of diverse experimental observations in this field and in some cases to the predictions of new systems and scenarios. In this review an attempt is made to capture the scope and spirit of this effort highlighting the successes, concerns, and questions.
Collapse
Affiliation(s)
- Satishchandra B Ogale
- Physical and Materials Chemistry Division, National Chemical Laboratory, Council of Scientific and Industrial Research, Pashan, Pune, India.
| |
Collapse
|
24
|
Carbone C, Veronese M, Moras P, Gardonio S, Grazioli C, Zhou PH, Rader O, Varykhalov A, Krull C, Balashov T, Mugarza A, Gambardella P, Lebègue S, Eriksson O, Katsnelson MI, Lichtenstein AI. Correlated electrons step by step: itinerant-to-localized transition of fe impurities in free-electron metal hosts. PHYSICAL REVIEW LETTERS 2010; 104:117601. [PMID: 20366500 DOI: 10.1103/physrevlett.104.117601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Indexed: 05/29/2023]
Abstract
High-resolution photoemission spectroscopy and ab initio calculations have been employed to analyze the onset and progression of d-sp hybridization in Fe impurities deposited on alkali metal films. The interplay between delocalization, mediated by the free-electron environment, and Coulomb interaction among d electrons gives rise to complex electronic configurations. The multiplet structure of a single Fe atom evolves and gradually dissolves into a quasiparticle peak near the Fermi level with increasing host electron density. The effective multiorbital impurity problem within the exact diagonalization scheme describes the whole range of hybridizations.
Collapse
Affiliation(s)
- C Carbone
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, I-34012 Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Boero G, Rusponi S, Kavich J, Rizzini AL, Piamonteze C, Nolting F, Tieg C, Thiele JU, Gambardella P. Longitudinal detection of ferromagnetic resonance using x-ray transmission measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:123902. [PMID: 20059149 DOI: 10.1063/1.3267192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We describe a setup for the x-ray detection of ferromagnetic resonance in the longitudinal geometry using element-specific transmission measurements. Thin magnetic film samples are placed in a static magnetic field collinear with the propagation direction of a polarized soft x-ray beam and driven to ferromagnetic resonance by a continuous wave microwave magnetic field perpendicular to it. The transmitted photon flux is measured both as a function of the x-ray photon energy and as a function of the applied static magnetic field. We report experiments performed on a 15 nm film of doped Permalloy (Ni(73)Fe(18)Gd(7)Co(2)) at the L(3)/L(2)-edges of Fe, Co, and Ni. The achieved ferromagnetic resonance sensitivity is about 0.1 monolayers/square root(Hz). The obtained results are interpreted in the framework of a conductivity tensor based formalism. The factors limiting the sensitivity as well as different approaches for the x-ray detection of ferromagnetic resonance are discussed.
Collapse
Affiliation(s)
- G Boero
- Ecole Polytechninque Federale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gambardella P, Stepanow S, Dmitriev A, Honolka J, de Groot FMF, Lingenfelder M, Sen Gupta S, Sarma DD, Bencok P, Stanescu S, Clair S, Pons S, Lin N, Seitsonen AP, Brune H, Barth JV, Kern K. Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface. NATURE MATERIALS 2009; 8:189-193. [PMID: 19182787 DOI: 10.1038/nmat2376] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 12/22/2008] [Indexed: 05/25/2023]
Abstract
Magnetic atoms at surfaces are a rich model system for solid-state magnetic bits exhibiting either classical or quantum behaviour. Individual atoms, however, are difficult to arrange in regular patterns. Moreover, their magnetic properties are dominated by interaction with the substrate, which, as in the case of Kondo systems, often leads to a decrease or quench of their local magnetic moment. Here, we show that the supramolecular assembly of Fe and 1,4-benzenedicarboxylic acid molecules on a Cu surface results in ordered arrays of high-spin mononuclear Fe centres on a 1.5 nm square grid. Lateral coordination with the molecular ligands yields unsaturated yet stable coordination bonds, which enable chemical modification of the electronic and magnetic properties of the Fe atoms independently from the substrate. The easy magnetization direction of the Fe centres can be switched by oxygen adsorption, thus opening a way to control the magnetic anisotropy in supramolecular layers akin to that used in metallic thin films.
Collapse
Affiliation(s)
- Pietro Gambardella
- Centre d'Investigacions en Nanociència i Nanotecnologia (ICN-CSIC), UAB Campus, E-08193 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jing Q, Tian FY, Wang YX. No quenching of magnetic moment for the GenCo (n=1-13) clusters: first-principles calculations. J Chem Phys 2008; 128:124319. [PMID: 18376931 DOI: 10.1063/1.2898880] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The authors predict that for the Ge(n)Co (n=1-13) clusters the magnetic moment does not quench, which is dark contrast to the previous results with transition-metal-doped Si(n) clusters. It may be due to the unpaired electrons of the Co atom in the clusters. For the ground state structures of the Ge(n)Co (n>or=9) clusters, the Co atom completely falls into the center of the Ge outer frame, forming metal-encapsulated Ge(n) cages. The doping of the Co atom enhances the stability of the host Ge(n) clusters. The Ge(10)Co cluster with the bicapped tetragonal antiprism structure is more stable than others, which agrees very well with the results of the experiment of the Co/Ge binary clusters by the laser vaporization.
Collapse
Affiliation(s)
- Qun Jing
- Institute of Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China
| | | | | |
Collapse
|
28
|
Hofmann A, Graf C, Boeglin C, Rühl E. Magnetic and structural investigation of Mn(2+)-doped ZnSe semiconductor nanoparticles. Chemphyschem 2007; 8:2008-12. [PMID: 17665380 DOI: 10.1002/cphc.200700050] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
X-ray magnetic circular dichroism (XMCD) experiments on diluted magnetic semiconductor nanocrystals were carried out to study the local electronic structure and magnetic properties of Mn(2+) embedded in the lattice of ZnSe nanoparticles. It is shown that Mn(2+) is exclusively present in the bulk of ZnSe nanoparticles. Neither Mn-Mn coupling nor traces of oxidation to higher Mn oxidation states was observed. This result, which is consistent with EPR spectroscopic data, provides clear proof of the location of Mn(2+) in semiconductor nanoparticles. Further, it is shown that the magnetic ions are highly polarised inside the nanocrystals, where they reach about 50 % of the theoretical value of a pure d(5) state under identical conditions.
Collapse
Affiliation(s)
- Andreas Hofmann
- Physikalische und Theoretische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| | | | | | | |
Collapse
|
29
|
|
30
|
Aligia AA. Effective Kondo model for a trimer on a metallic surface. PHYSICAL REVIEW LETTERS 2006; 96:096804. [PMID: 16606296 DOI: 10.1103/physrevlett.96.096804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Indexed: 05/08/2023]
Abstract
I consider a Hubbard-Anderson model which describes localized orbitals in three different atoms hybridized both among themselves and with a continuum of extended states. Using a generalized Schrieffer-Wolf transformation, I derive an effective Kondo model for the interaction between the doublet ground state of the isolated trimer and the extended states. For an isoceles trimer with distances a, l, l between the atoms, the Kondo temperature is very small for l<a and has a maximum for finite l>a when a is small. The results agree with experiments for a Cr trimer on Au(111).
Collapse
Affiliation(s)
- A A Aligia
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina
| |
Collapse
|
31
|
Ohresser P, Bulou H, Dhesi SS, Boeglin C, Lazarovits B, Gaudry E, Chado I, Faerber J, Scheurer F. Surface diffusion of Cr adatoms on Au(111) by quantum tunneling. PHYSICAL REVIEW LETTERS 2005; 95:195901. [PMID: 16383997 DOI: 10.1103/physrevlett.95.195901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Indexed: 05/05/2023]
Abstract
The low-temperature surface diffusion of isolated Cr adatoms on Au(111) has been determined using nonperturbing x rays. Changes in the x-ray magnetic circular dichroism spectral line shape together with Monte Carlo calculations demonstrate that adatom nucleation proceeds via quantum tunneling diffusion rather than over-barrier hopping for temperatures <40K. The jump rates are shown to be as much as 35 orders of magnitude higher than that expected for thermal over-barrier hopping at 10 K.
Collapse
Affiliation(s)
- P Ohresser
- Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, UMR 130 CNRS-Université Paris Sud, 91898 Orsay, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Brewer WD, Scherz A, Sorg C, Wende H, Baberschke K, Bencok P, Frota-Pessôa S. Direct observation of orbital magnetism in cubic solids. PHYSICAL REVIEW LETTERS 2004; 93:077205. [PMID: 15324272 DOI: 10.1103/physrevlett.93.077205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Indexed: 05/24/2023]
Abstract
We present x-ray magnetic circular dichroism determinations of the orbital/spin magnetic moment ratios of dilute 3d-series impurities in Au (and Cu) host matrices. This is the first direct measurement of considerable orbital moments in cubic symmetry for a localized impurity in a bulk metal host. It is shown that the unquenching of orbital magnetism depends on a delicate balance of hybridization effects between the local impurity with the host and the filling of the 3d states of the impurity. The results are accompanied by ab initio calculations that support our experimental findings.
Collapse
Affiliation(s)
- W D Brewer
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin-Dahlem, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Huang DJ, Chang CF, Jeng HT, Guo GY, Lin HJ, Wu WB, Ku HC, Fujimori A, Takahashi Y, Chen CT. Spin and orbital magnetic moments of Fe3O4. PHYSICAL REVIEW LETTERS 2004; 93:077204. [PMID: 15324271 DOI: 10.1103/physrevlett.93.077204] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Indexed: 05/24/2023]
Abstract
We present measurements of the spin and orbital magnetic moments of Fe3O4 by using SQUID and magnetic circular dichroism in soft x-ray absorption. The measurements show that Fe3O4 has a noninteger spin moment, in contrast to its predicted half-metallic feature. Fe3O4 also exhibits a large unquenched orbital moment. Calculations using the local density approximation including the Hubbard U method and the configuration interaction cluster-model suggest that strong correlations and spin-orbit interaction of the 3d electrons result in the noninteger spin and large orbital moments of Fe3O4.
Collapse
Affiliation(s)
- D J Huang
- National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fauth K, Gold S, Heßler M, Schneider N, Schütz G. Cluster surface interactions: small Fe clusters driven nonmagnetic on graphite. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Funk T, Kennepohl P, Di Bilio AJ, Wehbi WA, Young AT, Friedrich S, Arenholz E, Gray HB, Cramer SP. X-ray Magnetic Circular Dichroism of Pseudomonas aeruginosa Nickel(II) Azurin. J Am Chem Soc 2004; 126:5859-66. [PMID: 15125678 DOI: 10.1021/ja036218d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show that X-ray magnetic circular dichroism (XMCD) can be employed to probe the oxidation states and other electronic structural features of nickel active sites in proteins. As a calibration standard, we have measured XMCD and X-ray absorption (XAS) spectra for the nickel(II) derivative of Pseudomonas aeruginosa azurin (NiAz). Our analysis of these spectra confirms that the electronic ground state of NiAz is high-spin (S = 1); we also find that the L(3)-centroid energy is 853.1(1) eV, the branching ratio is 0.722(4), and the magnetic moment is 1.9(4) mu(B). Density functional theory (DFT) calculations on model NiAz structures establish that orbitals 3d(x2-y2) and 3d(z2) are the two valence holes in the high-spin Ni(II) ground state, and in accord with the experimentally determined orbital magnetic moment, the DFT results also demonstrate that both holes are highly delocalized, with 3d(x2-y2) having much greater ligand character.
Collapse
Affiliation(s)
- Tobias Funk
- Physical Biosciences, LBNL, Cyclotron Road 1, Berkeley, California 94720, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ogale SB, Choudhary RJ, Buban JP, Lofland SE, Shinde SR, Kale SN, Kulkarni VN, Higgins J, Lanci C, Simpson JR, Browning ND, Das Sarma S, Drew HD, Greene RL, Venkatesan T. High temperature ferromagnetism with a giant magnetic moment in transparent co-doped SnO(2-delta). PHYSICAL REVIEW LETTERS 2003; 91:077205. [PMID: 12935053 DOI: 10.1103/physrevlett.91.077205] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Indexed: 05/24/2023]
Abstract
The occurrence of room temperature ferromagnetism is demonstrated in pulsed laser deposited thin films of Sn(1-x)Co(x)O(2-delta) (x<0.3). Interestingly, films of Sn(0.95)Co(0.05)O(2-delta) grown on R-plane sapphire not only exhibit ferromagnetism with a Curie temperature close to 650 K, but also a giant magnetic moment of 7.5+/-0.5 micro(B)/Co, not yet reported in any diluted magnetic semiconductor system. The films are semiconducting and optically highly transparent.
Collapse
Affiliation(s)
- S B Ogale
- Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742-4111, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gambardella P, Rusponi S, Veronese M, Dhesi SS, Grazioli C, Dallmeyer A, Cabria I, Zeller R, Dederichs PH, Kern K, Carbone C, Brune H. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 2003; 300:1130-3. [PMID: 12750516 DOI: 10.1126/science.1082857] [Citation(s) in RCA: 321] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The isotropic magnetic moment of a free atom is shown to develop giant magnetic anisotropy energy due to symmetry reduction at an atomically ordered surface. Single cobalt atoms deposited onto platinum (111) are found to have a magnetic anisotropy energy of 9 millielectron volts per atom arising from the combination of unquenched orbital moments (1.1 Bohr magnetons) and strong spin-orbit coupling induced by the platinum substrate. By assembling cobalt nanoparticles containing up to 40 atoms, the magnetic anisotropy energy is further shown to be dependent on single-atom coordination changes. These results confirm theoretical predictions and are of fundamental value to understanding how magnetic anisotropy develops in finite-sized magnetic particles.
Collapse
Affiliation(s)
- P Gambardella
- Institut de Physique des Nanostructures, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|