1
|
Aslam MW, Zafar AA, Aslam MN, Bhatti AA, Hussain T, Iqbal M, Abdo MS. Particle swarm optimization based analysis to unlocking the neutrino mass puzzle using [Formula: see text] flavor symmetry. Sci Rep 2025; 15:5129. [PMID: 39934181 DOI: 10.1038/s41598-024-81791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2024] [Accepted: 11/28/2024] [Indexed: 02/13/2025] Open
Abstract
New research has highlighted a shortfall in the Standard Model (SM) because it predicts neutrinos to have zero mass. However, recent experiments on neutrino oscillation have revealed that the majority of neutrino parameters indeed indicate their significant mass. In response, scientists are increasingly incorporating discrete symmetries alongside continuous ones for the observed patterns of neutrino mixing. In this study, we have examined a model within [Formula: see text] symmetry to estimate the neutrino masses using particle swarm optimization technique for both mass hierarchy of neutrino. This model employed a hybrid seesaw mechanism, a combination of seesaw mechanism of type-I and type-II, to establish the effective Majorana neutrino mass matrix. After calculating the mass eigenvalues and lepton mixing matrix upto second order perturbation theory in this framework, this study seeks to investigate the scalar potential for vacuum expectation values (VEVs), optimize the parameters, [Formula: see text] matrix, neutrino masses: [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] and [Formula: see text] effective neutrino mass parameters: [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] are predicted for both mass hierarchy through particle swarm optimization (PSO), showing strong agreement with recent experimental findings. The Dirac CP-violating phase δ is measured to be [Formula: see text].
Collapse
Affiliation(s)
| | | | | | - Abdul Aziz Bhatti
- Centre for High Energy Physics, University of the Punjab, Lahore, Pakistan
| | - Talab Hussain
- Centre for High Energy Physics, University of the Punjab, Lahore, Pakistan
| | - Munawar Iqbal
- College of Statistical Sciences, University of the Punjab, Lahore, Pakistan
| | - Mohammed S Abdo
- Department of Mathematics, Hodeidah University, P.O. Box 3114, Al-Hudaydah, Yemen.
| |
Collapse
|
2
|
Duvall MJ, Crow BC, Dornfest MA, Learned JG, Bergevin MF, Dazeley SA, Li VA. Directional response of several geometries for reactor-neutrino detectors. PHYSICAL REVIEW APPLIED 2024; 22:054030. [DOI: 10.1103/physrevapplied.22.054030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2025]
|
3
|
Alves GFS, Fong CS, Leal LPS, Funchal RZ. Limits on W_{R} from Meson Decays. PHYSICAL REVIEW LETTERS 2024; 133:161802. [PMID: 39485966 DOI: 10.1103/physrevlett.133.161802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/21/2023] [Revised: 04/08/2024] [Accepted: 09/03/2024] [Indexed: 11/03/2024]
Abstract
In this Letter we show that pseudoscalar meson leptonic decay data can be used to set stringent limits on the mass m_{W_{R}} of a right-handed vector boson, such as the one that appears in left-right symmetric models. We have shown that for a heavy neutrino with a mass m_{N} in the range 50
Collapse
Affiliation(s)
- Gustavo F S Alves
- Fermilab, Instituto de Física, Universidade de São Paulo, C.P. 66.318, 05315-970 São Paulo, Brazil and Particle Theory Department, P.O. Box 500, Batavia, Illinois 60510, USA
| | - Chee Sheng Fong
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas , 09.210-170, Santo André, Brazil
| | - Luighi P S Leal
- Instituto de Física, Universidade de São Paulo, C.P. 66.318, 05315-970 São Paulo, Brazil
| | | |
Collapse
|
4
|
Parno DS, Poon AWP, Singh V. Experimental neutrino physics in a nuclear landscape. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230122. [PMID: 38910396 PMCID: PMC11343210 DOI: 10.1098/rsta.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 06/25/2024]
Abstract
There are profound connections between neutrino physics and nuclear experiments. Exceptionally precise measurements of single and double beta-decay spectra illuminate the scale and nature of neutrino mass and may finally answer the question of whether neutrinos are their own anti-matter counterparts. Neutrino-nucleus scattering underpins oscillation experiments and probes nuclear structure, neutrinos offer a rare vantage point into collapsing stars and nuclear fission reactors and techniques pioneered in neutrino nuclear physics experiments are advancing quantum sensing technologies. In this article, we review current and planned efforts at the intersection of neutrino and nuclear experiments. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.
Collapse
Affiliation(s)
- D. S. Parno
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA15213, USA
| | - A. W. P. Poon
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
| | - V. Singh
- Department of Physics, University of California, Berkeley, CA94720, USA
| |
Collapse
|
5
|
Watanabe A, Koshimizu M, Watanabe K, Sato A, Fujimoto Y, Asai K. Scintillation properties of lithium-6 salicylate-loaded liquid scintillators. Phys Chem Chem Phys 2024; 26:9329-9339. [PMID: 38444296 DOI: 10.1039/d4cp00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/07/2024]
Abstract
The limited availability of conventional 3He proportional counters provides impetus for developing novel neutron detectors. As a candidate, lithium-6-loaded liquid scintillators with neutron/gamma pulse shape discrimination (n-γ PSD) capabilities have been developed. However, the trade-off relationship between the 6Li-loading amount and scintillation light yield is a significant problem. This is because 6Li-loading involves the addition of non-luminescent materials, which cause non-radiative relaxation of the excited states. Therefore, aiming to reduce non-radiative relaxation, we chose lithium-6 salicylate (6LiSal), which shows fluorescence in the visible light region, as a chemical for 6Li-loading. In this study, we analyzed the photoluminescence/scintillation properties based on the Förster resonance energy transfer and investigated the optimal content for obtaining a high light yield. By maximizing the sequential energy transfer from the solvent (toluene) to the phosphor (POPOP), a high light yield 6Li-loaded liquid scintillator (4220 photons per MeV under gamma-ray irradiation) with a 6Li concentration of approximately 0.1 wt% was developed. Thermal neutron events were successfully detected with a light yield of 3970 photons per neutron, which is more than three times higher than those of other organic scintillators. In addition, focusing on the triplet-triplet annihilation process and further optimizing the component for the n-γ PSD, the thermal neutron and gamma-ray events were successfully separated. The developed high light yield 6Li-loaded liquid scintillators show n-γ PSD capabilities and can be promising candidates as alternative detectors to the 3He proportional counter.
Collapse
Affiliation(s)
- Akito Watanabe
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Masanori Koshimizu
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Japan.
| | - Kenichi Watanabe
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Atsushi Sato
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Yutaka Fujimoto
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Keisuke Asai
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
6
|
Abe K, Akhlaq N, Akutsu R, Ali A, Alonso Monsalve S, Alt C, Andreopoulos C, Antonova M, Aoki S, Arihara T, Asada Y, Ashida Y, Atkin ET, Barbi M, Barker GJ, Barr G, Barrow D, Batkiewicz-Kwasniak M, Bench F, Berardi V, Berns L, Bhadra S, Blanchet A, Blondel A, Bolognesi S, Bonus T, Bordoni S, Boyd SB, Bravar A, Bronner C, Bron S, Bubak A, Buizza Avanzini M, Caballero JA, Calabria NF, Cao S, Carabadjac D, Carter AJ, Cartwright SL, Catanesi MG, Cervera A, Chakrani J, Cherdack D, Chong PS, Christodoulou G, Chvirova A, Cicerchia M, Coleman J, Collazuol G, Cook L, Cudd A, Dalmazzone C, Daret T, Davydov YI, De Roeck A, De Rosa G, Dealtry T, Delogu CC, Densham C, Dergacheva A, Di Lodovico F, Dolan S, Douqa D, Doyle TA, Drapier O, Dumarchez J, Dunne P, Dygnarowicz K, Eguchi A, Emery-Schrenk S, Erofeev G, Ershova A, Eurin G, Fedorova D, Fedotov S, Feltre M, Finch AJ, Fiorentini Aguirre GA, Fiorillo G, Fitton MD, Franco Patiño JM, Friend M, Fujii Y, Fukuda Y, Fusshoeller K, Giannessi L, Giganti C, Glagolev V, Gonin M, González Rosa J, Goodman EAG, Gorin A, Grassi M, Guigue M, Hadley DR, Haigh JT, Hamacher-Baumann P, Harris DA, Hartz M, Hasegawa T, Hassani S, Hastings NC, Hayato Y, Henaff D, Hiramoto A, Hogan M, Holeczek J, Holin A, Holvey T, Hong Van NT, Honjo T, Iacob F, Ichikawa AK, Ikeda M, Ishida T, Ishitsuka M, Israel HT, Iwamoto K, Izmaylov A, Izumi N, Jakkapu M, Jamieson B, Jenkins SJ, Jesús-Valls C, Jiang JJ, Jonsson P, Joshi S, Jung CK, Jurj PB, Kabirnezhad M, Kaboth AC, Kajita T, Kakuno H, Kameda J, Kasetti SP, Kataoka Y, Katayama Y, Katori T, Kawaue M, Kearns E, Khabibullin M, Khotjantsev A, Kikawa T, Kikutani H, King S, Kiseeva V, Kisiel J, Kobata T, Kobayashi H, Kobayashi T, Koch L, Kodama S, Konaka A, Kormos LL, Koshio Y, Kostin A, Koto T, Kowalik K, Kudenko Y, Kudo Y, Kuribayashi S, Kurjata R, Kutter T, Kuze M, La Commara M, Labarga L, Lachner K, Lagoda J, Lakshmi SM, Lamers James M, Lamoureux M, Langella A, Laporte JF, Last D, Latham N, Laveder M, Lavitola L, Lawe M, Lee Y, Lin C, Lin SK, Litchfield RP, Liu SL, Li W, Longhin A, Long KR, Lopez Moreno A, Ludovici L, Lu X, Lux T, Machado LN, Magaletti L, Mahn K, Malek M, Mandal M, Manly S, Marino AD, Marti-Magro L, Martin DGR, Martini M, Martin JF, Maruyama T, Matsubara T, Matveev V, Mauger C, Mavrokoridis K, Mazzucato E, McCauley N, McElwee J, McFarland KS, McGrew C, McKean J, Mefodiev A, Megias GD, Mehta P, Mellet L, Metelko C, Mezzetto M, Miller E, Minamino A, Mineev O, Mine S, Miura M, Molina Bueno L, Moriyama S, Moriyama S, Morrison P, Mueller TA, Munford D, Munteanu L, Nagai K, Nagai Y, Nakadaira T, Nakagiri K, Nakahata M, Nakajima Y, Nakamura A, Nakamura H, Nakamura K, Nakamura KD, Nakano Y, Nakayama S, Nakaya T, Nakayoshi K, Naseby CER, Ngoc TV, Nguyen VQ, Niewczas K, Nishimori S, Nishimura Y, Nishizaki K, Nosek T, Nova F, Novella P, Nugent JC, O’Keeffe HM, O’Sullivan L, Odagawa T, Ogawa T, Okada R, Okinaga W, Okumura K, Okusawa T, Ospina N, Owen RA, Oyama Y, Palladino V, Paolone V, Pari M, Parlone J, Parsa S, Pasternak J, Pavin M, Payne D, Penn GC, Pershey D, Pickering L, Pidcott C, Pintaudi G, Pistillo C, Popov B, Porwit K, Posiadala-Zezula M, Prabhu YS, Pupilli F, Quilain B, Radermacher T, Radicioni E, Radics B, Ramírez MA, Ratoff PN, Reh M, Riccio C, Rondio E, Roth S, Roy N, Rubbia A, Ruggeri AC, Ruggles CA, Rychter A, Sakashita K, Sánchez F, Santucci G, Schloesser CM, Scholberg K, Scott M, Seiya Y, Sekiguchi T, Sekiya H, Sgalaberna D, Shaikhiev A, Shaker F, Shaykina A, Shiozawa M, Shorrock W, Shvartsman A, Skrobova N, Skwarczynski K, Smyczek D, Smy M, Sobczyk JT, Sobel H, Soler FJP, Sonoda Y, Speers AJ, Spina R, Suslov IA, Suvorov S, Suzuki A, Suzuki SY, Suzuki Y, Sztuc AA, Tada M, Tairafune S, Takayasu S, Takeda A, Takeuchi Y, Takifuji K, Tanaka HK, Tanihara Y, Tani M, Teklu A, Tereshchenko VV, Teshima N, Thamm N, Thompson LF, Toki W, Touramanis C, Towstego T, Tsui KM, Tsukamoto T, Tzanov M, Uchida Y, Vagins M, Vargas D, Varghese M, Vasseur G, Vilela C, Villa E, Vinning WGS, Virginet U, Vladisavljevic T, Wachala T, Walsh JG, Wang Y, Wan L, Wark D, Wascko MO, Weber A, Wendell R, Wilking MJ, Wilkinson C, Wilson JR, Wood K, Wret C, Xia J, Xu YH, Yamamoto K, Yamamoto T, Yanagisawa C, Yang G, Yano T, Yasutome K, Yershov N, Yevarouskaya U, Yokoyama M, Yoshimoto Y, Yoshimura N, Yu M, Zaki R, Zalewska A, Zalipska J, Zaremba K, Zarnecki G, Zhao X, Zhu T, Ziembicki M, Zimmerman ED, Zito M, Zsoldos S. Measurements of neutrino oscillation parameters from the T2K experiment using 3.6×1021 protons on target. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS 2023; 83:782. [PMID: 37680254 PMCID: PMC10480298 DOI: 10.1140/epjc/s10052-023-11819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023]
Abstract
The T2K experiment presents new measurements of neutrino oscillation parameters using 19.7 ( 16.3 ) × 10 20 protons on target (POT) in (anti-)neutrino mode at the far detector (FD). Compared to the previous analysis, an additional 4.7 × 10 20 POT neutrino data was collected at the FD. Significant improvements were made to the analysis methodology, with the near-detector analysis introducing new selections and using more than double the data. Additionally, this is the first T2K oscillation analysis to use NA61/SHINE data on a replica of the T2K target to tune the neutrino flux model, and the neutrino interaction model was improved to include new nuclear effects and calculations. Frequentist and Bayesian analyses are presented, including results on sin 2 θ 13 and the impact of priors on the δ CP measurement. Both analyses prefer the normal mass ordering and upper octant of sin 2 θ 23 with a nearly maximally CP-violating phase. Assuming the normal ordering and using the constraint on sin 2 θ 13 from reactors, sin 2 θ 23 = 0 . 561 - 0.032 + 0.021 using Feldman-Cousins corrected intervals, and Δ m 32 2 = 2 . 494 - 0.058 + 0.041 × 10 - 3 eV 2 using constant Δ χ 2 intervals. The CP-violating phase is constrained to δ CP = - 1 . 97 - 0.70 + 0.97 using Feldman-Cousins corrected intervals, and δ CP = 0 , π is excluded at more than 90% confidence level. A Jarlskog invariant of zero is excluded at more than 2 σ credible level using a flat prior in δ CP , and just below 2 σ using a flat prior in sin δ CP . When the external constraint on sin 2 θ 13 is removed, sin 2 θ 13 = 28 . 0 - 6.5 + 2.8 × 10 - 3 , in agreement with measurements from reactor experiments. These results are consistent with previous T2K analyses.
Collapse
Affiliation(s)
- K. Abe
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - N. Akhlaq
- School of Physics and Astronomy, Queen Mary University of London, London, UK
| | - R. Akutsu
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
| | - A. Ali
- TRIUMF, Vancouver, BC Canada
- Department of Physics, University of Winnipeg, Winnipeg, MB Canada
| | - S. Alonso Monsalve
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - C. Alt
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - C. Andreopoulos
- Department of Physics, University of Liverpool, Liverpool, UK
| | - M. Antonova
- IFIC (CSIC and University of Valencia), Valencia, Spain
| | - S. Aoki
- Kobe University, Kobe, Japan
| | - T. Arihara
- Department of Physics, Tokyo Metropolitan University, Tokyo, Japan
| | - Y. Asada
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - Y. Ashida
- Department of Physics, Kyoto University, Kyoto, Japan
| | - E. T. Atkin
- Department of Physics, Imperial College London, London, UK
| | - M. Barbi
- Department of Physics, University of Regina, Regina, Saskatchewan Canada
| | - G. J. Barker
- Department of Physics, University of Warwick, Coventry, UK
| | - G. Barr
- Department of Physics, Oxford University, Oxford, UK
| | - D. Barrow
- Department of Physics, Oxford University, Oxford, UK
| | | | - F. Bench
- Department of Physics, University of Liverpool, Liverpool, UK
| | - V. Berardi
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
| | - L. Berns
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
| | - S. Bhadra
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - A. Blanchet
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - A. Blondel
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - S. Bolognesi
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - T. Bonus
- Faculty of Physics and Astronomy, Wroclaw University, Wrocław, Poland
| | - S. Bordoni
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - S. B. Boyd
- Department of Physics, University of Warwick, Coventry, UK
| | - A. Bravar
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - C. Bronner
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - S. Bron
- TRIUMF, Vancouver, BC Canada
| | - A. Bubak
- Institute of Physics, University of Silesia, Katowice, Poland
| | - M. Buizza Avanzini
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
| | - J. A. Caballero
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain
| | - N. F. Calabria
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
| | - S. Cao
- Institute For Interdisciplinary Research in Science and Education (IFIRSE), ICISE, Quy Nhon, Vietnam
| | - D. Carabadjac
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - A. J. Carter
- Department of Physics, Royal Holloway University of London, Egham, Surrey UK
| | - S. L. Cartwright
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - M. G. Catanesi
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
| | - A. Cervera
- IFIC (CSIC and University of Valencia), Valencia, Spain
| | - J. Chakrani
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
| | - D. Cherdack
- Department of Physics, University of Houston, Houston, TX USA
| | - P. S. Chong
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - G. Christodoulou
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
| | - A. Chvirova
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - M. Cicerchia
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
- INFN-Laboratori Nazionali di Legnaro, Legnaro, Italy
| | - J. Coleman
- Department of Physics, University of Liverpool, Liverpool, UK
| | - G. Collazuol
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - L. Cook
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Department of Physics, Oxford University, Oxford, UK
| | - A. Cudd
- Department of Physics, University of Colorado at Boulder, Boulder, CO USA
| | - C. Dalmazzone
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - T. Daret
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Yu. I. Davydov
- Joint Institute for Nuclear Research, Dubna, Moscow Region Russia
| | - A. De Roeck
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
| | - G. De Rosa
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - T. Dealtry
- Physics Department, Lancaster University, Lancaster, UK
| | - C. C. Delogu
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - C. Densham
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - A. Dergacheva
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - F. Di Lodovico
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - S. Dolan
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
| | - D. Douqa
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - T. A. Doyle
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - O. Drapier
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
| | - J. Dumarchez
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - P. Dunne
- Department of Physics, Imperial College London, London, UK
| | - K. Dygnarowicz
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
| | - A. Eguchi
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - S. Emery-Schrenk
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - G. Erofeev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - A. Ershova
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - G. Eurin
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - D. Fedorova
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - S. Fedotov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - M. Feltre
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - A. J. Finch
- Physics Department, Lancaster University, Lancaster, UK
| | | | - G. Fiorillo
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - M. D. Fitton
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - J. M. Franco Patiño
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain
| | - M. Friend
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - Y. Fujii
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - Y. Fukuda
- Department of Physics, Miyagi University of Education, Sendai, Japan
| | - K. Fusshoeller
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - L. Giannessi
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - C. Giganti
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - V. Glagolev
- Joint Institute for Nuclear Research, Dubna, Moscow Region Russia
| | - M. Gonin
- ILANCE, CNRS-University of Tokyo International Research Laboratory, Kashiwa, Chiba 277-8582 Japan
| | - J. González Rosa
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain
| | - E. A. G. Goodman
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - A. Gorin
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - M. Grassi
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - M. Guigue
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - D. R. Hadley
- Department of Physics, University of Warwick, Coventry, UK
| | - J. T. Haigh
- Department of Physics, University of Warwick, Coventry, UK
| | | | - D. A. Harris
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - M. Hartz
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- TRIUMF, Vancouver, BC Canada
| | - T. Hasegawa
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - S. Hassani
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - N. C. Hastings
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
| | - Y. Hayato
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - D. Henaff
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - A. Hiramoto
- Department of Physics, Kyoto University, Kyoto, Japan
| | - M. Hogan
- Department of Physics, Colorado State University, Fort Collins, Colorado USA
| | - J. Holeczek
- Institute of Physics, University of Silesia, Katowice, Poland
| | - A. Holin
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - T. Holvey
- Department of Physics, Oxford University, Oxford, UK
| | - N. T. Hong Van
- International Centre of Physics, Institute of Physics (IOP), Vietnam Academy of Science and Technology (VAST), 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
| | - T. Honjo
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - F. Iacob
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - A. K. Ichikawa
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
| | - M. Ikeda
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - T. Ishida
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - M. Ishitsuka
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba Japan
| | - H. T. Israel
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - K. Iwamoto
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - A. Izmaylov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - N. Izumi
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba Japan
| | - M. Jakkapu
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
| | - B. Jamieson
- Department of Physics, University of Winnipeg, Winnipeg, MB Canada
| | - S. J. Jenkins
- Department of Physics, University of Liverpool, Liverpool, UK
| | - C. Jesús-Valls
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
| | - J. J. Jiang
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - P. Jonsson
- Department of Physics, Imperial College London, London, UK
| | - S. Joshi
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - C. K. Jung
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - P. B. Jurj
- Department of Physics, Imperial College London, London, UK
| | - M. Kabirnezhad
- Department of Physics, Imperial College London, London, UK
| | - A. C. Kaboth
- Department of Physics, Royal Holloway University of London, Egham, Surrey UK
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - T. Kajita
- Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - H. Kakuno
- Department of Physics, Tokyo Metropolitan University, Tokyo, Japan
| | - J. Kameda
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - S. P. Kasetti
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA USA
| | - Y. Kataoka
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - Y. Katayama
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - T. Katori
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - M. Kawaue
- Department of Physics, Kyoto University, Kyoto, Japan
| | - E. Kearns
- Department of Physics, Boston University, Boston, MA USA
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - M. Khabibullin
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - A. Khotjantsev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - T. Kikawa
- Department of Physics, Kyoto University, Kyoto, Japan
| | - H. Kikutani
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - S. King
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - V. Kiseeva
- Joint Institute for Nuclear Research, Dubna, Moscow Region Russia
| | - J. Kisiel
- Institute of Physics, University of Silesia, Katowice, Poland
| | - T. Kobata
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - H. Kobayashi
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - T. Kobayashi
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - L. Koch
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - S. Kodama
- Department of Physics, University of Tokyo, Tokyo, Japan
| | | | - L. L. Kormos
- Physics Department, Lancaster University, Lancaster, UK
| | - Y. Koshio
- Department of Physics, Okayama University, Okayama, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - A. Kostin
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - T. Koto
- Department of Physics, Tokyo Metropolitan University, Tokyo, Japan
| | - K. Kowalik
- National Centre for Nuclear Research, Warsaw, Poland
| | - Y. Kudenko
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (MIPT), Moscow Region, Russia and National Research Nuclear University “MEPhI”, Moscow, Russia
| | - Y. Kudo
- Department of Physics, Yokohama National University, Yokohama, Japan
| | | | - R. Kurjata
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
| | - T. Kutter
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA USA
| | - M. Kuze
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - M. La Commara
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - L. Labarga
- Department of Theoretical Physics, University Autonoma Madrid, 28049 Madrid, Spain
| | - K. Lachner
- Department of Physics, University of Warwick, Coventry, UK
| | - J. Lagoda
- National Centre for Nuclear Research, Warsaw, Poland
| | - S. M. Lakshmi
- National Centre for Nuclear Research, Warsaw, Poland
| | - M. Lamers James
- Physics Department, Lancaster University, Lancaster, UK
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - M. Lamoureux
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - A. Langella
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - J.-F. Laporte
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - D. Last
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - N. Latham
- Department of Physics, University of Warwick, Coventry, UK
| | - M. Laveder
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - L. Lavitola
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - M. Lawe
- Physics Department, Lancaster University, Lancaster, UK
| | - Y. Lee
- Department of Physics, Kyoto University, Kyoto, Japan
| | - C. Lin
- Department of Physics, Imperial College London, London, UK
| | - S.-K. Lin
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA USA
| | - R. P. Litchfield
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - S. L. Liu
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - W. Li
- Department of Physics, Oxford University, Oxford, UK
| | - A. Longhin
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - K. R. Long
- Department of Physics, Imperial College London, London, UK
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - A. Lopez Moreno
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - L. Ludovici
- INFN Sezione di Roma and Università di Roma “La Sapienza”, Rome, Italy
| | - X. Lu
- Department of Physics, University of Warwick, Coventry, UK
| | - T. Lux
- Institut de Fisica d’Altes Energies (IFAE)-The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona Spain
| | - L. N. Machado
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - L. Magaletti
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
| | - K. Mahn
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI USA
| | - M. Malek
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - M. Mandal
- National Centre for Nuclear Research, Warsaw, Poland
| | - S. Manly
- Department of Physics and Astronomy, University of Rochester, Rochester, NY USA
| | - A. D. Marino
- Department of Physics, University of Colorado at Boulder, Boulder, CO USA
| | - L. Marti-Magro
- Department of Physics, Yokohama National University, Yokohama, Japan
| | | | - M. Martini
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
- IPSA-DRII, Ivry-sur-Seine, France
| | - J. F. Martin
- Department of Physics, University of Toronto, Toronto, ON Canada
| | - T. Maruyama
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - T. Matsubara
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
| | - V. Matveev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - C. Mauger
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - K. Mavrokoridis
- Department of Physics, University of Liverpool, Liverpool, UK
| | - E. Mazzucato
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - N. McCauley
- Department of Physics, University of Liverpool, Liverpool, UK
| | - J. McElwee
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - K. S. McFarland
- Department of Physics and Astronomy, University of Rochester, Rochester, NY USA
| | - C. McGrew
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - J. McKean
- Department of Physics, Imperial College London, London, UK
| | - A. Mefodiev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - G. D. Megias
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain
| | - P. Mehta
- Department of Physics, University of Liverpool, Liverpool, UK
| | - L. Mellet
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - C. Metelko
- Department of Physics, University of Liverpool, Liverpool, UK
| | - M. Mezzetto
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - E. Miller
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - A. Minamino
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - O. Mineev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - S. Mine
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA USA
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - M. Miura
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | | | - S. Moriyama
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - S. Moriyama
- Department of Physics, Yokohama National University, Yokohama, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - P. Morrison
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - Th. A. Mueller
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
| | - D. Munford
- Department of Physics, University of Houston, Houston, TX USA
| | - L. Munteanu
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
| | - K. Nagai
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - Y. Nagai
- Department of Atomic Physics, Eötvös Loránd University, Budapest, Hungary
| | - T. Nakadaira
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - K. Nakagiri
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - M. Nakahata
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - Y. Nakajima
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - A. Nakamura
- Department of Physics, Okayama University, Okayama, Japan
| | - H. Nakamura
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba Japan
| | - K. Nakamura
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- J-PARC, Tokai, Japan
| | - K. D. Nakamura
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
| | - Y. Nakano
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - S. Nakayama
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - T. Nakaya
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Department of Physics, Kyoto University, Kyoto, Japan
| | - K. Nakayoshi
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | | | - T. V. Ngoc
- Institute For Interdisciplinary Research in Science and Education (IFIRSE), ICISE, Quy Nhon, Vietnam
- The Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - V. Q. Nguyen
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
| | - K. Niewczas
- Faculty of Physics and Astronomy, Wroclaw University, Wrocław, Poland
| | - S. Nishimori
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
| | - Y. Nishimura
- Department of Physics, Keio University, Yokohama, Kanagawa Japan
| | - K. Nishizaki
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - T. Nosek
- National Centre for Nuclear Research, Warsaw, Poland
| | - F. Nova
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - P. Novella
- IFIC (CSIC and University of Valencia), Valencia, Spain
| | - J. C. Nugent
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
| | | | - L. O’Sullivan
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - T. Odagawa
- Department of Physics, Kyoto University, Kyoto, Japan
| | - T. Ogawa
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
| | - R. Okada
- Department of Physics, Okayama University, Okayama, Japan
| | - W. Okinaga
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - K. Okumura
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Japan
| | - T. Okusawa
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - N. Ospina
- Department of Theoretical Physics, University Autonoma Madrid, 28049 Madrid, Spain
| | - R. A. Owen
- School of Physics and Astronomy, Queen Mary University of London, London, UK
| | - Y. Oyama
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - V. Palladino
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - V. Paolone
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA USA
| | - M. Pari
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - J. Parlone
- Department of Physics, University of Liverpool, Liverpool, UK
| | - S. Parsa
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - J. Pasternak
- Department of Physics, Imperial College London, London, UK
| | | | - D. Payne
- Department of Physics, University of Liverpool, Liverpool, UK
| | - G. C. Penn
- Department of Physics, University of Liverpool, Liverpool, UK
| | - D. Pershey
- Department of Physics, Duke University, Durham, NC USA
| | - L. Pickering
- Department of Physics, Royal Holloway University of London, Egham, Surrey UK
| | - C. Pidcott
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - G. Pintaudi
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - C. Pistillo
- Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics, University of Bern, Bern, Switzerland
| | - B. Popov
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
- JINR, Dubna, Russia
| | - K. Porwit
- Institute of Physics, University of Silesia, Katowice, Poland
| | | | - Y. S. Prabhu
- National Centre for Nuclear Research, Warsaw, Poland
| | - F. Pupilli
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - B. Quilain
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
| | - T. Radermacher
- III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
| | - E. Radicioni
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
| | - B. Radics
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - M. A. Ramírez
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - P. N. Ratoff
- Physics Department, Lancaster University, Lancaster, UK
| | - M. Reh
- Department of Physics, University of Colorado at Boulder, Boulder, CO USA
| | - C. Riccio
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - E. Rondio
- National Centre for Nuclear Research, Warsaw, Poland
| | - S. Roth
- III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
| | - N. Roy
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - A. Rubbia
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - A. C. Ruggeri
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - C. A. Ruggles
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - A. Rychter
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
| | - K. Sakashita
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - F. Sánchez
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - G. Santucci
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - C. M. Schloesser
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - K. Scholberg
- Department of Physics, Duke University, Durham, NC USA
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - M. Scott
- Department of Physics, Imperial College London, London, UK
| | - Y. Seiya
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
- Science Department, BMCC/CUNY, New York, NY USA
| | - T. Sekiguchi
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - H. Sekiya
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - D. Sgalaberna
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - A. Shaikhiev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - F. Shaker
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - A. Shaykina
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - M. Shiozawa
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - W. Shorrock
- Department of Physics, Imperial College London, London, UK
| | - A. Shvartsman
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - N. Skrobova
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | | | - D. Smyczek
- III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
| | - M. Smy
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA USA
| | - J. T. Sobczyk
- Faculty of Physics and Astronomy, Wroclaw University, Wrocław, Poland
| | - H. Sobel
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA USA
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
| | - F. J. P. Soler
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - Y. Sonoda
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - A. J. Speers
- Physics Department, Lancaster University, Lancaster, UK
| | - R. Spina
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
| | - I. A. Suslov
- Joint Institute for Nuclear Research, Dubna, Moscow Region Russia
| | - S. Suvorov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | | | - S. Y. Suzuki
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - Y. Suzuki
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
| | - A. A. Sztuc
- Department of Physics, Imperial College London, London, UK
| | - M. Tada
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - S. Tairafune
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
| | - S. Takayasu
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - A. Takeda
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - Y. Takeuchi
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Kobe University, Kobe, Japan
| | - K. Takifuji
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
| | - H. K. Tanaka
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - Y. Tanihara
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - M. Tani
- Department of Physics, Kyoto University, Kyoto, Japan
| | - A. Teklu
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | | | - N. Teshima
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - N. Thamm
- III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
| | - L. F. Thompson
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - W. Toki
- Department of Physics, Colorado State University, Fort Collins, Colorado USA
| | - C. Touramanis
- Department of Physics, University of Liverpool, Liverpool, UK
| | - T. Towstego
- Department of Physics, University of Toronto, Toronto, ON Canada
| | - K. M. Tsui
- Department of Physics, University of Liverpool, Liverpool, UK
| | - T. Tsukamoto
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - M. Tzanov
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA USA
| | - Y. Uchida
- Department of Physics, Imperial College London, London, UK
| | - M. Vagins
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA USA
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
| | - D. Vargas
- Institut de Fisica d’Altes Energies (IFAE)-The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona Spain
| | - M. Varghese
- Institut de Fisica d’Altes Energies (IFAE)-The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona Spain
| | - G. Vasseur
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - C. Vilela
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
| | - E. Villa
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | | | - U. Virginet
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | | | - T. Wachala
- H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland
| | - J. G. Walsh
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI USA
| | - Y. Wang
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - L. Wan
- Department of Physics, Boston University, Boston, MA USA
| | - D. Wark
- Department of Physics, Oxford University, Oxford, UK
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - M. O. Wascko
- Department of Physics, Imperial College London, London, UK
| | - A. Weber
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - R. Wendell
- Department of Physics, Kyoto University, Kyoto, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - M. J. Wilking
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - C. Wilkinson
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - J. R. Wilson
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - K. Wood
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - C. Wret
- Department of Physics, Oxford University, Oxford, UK
| | - J. Xia
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
| | - Y.-H. Xu
- Physics Department, Lancaster University, Lancaster, UK
| | - K. Yamamoto
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
- Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka, Japan
| | - T. Yamamoto
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - C. Yanagisawa
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
- Science Department, BMCC/CUNY, New York, NY USA
| | - G. Yang
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - T. Yano
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - K. Yasutome
- Department of Physics, Kyoto University, Kyoto, Japan
| | - N. Yershov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - U. Yevarouskaya
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - M. Yokoyama
- Department of Physics, University of Tokyo, Tokyo, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - Y. Yoshimoto
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - N. Yoshimura
- Department of Physics, Kyoto University, Kyoto, Japan
| | - M. Yu
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - R. Zaki
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - A. Zalewska
- H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland
| | - J. Zalipska
- National Centre for Nuclear Research, Warsaw, Poland
| | - K. Zaremba
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
| | - G. Zarnecki
- H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland
| | - X. Zhao
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - T. Zhu
- Department of Physics, Imperial College London, London, UK
| | - M. Ziembicki
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
| | - E. D. Zimmerman
- Department of Physics, University of Colorado at Boulder, Boulder, CO USA
| | - M. Zito
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - S. Zsoldos
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - T2K Collaboration
- Department of Theoretical Physics, University Autonoma Madrid, 28049 Madrid, Spain
- Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics, University of Bern, Bern, Switzerland
- Department of Physics, Boston University, Boston, MA USA
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA USA
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- Department of Physics, University of Colorado at Boulder, Boulder, CO USA
- Department of Physics, Colorado State University, Fort Collins, Colorado USA
- Department of Physics, Duke University, Durham, NC USA
- Department of Atomic Physics, Eötvös Loránd University, Budapest, Hungary
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
- H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- Department of Physics, University of Houston, Houston, TX USA
- Institut de Fisica d’Altes Energies (IFAE)-The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona Spain
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
- IFIC (CSIC and University of Valencia), Valencia, Spain
- Institute For Interdisciplinary Research in Science and Education (IFIRSE), ICISE, Quy Nhon, Vietnam
- Department of Physics, Imperial College London, London, UK
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
- INFN Sezione di Roma and Università di Roma “La Sapienza”, Rome, Italy
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- International Centre of Physics, Institute of Physics (IOP), Vietnam Academy of Science and Technology (VAST), 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
- ILANCE, CNRS-University of Tokyo International Research Laboratory, Kashiwa, Chiba 277-8582 Japan
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Department of Physics, Keio University, Yokohama, Kanagawa Japan
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
- Kobe University, Kobe, Japan
- Department of Physics, Kyoto University, Kyoto, Japan
- Physics Department, Lancaster University, Lancaster, UK
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
- Department of Physics, University of Liverpool, Liverpool, UK
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA USA
- Joint Institute for Nuclear Research, Dubna, Moscow Region Russia
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI USA
- Department of Physics, Miyagi University of Education, Sendai, Japan
- National Centre for Nuclear Research, Warsaw, Poland
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
- Department of Physics, Okayama University, Okayama, Japan
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
- Department of Physics, Oxford University, Oxford, UK
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA USA
- School of Physics and Astronomy, Queen Mary University of London, London, UK
- Department of Physics, University of Regina, Regina, Saskatchewan Canada
- Department of Physics and Astronomy, University of Rochester, Rochester, NY USA
- Department of Physics, Royal Holloway University of London, Egham, Surrey UK
- III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
- Institute of Physics, University of Silesia, Katowice, Poland
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
- Department of Physics, University of Tokyo, Tokyo, Japan
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
- Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Japan
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- Department of Physics, Tokyo Metropolitan University, Tokyo, Japan
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba Japan
- Department of Physics, University of Toronto, Toronto, ON Canada
- TRIUMF, Vancouver, BC Canada
- Faculty of Physics, University of Warsaw, Warsaw, Poland
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
- Department of Physics, University of Warwick, Coventry, UK
- Department of Physics, University of Winnipeg, Winnipeg, MB Canada
- Faculty of Physics and Astronomy, Wroclaw University, Wrocław, Poland
- Department of Physics, Yokohama National University, Yokohama, Japan
- Department of Physics and Astronomy, York University, Toronto, ON Canada
- Université Paris-Saclay, Gif-sur-Yvette, France
- INFN-Laboratori Nazionali di Legnaro, Legnaro, Italy
- J-PARC, Tokai, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
- Moscow Institute of Physics and Technology (MIPT), Moscow Region, Russia and National Research Nuclear University “MEPhI”, Moscow, Russia
- IPSA-DRII, Ivry-sur-Seine, France
- The Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
- JINR, Dubna, Russia
- Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka, Japan
- Science Department, BMCC/CUNY, New York, NY USA
| |
Collapse
|
7
|
Andriamirado M, Balantekin AB, Bass CD, Bergeron DE, Bernard EP, Bowden NS, Bryan CD, Carr R, Classen T, Conant AJ, Deichert G, Delgado A, Diwan MV, Dolinski MJ, Erickson A, Foust BT, Gaison JK, Galindo-Uribari A, Gilbert CE, Gokhale S, Grant C, Hans S, Hansell AB, Heeger KM, Heffron B, Jaffe DE, Jayakumar S, Ji X, Jones DC, Koblanski J, Kunkle P, Kyzylova O, LaBelle D, Lane CE, Langford TJ, LaRosa J, Littlejohn BR, Lu X, Maricic J, Mendenhall MP, Meyer AM, Milincic R, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Nour S, Palomino Gallo JL, Pushin DA, Qian X, Roca C, Rosero R, Searles M, Surukuchi PT, Sutanto F, Tyra MA, Venegas-Vargas D, Weatherly PB, Wilhelmi J, Woolverton A, Yeh M, Zhang C, Zhang X. Final Measurement of the ^{235}U Antineutrino Energy Spectrum with the PROSPECT-I Detector at HFIR. PHYSICAL REVIEW LETTERS 2023; 131:021802. [PMID: 37505961 DOI: 10.1103/physrevlett.131.021802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 05/11/2023] [Indexed: 07/30/2023]
Abstract
This Letter reports one of the most precise measurements to date of the antineutrino spectrum from a purely ^{235}U-fueled reactor, made with the final dataset from the PROSPECT-I detector at the High Flux Isotope Reactor. By extracting information from previously unused detector segments, this analysis effectively doubles the statistics of the previous PROSPECT measurement. The reconstructed energy spectrum is unfolded into antineutrino energy and compared with both the Huber-Mueller model and a spectrum from a commercial reactor burning multiple fuel isotopes. A local excess over the model is observed in the 5-7 MeV energy region. Comparison of the PROSPECT results with those from commercial reactors provides new constraints on the origin of this excess, disfavoring at 2.0 and 3.7 standard deviations the hypotheses that antineutrinos from ^{235}U are solely responsible and noncontributors to the excess observed at commercial reactors, respectively.
Collapse
Affiliation(s)
- M Andriamirado
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - A B Balantekin
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - C D Bass
- Department of Physics, Le Moyne College, Syracuse, New York 13214, USA
| | - D E Bergeron
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - E P Bernard
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N S Bowden
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C D Bryan
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - R Carr
- Department of Physics, United States Naval Academy, Annapolis, Maryland 21402, USA
| | - T Classen
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A J Conant
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - G Deichert
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - A Delgado
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - A Erickson
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - B T Foust
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J K Gaison
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A Galindo-Uribari
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - C E Gilbert
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - S Gokhale
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Grant
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A B Hansell
- Department of Physics, Susquehanna University, Selinsgrove, Pennsylvania 17870, USA
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - B Heffron
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - S Jayakumar
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - X Ji
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D C Jones
- Department of Physics (035-08), Temple University, 1925 N 12th Street, Philadelphia, Pennsylvania 19122-1801, USA
| | - J Koblanski
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - P Kunkle
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - O Kyzylova
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - D LaBelle
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - C E Lane
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - T J Langford
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J LaRosa
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - X Lu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - J Maricic
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - M P Mendenhall
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A M Meyer
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - R Milincic
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - P E Mueller
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - H P Mumm
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J Napolitano
- Department of Physics (035-08), Temple University, 1925 N 12th Street, Philadelphia, Pennsylvania 19122-1801, USA
| | - R Neilson
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - J A Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Nour
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J L Palomino Gallo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - D A Pushin
- Institute for Quantum Computing and Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1 Ontario, Canada
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Roca
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M Searles
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - P T Surukuchi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - F Sutanto
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M A Tyra
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D Venegas-Vargas
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - P B Weatherly
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - J Wilhelmi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A Woolverton
- Institute for Quantum Computing and Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1 Ontario, Canada
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Zhang
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
8
|
An FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Cheng J, Cheng J, Cheng YC, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding YY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Dugas KV, Duyang HY, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Han Y, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Marshall C, McDonald KT, McKeown RD, Meng Y, Napolitano J, Naumov D, Naumova E, Nguyen TMT, Ochoa-Ricoux JP, Olshevskiy A, Park J, Patton S, Peng JC, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Russell B, Steiner H, Sun JL, Tmej T, Treskov K, Tse WH, Tull CE, Tung YC, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang Y, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wen LJ, Whisnant K, White CG, Wong HLH, Worcester E, Wu DR, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JL, Zhang JW, Zhang QM, Zhang SQ, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Improved Measurement of the Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. PHYSICAL REVIEW LETTERS 2023; 130:211801. [PMID: 37295075 DOI: 10.1103/physrevlett.130.211801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/03/2022] [Revised: 02/10/2023] [Accepted: 04/27/2023] [Indexed: 06/12/2023]
Abstract
Reactor neutrino experiments play a crucial role in advancing our knowledge of neutrinos. In this Letter, the evolution of the flux and spectrum as a function of the reactor isotopic content is reported in terms of the inverse-beta-decay yield at Daya Bay with 1958 days of data and improved systematic uncertainties. These measurements are compared with two signature model predictions: the Huber-Mueller model based on the conversion method and the SM2018 model based on the summation method. The measured average flux and spectrum, as well as the flux evolution with the ^{239}Pu isotopic fraction, are inconsistent with the predictions of the Huber-Mueller model. In contrast, the SM2018 model is shown to agree with the average flux and its evolution but fails to describe the energy spectrum. Altering the predicted inverse-beta-decay spectrum from ^{239}Pu fission does not improve the agreement with the measurement for either model. The models can be brought into better agreement with the measurements if either the predicted spectrum due to ^{235}U fission is changed or the predicted ^{235}U, ^{238}U, ^{239}Pu, and ^{241}Pu spectra are changed in equal measure.
Collapse
Affiliation(s)
- F P An
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - W D Bai
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | | | - M Bishai
- Brookhaven National Laboratory, Upton, New York 11973
| | - S Blyth
- Department of Physics, National Taiwan University, Taipei
| | - G F Cao
- Institute of High Energy Physics, Beijing
| | - J Cao
- Institute of High Energy Physics, Beijing
| | - J F Chang
- Institute of High Energy Physics, Beijing
| | - Y Chang
- National United University, Miao-Li
| | - H S Chen
- Institute of High Energy Physics, Beijing
| | - H Y Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | - S M Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Y Chen
- Sun Yat-Sen (Zhongshan) University, Guangzhou
- Shenzhen University, Shenzhen
| | - Y X Chen
- North China Electric Power University, Beijing
| | - J Cheng
- North China Electric Power University, Beijing
| | - J Cheng
- North China Electric Power University, Beijing
| | - Y-C Cheng
- Department of Physics, National Taiwan University, Taipei
| | - Z K Cheng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | | | - M C Chu
- Chinese University of Hong Kong, Hong Kong
| | | | - O Dalager
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - F S Deng
- University of Science and Technology of China, Hefei
| | - Y Y Ding
- Institute of High Energy Physics, Beijing
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973
| | - T Dohnal
- Charles University, Faculty of Mathematics and Physics, Prague
| | - D Dolzhikov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - J Dove
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - K V Dugas
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | | | - D A Dwyer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J P Gallo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - M Gonchar
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - G H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - W Q Gu
- Brookhaven National Laboratory, Upton, New York 11973
| | - J Y Guo
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | - X H Guo
- Beijing Normal University, Beijing
| | - Y H Guo
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - Z Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | | | - Y Han
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973
| | - M He
- Institute of High Energy Physics, Beijing
| | - K M Heeger
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - Y K Heng
- Institute of High Energy Physics, Beijing
| | - Y K Hor
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y B Hsiung
- Department of Physics, National Taiwan University, Taipei
| | - B Z Hu
- Department of Physics, National Taiwan University, Taipei
| | - J R Hu
- Institute of High Energy Physics, Beijing
| | - T Hu
- Institute of High Energy Physics, Beijing
| | - Z J Hu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H X Huang
- China Institute of Atomic Energy, Beijing
| | - J H Huang
- Institute of High Energy Physics, Beijing
| | | | - Y B Huang
- Guangxi University, No. 100 Daxue East Road, Nanning
| | - P Huber
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973
| | - K L Jen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - X L Ji
- Institute of High Energy Physics, Beijing
| | - X P Ji
- Brookhaven National Laboratory, Upton, New York 11973
| | - R A Johnson
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
| | - D Jones
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - L Kang
- Dongguan University of Technology, Dongguan
| | - S H Kettell
- Brookhaven National Laboratory, Upton, New York 11973
| | - S Kohn
- Department of Physics, University of California, Berkeley, California 94720
| | - M Kramer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - T J Langford
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - J Lee
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J H C Lee
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - R T Lei
- Dongguan University of Technology, Dongguan
| | - R Leitner
- Charles University, Faculty of Mathematics and Physics, Prague
| | - J K C Leung
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Li
- Institute of High Energy Physics, Beijing
| | - H L Li
- Institute of High Energy Physics, Beijing
| | - J J Li
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Q J Li
- Institute of High Energy Physics, Beijing
| | - R H Li
- Institute of High Energy Physics, Beijing
| | - S Li
- Dongguan University of Technology, Dongguan
| | - S C Li
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - W D Li
- Institute of High Energy Physics, Beijing
| | - X N Li
- Institute of High Energy Physics, Beijing
| | - X Q Li
- School of Physics, Nankai University, Tianjin
| | - Y F Li
- Institute of High Energy Physics, Beijing
| | - Z B Li
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H Liang
- University of Science and Technology of China, Hefei
| | - C J Lin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - G L Lin
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - S Lin
- Dongguan University of Technology, Dongguan
| | - J J Ling
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J M Link
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - L Littenberg
- Brookhaven National Laboratory, Upton, New York 11973
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - J C Liu
- Institute of High Energy Physics, Beijing
| | - J L Liu
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - J X Liu
- Institute of High Energy Physics, Beijing
| | - C Lu
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - H Q Lu
- Institute of High Energy Physics, Beijing
| | - K B Luk
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
- The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - B Z Ma
- Shandong University, Jinan
| | - X B Ma
- North China Electric Power University, Beijing
| | - X Y Ma
- Institute of High Energy Physics, Beijing
| | - Y Q Ma
- Institute of High Energy Physics, Beijing
| | - R C Mandujano
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - C Marshall
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - K T McDonald
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - R D McKeown
- California Institute of Technology, Pasadena, California 91125
- College of William and Mary, Williamsburg, Virginia 23187
| | - Y Meng
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - J Napolitano
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - D Naumov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - E Naumova
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - T M T Nguyen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - J P Ochoa-Ricoux
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - J Park
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - S Patton
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J C Peng
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - C S J Pun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Z Qi
- Institute of High Energy Physics, Beijing
| | - M Qi
- Nanjing University, Nanjing
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973
| | - N Raper
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J Ren
- China Institute of Atomic Energy, Beijing
| | - C Morales Reveco
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973
| | - B Roskovec
- Charles University, Faculty of Mathematics and Physics, Prague
| | - X C Ruan
- China Institute of Atomic Energy, Beijing
| | - B Russell
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - H Steiner
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - J L Sun
- China General Nuclear Power Group, Shenzhen
| | - T Tmej
- Charles University, Faculty of Mathematics and Physics, Prague
| | - K Treskov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - W-H Tse
- Chinese University of Hong Kong, Hong Kong
| | - C E Tull
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Y C Tung
- Department of Physics, National Taiwan University, Taipei
| | - B Viren
- Brookhaven National Laboratory, Upton, New York 11973
| | - V Vorobel
- Charles University, Faculty of Mathematics and Physics, Prague
| | - C H Wang
- National United University, Miao-Li
| | - J Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - M Wang
- Shandong University, Jinan
| | - N Y Wang
- Beijing Normal University, Beijing
| | - R G Wang
- Institute of High Energy Physics, Beijing
| | - W Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
- College of William and Mary, Williamsburg, Virginia 23187
| | - X Wang
- College of Electronic Science and Engineering, National University of Defense Technology, Changsha
| | - Y Wang
- Nanjing University, Nanjing
| | - Y F Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Z M Wang
- Institute of High Energy Physics, Beijing
| | - H Y Wei
- Brookhaven National Laboratory, Upton, New York 11973
| | - L H Wei
- Institute of High Energy Physics, Beijing
| | - L J Wen
- Institute of High Energy Physics, Beijing
| | | | - C G White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - H L H Wong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - E Worcester
- Brookhaven National Laboratory, Upton, New York 11973
| | - D R Wu
- Institute of High Energy Physics, Beijing
| | - Q Wu
- Shandong University, Jinan
| | - W J Wu
- Institute of High Energy Physics, Beijing
| | - D M Xia
- Chongqing University, Chongqing
| | - Z Q Xie
- Institute of High Energy Physics, Beijing
| | - Z Z Xing
- Institute of High Energy Physics, Beijing
| | - H K Xu
- Institute of High Energy Physics, Beijing
| | - J L Xu
- Institute of High Energy Physics, Beijing
| | - T Xu
- Department of Engineering Physics, Tsinghua University, Beijing
| | - T Xue
- Department of Engineering Physics, Tsinghua University, Beijing
| | - C G Yang
- Institute of High Energy Physics, Beijing
| | - L Yang
- Dongguan University of Technology, Dongguan
| | - Y Z Yang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H F Yao
- Institute of High Energy Physics, Beijing
| | - M Ye
- Institute of High Energy Physics, Beijing
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973
| | - B L Young
- Iowa State University, Ames, Iowa 50011
| | - H Z Yu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Z Y Yu
- Institute of High Energy Physics, Beijing
| | - B B Yue
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - V Zavadskyi
- Brookhaven National Laboratory, Upton, New York 11973
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - S Zeng
- Institute of High Energy Physics, Beijing
| | - Y Zeng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Zhan
- Institute of High Energy Physics, Beijing
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973
| | - F Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - H H Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | | | - J W Zhang
- Institute of High Energy Physics, Beijing
| | - Q M Zhang
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - S Q Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - X T Zhang
- Institute of High Energy Physics, Beijing
| | - Y M Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y X Zhang
- China General Nuclear Power Group, Shenzhen
| | - Y Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - Z J Zhang
- Dongguan University of Technology, Dongguan
| | - Z P Zhang
- University of Science and Technology of China, Hefei
| | - Z Y Zhang
- Institute of High Energy Physics, Beijing
| | - J Zhao
- Institute of High Energy Physics, Beijing
| | - R Z Zhao
- Institute of High Energy Physics, Beijing
| | - L Zhou
- Institute of High Energy Physics, Beijing
| | - H L Zhuang
- Institute of High Energy Physics, Beijing
| | - J H Zou
- Institute of High Energy Physics, Beijing
| |
Collapse
|
9
|
Allega A, Anderson MR, Andringa S, Antunes J, Askins M, Auty DJ, Bacon A, Barros N, Barão F, Bayes R, Beier EW, Bezerra TS, Bialek A, Biller SD, Blucher E, Caden E, Callaghan EJ, Cheng S, Chen M, Cleveland B, Cookman D, Corning J, Cox MA, Dehghani R, Deloye J, Deluce C, Depatie MM, Dittmer J, Dixon KH, Di Lodovico F, Falk E, Fatemighomi N, Ford R, Frankiewicz K, Gaur A, González-Reina OI, Gooding D, Grant C, Grove J, Hallin AL, Hallman D, Heintzelman WJ, Helmer RL, Hu J, Hunt-Stokes R, Hussain SMA, Inácio AS, Jillings CJ, Kaluzienski S, Kaptanoglu T, Khaghani P, Khan H, Klein JR, Kormos LL, Krar B, Kraus C, Krauss CB, Kroupová T, Lam I, Land BJ, Lawson I, Lebanowski L, Lee J, Lefebvre C, Lidgard J, Lin YH, Lozza V, Luo M, Maio A, Manecki S, Maneira J, Martin RD, McCauley N, McDonald AB, Mills C, Morton-Blake I, Naugle S, Nolan LJ, O'Keeffe HM, Orebi Gann GD, Page J, Parker W, Paton J, Peeters SJM, Pickard L, Ravi P, Reichold A, Riccetto S, Richardson R, Rigan M, Rose J, Rosero R, Rumleskie J, Semenec I, Skensved P, Smiley M, Svoboda R, Tam B, Tseng J, Turner E, Valder S, Virtue CJ, Vázquez-Jáuregui E, Wang J, Ward M, Wilson JR, Wilson JD, Wright A, Yanez JP, Yang S, Yeh M, Yu S, Zhang Y, Zuber K, Zummo A. Evidence of Antineutrinos from Distant Reactors Using Pure Water at SNO. PHYSICAL REVIEW LETTERS 2023; 130:091801. [PMID: 36930908 DOI: 10.1103/physrevlett.130.091801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The SNO+ Collaboration reports the first evidence of reactor antineutrinos in a Cherenkov detector. The nearest nuclear reactors are located 240 km away in Ontario, Canada. This analysis uses events with energies lower than in any previous analysis with a large water Cherenkov detector. Two analytical methods are used to distinguish reactor antineutrinos from background events in 190 days of data and yield consistent evidence for antineutrinos with a combined significance of 3.5σ.
Collapse
Affiliation(s)
- A Allega
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - M R Anderson
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - S Andringa
- Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Avenida Professor Gama Pinto, 2, 1649-003, Lisboa, Portugal
| | - J Antunes
- Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Avenida Professor Gama Pinto, 2, 1649-003, Lisboa, Portugal
- Universidade de Lisboa, Instituto Superior Técnico (IST), Departamento de Física, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal
| | - M Askins
- Department of Physics, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720-8153, USA
| | - D J Auty
- Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, Alberta T6G 2E1, Canada
| | - A Bacon
- Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6396, USA
| | - N Barros
- Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Avenida Professor Gama Pinto, 2, 1649-003, Lisboa, Portugal
- Universidade de Lisboa, Faculdade de Ciéncias (FCUL), Departamento de Física, Campo Grande, Edifício C8, 1749-016, Lisboa, Portugal
| | - F Barão
- Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Avenida Professor Gama Pinto, 2, 1649-003, Lisboa, Portugal
- Universidade de Lisboa, Instituto Superior Técnico (IST), Departamento de Física, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal
| | - R Bayes
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - E W Beier
- Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6396, USA
| | - T S Bezerra
- Physics & Astronomy, University of Sussex, Pevensey II, Falmer, Brighton, BN1 9QH, United Kingdom
| | - A Bialek
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
- SNOLAB, Creighton Mine #9, 1039 Regional Road 24, Sudbury, Ontario P3Y 1N2, Canada
| | - S D Biller
- University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom
| | - E Blucher
- The Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - E Caden
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
- SNOLAB, Creighton Mine #9, 1039 Regional Road 24, Sudbury, Ontario P3Y 1N2, Canada
| | - E J Callaghan
- Department of Physics, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720-8153, USA
| | - S Cheng
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - M Chen
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - B Cleveland
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
- SNOLAB, Creighton Mine #9, 1039 Regional Road 24, Sudbury, Ontario P3Y 1N2, Canada
| | - D Cookman
- University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom
| | - J Corning
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - M A Cox
- Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Avenida Professor Gama Pinto, 2, 1649-003, Lisboa, Portugal
- Department of Physics, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - R Dehghani
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - J Deloye
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - C Deluce
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - M M Depatie
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - J Dittmer
- Technische Universität Dresden, Institut für Kern und Teilchenphysik, Zellescher Weg 19, Dresden 01069, Germany
| | - K H Dixon
- Department of Physics, King's College London, Strand Building, Strand, London WC2R 2LS, United Kingdom
| | - F Di Lodovico
- Department of Physics, King's College London, Strand Building, Strand, London WC2R 2LS, United Kingdom
| | - E Falk
- Physics & Astronomy, University of Sussex, Pevensey II, Falmer, Brighton, BN1 9QH, United Kingdom
| | - N Fatemighomi
- SNOLAB, Creighton Mine #9, 1039 Regional Road 24, Sudbury, Ontario P3Y 1N2, Canada
| | - R Ford
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
- SNOLAB, Creighton Mine #9, 1039 Regional Road 24, Sudbury, Ontario P3Y 1N2, Canada
| | - K Frankiewicz
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - A Gaur
- Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, Alberta T6G 2E1, Canada
| | - O I González-Reina
- Universidad Nacional Autónoma de México (UNAM), Instituto de Física, Apartado Postal 20-364, México D.F. 01000, México
| | - D Gooding
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - C Grant
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - J Grove
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - A L Hallin
- Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, Alberta T6G 2E1, Canada
| | - D Hallman
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - W J Heintzelman
- Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6396, USA
| | - R L Helmer
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - J Hu
- Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, Alberta T6G 2E1, Canada
| | - R Hunt-Stokes
- University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom
| | - S M A Hussain
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - A S Inácio
- Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Avenida Professor Gama Pinto, 2, 1649-003, Lisboa, Portugal
- Universidade de Lisboa, Faculdade de Ciéncias (FCUL), Departamento de Física, Campo Grande, Edifício C8, 1749-016, Lisboa, Portugal
| | - C J Jillings
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
- SNOLAB, Creighton Mine #9, 1039 Regional Road 24, Sudbury, Ontario P3Y 1N2, Canada
| | - S Kaluzienski
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - T Kaptanoglu
- Department of Physics, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720-8153, USA
| | - P Khaghani
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - H Khan
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - J R Klein
- Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6396, USA
| | - L L Kormos
- Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - B Krar
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - C Kraus
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
- SNOLAB, Creighton Mine #9, 1039 Regional Road 24, Sudbury, Ontario P3Y 1N2, Canada
| | - C B Krauss
- Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, Alberta T6G 2E1, Canada
| | - T Kroupová
- Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6396, USA
| | - I Lam
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - B J Land
- Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6396, USA
| | - I Lawson
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
- SNOLAB, Creighton Mine #9, 1039 Regional Road 24, Sudbury, Ontario P3Y 1N2, Canada
| | - L Lebanowski
- Department of Physics, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720-8153, USA
- Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6396, USA
| | - J Lee
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - C Lefebvre
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - J Lidgard
- University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom
| | - Y H Lin
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - V Lozza
- Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Avenida Professor Gama Pinto, 2, 1649-003, Lisboa, Portugal
- Universidade de Lisboa, Faculdade de Ciéncias (FCUL), Departamento de Física, Campo Grande, Edifício C8, 1749-016, Lisboa, Portugal
| | - M Luo
- Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6396, USA
| | - A Maio
- Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Avenida Professor Gama Pinto, 2, 1649-003, Lisboa, Portugal
- Universidade de Lisboa, Faculdade de Ciéncias (FCUL), Departamento de Física, Campo Grande, Edifício C8, 1749-016, Lisboa, Portugal
| | - S Manecki
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
- SNOLAB, Creighton Mine #9, 1039 Regional Road 24, Sudbury, Ontario P3Y 1N2, Canada
| | - J Maneira
- Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Avenida Professor Gama Pinto, 2, 1649-003, Lisboa, Portugal
- Universidade de Lisboa, Faculdade de Ciéncias (FCUL), Departamento de Física, Campo Grande, Edifício C8, 1749-016, Lisboa, Portugal
| | - R D Martin
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - N McCauley
- Department of Physics, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - A B McDonald
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - C Mills
- Physics & Astronomy, University of Sussex, Pevensey II, Falmer, Brighton, BN1 9QH, United Kingdom
| | - I Morton-Blake
- University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom
| | - S Naugle
- Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6396, USA
| | - L J Nolan
- School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS, United Kingdom
| | - H M O'Keeffe
- Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - G D Orebi Gann
- Department of Physics, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720-8153, USA
| | - J Page
- Physics & Astronomy, University of Sussex, Pevensey II, Falmer, Brighton, BN1 9QH, United Kingdom
| | - W Parker
- University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom
| | - J Paton
- University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom
| | - S J M Peeters
- Physics & Astronomy, University of Sussex, Pevensey II, Falmer, Brighton, BN1 9QH, United Kingdom
| | - L Pickard
- University of California, Davis, 1 Shields Avenue, Davis, California 95616, USA
| | - P Ravi
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - A Reichold
- University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom
| | - S Riccetto
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - R Richardson
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - M Rigan
- Physics & Astronomy, University of Sussex, Pevensey II, Falmer, Brighton, BN1 9QH, United Kingdom
| | - J Rose
- Department of Physics, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - R Rosero
- Chemistry Department, Brookhaven National Laboratory, Building 555, P.O. Box 5000, Upton, New York 11973-500, USA
| | - J Rumleskie
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - I Semenec
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - P Skensved
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - M Smiley
- Department of Physics, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720-8153, USA
| | - R Svoboda
- University of California, Davis, 1 Shields Avenue, Davis, California 95616, USA
| | - B Tam
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - J Tseng
- University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom
| | - E Turner
- University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom
| | - S Valder
- Physics & Astronomy, University of Sussex, Pevensey II, Falmer, Brighton, BN1 9QH, United Kingdom
| | - C J Virtue
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - E Vázquez-Jáuregui
- Universidad Nacional Autónoma de México (UNAM), Instituto de Física, Apartado Postal 20-364, México D.F. 01000, México
| | - J Wang
- University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom
| | - M Ward
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - J R Wilson
- Department of Physics, King's College London, Strand Building, Strand, London WC2R 2LS, United Kingdom
| | - J D Wilson
- Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, Alberta T6G 2E1, Canada
| | - A Wright
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - J P Yanez
- Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, Alberta T6G 2E1, Canada
| | - S Yang
- Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, Alberta T6G 2E1, Canada
| | - M Yeh
- Chemistry Department, Brookhaven National Laboratory, Building 555, P.O. Box 5000, Upton, New York 11973-500, USA
| | - S Yu
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - Y Zhang
- Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, Alberta T6G 2E1, Canada
- Research Center for Particle Science and Technology, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong, China
- Key Laboratory of Particle Physics and Particle Irradiation of Ministry of Education, Shandong University, Qingdao 266237, Shandong, China
| | - K Zuber
- Technische Universität Dresden, Institut für Kern und Teilchenphysik, Zellescher Weg 19, Dresden 01069, Germany
- MTA Atomki, 4001 Debrecen, Hungary
| | - A Zummo
- Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6396, USA
| |
Collapse
|
10
|
Chowdhury TA, Saad S. Leptoquark-vectorlike quark model for the CDF
mW
,
(g−2)μ
,
RK(*)
anomalies, and neutrino masses. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.106.055017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
11
|
Introduction to Charged Lepton Flavor Violation. UNIVERSE 2022. [DOI: 10.3390/universe8060299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/04/2022]
Abstract
Neutrino masses are evidence of lepton flavor violation, but no violation in the interactions among the charged leptons has been observed yet. Many models of Physics Beyond the Standard Model (BSM) predict Charged Lepton Flavor Violation (CLFV) in a wide spectrum of processes with rates in reach of upcoming experiments. The experimental searches that provide the current best limits on the CLFV searches are reviewed, with a particular emphasis on the muon-based experiments that give the most stringent constraints on the BSM parameter space. The next generation of muon-based experiments (MEG-II, Mu2e, COMET, Mu3e) aims to reach improvements by many orders of magnitude with respect to the current best limits, thanks to several technological advancements. We review popular heavy BSM theories, and we present the calculations of the predicted CLFV branching ratios, focusing on the more sensitive μ→e sector.
Collapse
|
12
|
Li YF, Xin Z. Model-independent determination of isotopic cross sections per fission for reactor antineutrinos. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.105.073003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
13
|
Synergies and prospects for early resolution of the neutrino mass ordering. Sci Rep 2022; 12:5393. [PMID: 35354838 PMCID: PMC8967831 DOI: 10.1038/s41598-022-09111-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta m^2_{31}$$\end{document}Δm312 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta m^2_{32}$$\end{document}Δm322 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu$$\end{document}νB) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge 5\sigma$$\end{document}≥5σ) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim 3\sigma$$\end{document}∼3σ, or LB\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu$$\end{document}νB experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu$$\end{document}νB experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta m^2_{32}$$\end{document}Δm322 by LB\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu$$\end{document}νB experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model.
Collapse
|
14
|
An FP, Andriamirado M, Balantekin AB, Band HR, Bass CD, Bergeron DE, Berish D, Bishai M, Blyth S, Bowden NS, Bryan CD, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen SM, Chen Y, Chen YX, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Classen T, Conant AJ, Cummings JP, Dalager O, Deichert G, Delgado A, Deng FS, Ding YY, Diwan MV, Dohnal T, Dolinski MJ, Dolzhikov D, Dove J, Dvořák M, Dwyer DA, Erickson A, Foust BT, Gaison JK, Galindo-Uribarri A, Gallo JP, Gilbert CE, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, Hansell AB, He M, Heeger KM, Heffron B, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Koblanski J, Jaffe DE, Jayakumar S, Jen KL, Ji XL, Ji XP, Johnson RA, Jones DC, Kang L, Kettell SH, Kohn S, Kramer M, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Lu X, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Maricic J, Marshall C, McDonald KT, McKeown RD, Mendenhall MP, Meng Y, Meyer AM, Milincic R, Mueller PE, Mumm HP, Napolitano J, Naumov D, Naumova E, Neilson R, Nguyen TMT, Nikkel JA, Nour S, Ochoa-Ricoux JP, Olshevskiy A, Palomino JL, Pan HR, Park J, Patton S, Peng JC, Pun CSJ, Pushin DA, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Searles M, Steiner H, Sun JL, Surukuchi PT, Tmej T, Treskov K, Tse WH, Tull CE, Tyra MA, Varner RL, Venegas-Vargas D, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang W, Wang X, Wang Y, Wang YF, Wang Z, Wang Z, Wang ZM, Weatherly PB, Wei HY, Wei LH, Wen LJ, Whisnant K, White C, Wilhelmi J, Wong HLH, Woolverton A, Worcester E, Wu DR, Wu FL, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JW, Zhang QM, Zhang SQ, Zhang X, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Joint Determination of Reactor Antineutrino Spectra from ^{235}U and ^{239}Pu Fission by Daya Bay and PROSPECT. PHYSICAL REVIEW LETTERS 2022; 128:081801. [PMID: 35275656 DOI: 10.1103/physrevlett.128.081801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
A joint determination of the reactor antineutrino spectra resulting from the fission of ^{235}U and ^{239}Pu has been carried out by the Daya Bay and PROSPECT Collaborations. This Letter reports the level of consistency of ^{235}U spectrum measurements from the two experiments and presents new results from a joint analysis of both data sets. The measurements are found to be consistent. The combined analysis reduces the degeneracy between the dominant ^{235}U and ^{239}Pu isotopes and improves the uncertainty of the ^{235}U spectral shape to about 3%. The ^{235}U and ^{239}Pu antineutrino energy spectra are unfolded from the jointly deconvolved reactor spectra using the Wiener-SVD unfolding method, providing a data-based reference for other reactor antineutrino experiments and other applications. This is the first measurement of the ^{235}U and ^{239}Pu spectra based on the combination of experiments at low- and highly enriched uranium reactors.
Collapse
Affiliation(s)
- F P An
- Institute of Modern Physics, East China University of Science and Technology, Shanghai
| | - M Andriamirado
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - A B Balantekin
- Department of Physics, University of Wisconsin, Madison, Madison, Wisconsin
| | - H R Band
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - C D Bass
- Department of Physics, Le Moyne College, Syracuse, New York
| | - D E Bergeron
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - D Berish
- Department of Physics, Temple University, Philadelphia, Pennsylvania
| | - M Bishai
- Brookhaven National Laboratory, Upton, New York
| | - S Blyth
- Department of Physics, National Taiwan University, Taipei
| | - N S Bowden
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California
| | - C D Bryan
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - G F Cao
- Institute of High Energy Physics, Beijing
| | - J Cao
- Institute of High Energy Physics, Beijing
| | - J F Chang
- Institute of High Energy Physics, Beijing
| | - Y Chang
- National United University, Miao-Li
| | - H S Chen
- Institute of High Energy Physics, Beijing
| | - S M Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Y Chen
- Shenzhen University, Shenzhen
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y X Chen
- North China Electric Power University, Beijing
| | - J Cheng
- Institute of High Energy Physics, Beijing
| | - Z K Cheng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J J Cherwinka
- Department of Physics, University of Wisconsin, Madison, Madison, Wisconsin
| | - M C Chu
- Chinese University of Hong Kong, Hong Kong
| | - T Classen
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California
| | - A J Conant
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | - O Dalager
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - G Deichert
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - A Delgado
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - F S Deng
- University of Science and Technology of China, Hefei
| | - Y Y Ding
- Institute of High Energy Physics, Beijing
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York
| | - T Dohnal
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - D Dolzhikov
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - J Dove
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - M Dvořák
- Institute of High Energy Physics, Beijing
| | - D A Dwyer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - A Erickson
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - B T Foust
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - J K Gaison
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - A Galindo-Uribarri
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - J P Gallo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - C E Gilbert
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - M Gonchar
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - G H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - M Grassi
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - W Q Gu
- Brookhaven National Laboratory, Upton, New York
| | - J Y Guo
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | - X H Guo
- Beijing Normal University, Beijing
| | - Y H Guo
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - Z Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | | | - S Hans
- Brookhaven National Laboratory, Upton, New York
| | - A B Hansell
- Department of Physics, Temple University, Philadelphia, Pennsylvania
| | - M He
- Institute of High Energy Physics, Beijing
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - B Heffron
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - Y K Heng
- Institute of High Energy Physics, Beijing
| | - Y K Hor
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y B Hsiung
- Department of Physics, National Taiwan University, Taipei
| | - B Z Hu
- Department of Physics, National Taiwan University, Taipei
| | - J R Hu
- Institute of High Energy Physics, Beijing
| | - T Hu
- Institute of High Energy Physics, Beijing
| | - Z J Hu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H X Huang
- China Institute of Atomic Energy, Beijing
| | - J H Huang
- Institute of High Energy Physics, Beijing
| | | | - Y B Huang
- Guangxi University, No.100 Daxue East Road, Nanning
| | - P Huber
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - J Koblanski
- Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York
| | - S Jayakumar
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - K L Jen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - X L Ji
- Institute of High Energy Physics, Beijing
| | - X P Ji
- Brookhaven National Laboratory, Upton, New York
| | - R A Johnson
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
| | - D C Jones
- Department of Physics, Temple University, Philadelphia, Pennsylvania
| | - L Kang
- Dongguan University of Technology, Dongguan
| | - S H Kettell
- Brookhaven National Laboratory, Upton, New York
| | - S Kohn
- Department of Physics, University of California, Berkeley, California 94720
| | - M Kramer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - O Kyzylova
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - C E Lane
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - T J Langford
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - J LaRosa
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - J Lee
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J H C Lee
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - R T Lei
- Dongguan University of Technology, Dongguan
| | - R Leitner
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - J K C Leung
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Li
- Institute of High Energy Physics, Beijing
| | - H L Li
- Institute of High Energy Physics, Beijing
| | - J J Li
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Q J Li
- Institute of High Energy Physics, Beijing
| | - R H Li
- Institute of High Energy Physics, Beijing
| | - S Li
- Dongguan University of Technology, Dongguan
| | - S C Li
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - W D Li
- Institute of High Energy Physics, Beijing
| | - X N Li
- Institute of High Energy Physics, Beijing
| | - X Q Li
- School of Physics, Nankai University, Tianjin
| | - Y F Li
- Institute of High Energy Physics, Beijing
| | - Z B Li
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H Liang
- University of Science and Technology of China, Hefei
| | - C J Lin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - G L Lin
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - S Lin
- Dongguan University of Technology, Dongguan
| | - J J Ling
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J M Link
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | | | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - J C Liu
- Institute of High Energy Physics, Beijing
| | - J L Liu
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - J X Liu
- Institute of High Energy Physics, Beijing
| | - C Lu
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - H Q Lu
- Institute of High Energy Physics, Beijing
| | - X Lu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - K B Luk
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - B Z Ma
- Shandong University, Jinan
| | - X B Ma
- North China Electric Power University, Beijing
| | - X Y Ma
- Institute of High Energy Physics, Beijing
| | - Y Q Ma
- Institute of High Energy Physics, Beijing
| | - R C Mandujano
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - J Maricic
- Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii
| | - C Marshall
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - K T McDonald
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - R D McKeown
- California Institute of Technology, Pasadena, California 91125
- College of William and Mary, Williamsburg, Virginia 23187
| | - M P Mendenhall
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California
| | - Y Meng
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - A M Meyer
- Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii
| | - R Milincic
- Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii
| | - P E Mueller
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - H P Mumm
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - J Napolitano
- Department of Physics, Temple University, Philadelphia, Pennsylvania
| | - D Naumov
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - E Naumova
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - R Neilson
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - T M T Nguyen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - J A Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - S Nour
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - J P Ochoa-Ricoux
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - J L Palomino
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - H-R Pan
- Department of Physics, National Taiwan University, Taipei
| | - J Park
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - S Patton
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J C Peng
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - C S J Pun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - D A Pushin
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario
| | - F Z Qi
- Institute of High Energy Physics, Beijing
| | - M Qi
- Nanjing University, Nanjing
| | - X Qian
- Brookhaven National Laboratory, Upton, New York
| | - N Raper
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J Ren
- China Institute of Atomic Energy, Beijing
| | - C Morales Reveco
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York
| | - B Roskovec
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - X C Ruan
- China Institute of Atomic Energy, Beijing
| | - M Searles
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - H Steiner
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - J L Sun
- China General Nuclear Power Group, Shenzhen
| | - P T Surukuchi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - T Tmej
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - K Treskov
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - W-H Tse
- Chinese University of Hong Kong, Hong Kong
| | - C E Tull
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - M A Tyra
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - R L Varner
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - D Venegas-Vargas
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - B Viren
- Brookhaven National Laboratory, Upton, New York
| | - V Vorobel
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - C H Wang
- National United University, Miao-Li
| | - J Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - M Wang
- Shandong University, Jinan
| | - N Y Wang
- Beijing Normal University, Beijing
| | - R G Wang
- Institute of High Energy Physics, Beijing
| | - W Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
- College of William and Mary, Williamsburg, Virginia 23187
| | - W Wang
- Nanjing University, Nanjing
| | - X Wang
- College of Electronic Science and Engineering, National University of Defense Technology, Changsha
| | - Y Wang
- Nanjing University, Nanjing
| | - Y F Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Z M Wang
- Institute of High Energy Physics, Beijing
| | - P B Weatherly
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - H Y Wei
- Brookhaven National Laboratory, Upton, New York
| | - L H Wei
- Institute of High Energy Physics, Beijing
| | - L J Wen
- Institute of High Energy Physics, Beijing
| | | | - C White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - J Wilhelmi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - H L H Wong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - A Woolverton
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario
| | - E Worcester
- Brookhaven National Laboratory, Upton, New York
| | - D R Wu
- Institute of High Energy Physics, Beijing
| | - F L Wu
- Nanjing University, Nanjing
| | - Q Wu
- Shandong University, Jinan
| | - W J Wu
- Institute of High Energy Physics, Beijing
| | - D M Xia
- Chongqing University, Chongqing
| | - Z Q Xie
- Institute of High Energy Physics, Beijing
| | - Z Z Xing
- Institute of High Energy Physics, Beijing
| | - H K Xu
- Institute of High Energy Physics, Beijing
| | - J L Xu
- Institute of High Energy Physics, Beijing
| | - T Xu
- Department of Engineering Physics, Tsinghua University, Beijing
| | - T Xue
- Department of Engineering Physics, Tsinghua University, Beijing
| | - C G Yang
- Institute of High Energy Physics, Beijing
| | - L Yang
- Dongguan University of Technology, Dongguan
| | - Y Z Yang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H F Yao
- Institute of High Energy Physics, Beijing
| | - M Ye
- Institute of High Energy Physics, Beijing
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York
| | - B L Young
- Iowa State University, Ames, Iowa 50011
| | - H Z Yu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Z Y Yu
- Institute of High Energy Physics, Beijing
| | - B B Yue
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - V Zavadskyi
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - S Zeng
- Institute of High Energy Physics, Beijing
| | - Y Zeng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Zhan
- Institute of High Energy Physics, Beijing
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York
| | - F Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - H H Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J W Zhang
- Institute of High Energy Physics, Beijing
| | - Q M Zhang
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - S Q Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - X Zhang
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California
| | - X T Zhang
- Institute of High Energy Physics, Beijing
| | - Y M Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y X Zhang
- China General Nuclear Power Group, Shenzhen
| | - Y Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - Z J Zhang
- Dongguan University of Technology, Dongguan
| | - Z P Zhang
- University of Science and Technology of China, Hefei
| | - Z Y Zhang
- Institute of High Energy Physics, Beijing
| | - J Zhao
- Institute of High Energy Physics, Beijing
| | - R Z Zhao
- Institute of High Energy Physics, Beijing
| | - L Zhou
- Institute of High Energy Physics, Beijing
| | - H L Zhuang
- Institute of High Energy Physics, Beijing
| | - J H Zou
- Institute of High Energy Physics, Beijing
| |
Collapse
|
15
|
Almazán H, Andriamirado M, Balantekin AB, Band HR, Bass CD, Bergeron DE, Bernard L, Blanchet A, Bonhomme A, Bowden NS, Bryan CD, Buck C, Classen T, Conant AJ, Deichert G, Del Amo Sanchez P, Delgado A, Diwan MV, Dolinski MJ, El Atmani I, Erickson A, Foust BT, Gaison JK, Galindo-Uribarri A, Gilbert CE, Hans S, Hansell AB, Heeger KM, Heffron B, Jaffe DE, Jayakumar S, Ji X, Jones DC, Koblanski J, Kyzylova O, Labit L, Lamblin J, Lane CE, Langford TJ, LaRosa J, Letourneau A, Lhuillier D, Licciardi M, Lindner M, Littlejohn BR, Lu X, Maricic J, Materna T, Mendenhall MP, Meyer AM, Milincic R, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Nour S, Palomino JL, Pessard H, Pushin DA, Qian X, Réal JS, Ricol JS, Roca C, Rogly R, Rosero R, Salagnac T, Savu V, Schoppmann S, Searles M, Sergeyeva V, Soldner T, Stutz A, Surukuchi PT, Tyra MA, Varner RL, Venegas-Vargas D, Vialat M, Weatherly PB, White C, Wilhelmi J, Woolverton A, Yeh M, Zhang C, Zhang X. Joint Measurement of the ^{235}U Antineutrino Spectrum by PROSPECT and STEREO. PHYSICAL REVIEW LETTERS 2022; 128:081802. [PMID: 35275665 DOI: 10.1103/physrevlett.128.081802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/05/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The PROSPECT and STEREO collaborations present a combined measurement of the pure ^{235}U antineutrino spectrum, without site specific corrections or detector-dependent effects. The spectral measurements of the two highest precision experiments at research reactors are found to be compatible with χ^{2}/ndf=24.1/21, allowing a joint unfolding of the prompt energy measurements into antineutrino energy. This ν[over ¯]_{e} energy spectrum is provided to the community, and an excess of events relative to the Huber model is found in the 5-6 MeV region. When a Gaussian bump is fitted to the excess, the data-model χ^{2} value is improved, corresponding to a 2.4σ significance.
Collapse
Affiliation(s)
- H Almazán
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M Andriamirado
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois, USA
| | - A B Balantekin
- Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - H R Band
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut, USA
| | - C D Bass
- Department of Physics, Le Moyne College, Syracuse, New York, USA
| | - D E Bergeron
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - L Bernard
- University Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - A Blanchet
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - A Bonhomme
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - N S Bowden
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - C D Bryan
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - C Buck
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - T Classen
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - A J Conant
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - G Deichert
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - A Delgado
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, USA
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York, USA
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia, Pennsylvania, USA
| | - I El Atmani
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - A Erickson
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia USA
| | - B T Foust
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut, USA
| | - J K Gaison
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut, USA
| | - A Galindo-Uribarri
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, USA
| | - C E Gilbert
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, USA
| | - S Hans
- Brookhaven National Laboratory, Upton, New York, USA
| | - A B Hansell
- Department of Physics, Temple University, Philadelphia, Pennsylvania, USA
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut, USA
| | - B Heffron
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, USA
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York, USA
| | - S Jayakumar
- Department of Physics, Drexel University, Philadelphia, Pennsylvania, USA
| | - X Ji
- Brookhaven National Laboratory, Upton, New York, USA
| | - D C Jones
- Department of Physics, Temple University, Philadelphia, Pennsylvania, USA
| | - J Koblanski
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii, USA
| | - O Kyzylova
- Department of Physics, Drexel University, Philadelphia, Pennsylvania, USA
| | - L Labit
- Univ. Savoie Mont Blanc, CNRS, LAPP-IN2P3, 74000 Annecy, France
| | - J Lamblin
- University Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - C E Lane
- Department of Physics, Drexel University, Philadelphia, Pennsylvania, USA
| | - T J Langford
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut, USA
| | - J LaRosa
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - A Letourneau
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - D Lhuillier
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - M Licciardi
- University Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - M Lindner
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois, USA
| | - X Lu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, USA
| | - J Maricic
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii, USA
| | - T Materna
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - M P Mendenhall
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - A M Meyer
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii, USA
| | - R Milincic
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii, USA
| | - P E Mueller
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - H P Mumm
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - J Napolitano
- Department of Physics, Temple University, Philadelphia, Pennsylvania, USA
| | - R Neilson
- Department of Physics, Drexel University, Philadelphia, Pennsylvania, USA
| | - J A Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut, USA
| | - S Nour
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - J L Palomino
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois, USA
| | - H Pessard
- Univ. Savoie Mont Blanc, CNRS, LAPP-IN2P3, 74000 Annecy, France
| | - D A Pushin
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - X Qian
- Brookhaven National Laboratory, Upton, New York, USA
| | - J-S Réal
- University Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - J-S Ricol
- University Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - C Roca
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - R Rogly
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York, USA
| | - T Salagnac
- University Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - V Savu
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - S Schoppmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M Searles
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - V Sergeyeva
- Univ. Savoie Mont Blanc, CNRS, LAPP-IN2P3, 74000 Annecy, France
| | - T Soldner
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - A Stutz
- University Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - P T Surukuchi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut, USA
| | - M A Tyra
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - R L Varner
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - D Venegas-Vargas
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, USA
| | - M Vialat
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - P B Weatherly
- Department of Physics, Drexel University, Philadelphia, Pennsylvania, USA
| | - C White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois, USA
| | - J Wilhelmi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut, USA
| | - A Woolverton
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York, USA
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York, USA
| | - X Zhang
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
16
|
Berryman JM, Delgadillo LA, Huber P. Future searches for light sterile neutrinos at nuclear reactors. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.105.035002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
17
|
Revealing Neutrino Oscillations Unknowns with Reactor and Long-Baseline Accelerator Experiments. UNIVERSE 2022. [DOI: 10.3390/universe8020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
Reactor and accelerator-based neutrino experiments have played a critical role in the understanding of neutrino oscillations and are currently dominating the high-precision measurements of neutrino oscillation parameters. The discovery of a non-zero θ13 by the reactor experiments has opened the possibility of observing CP violation in the lepton sector by long-baseline accelerator experiments. The current knowledge of the neutrino oscillation parameters will be expanded upon in the near future through more precise measurements, including the discovery of the neutrino mass ordering and the CP-violating phase. This review summarizes the distinct and complementary approach of reactor and accelerator-based neutrino experiments to measure neutrino oscillations. The main scientific achievements of the Double Chooz reactor neutrino experiment and the science program to be developed by the DUNE long-baseline neutrino experiment with the world’s most intense neutrino beam are presented in this article. Spain has strongly contributed to these results and will continue to play a prominent role in the neutrino oscillation program in the coming years.
Collapse
|
18
|
Abstract
In the global landscape of neutrinoless double beta (0νββ) decay search, the use of semiconductor germanium detectors provides many advantages. The excellent energy resolution, the negligible intrinsic radioactive contamination, the possibility of enriching the crystals up to 88% in the 76Ge isotope as well as the high detection efficiency, are all key ingredients for highly sensitive 0νββ decay search. The Majorana and Gerda experiments successfully implemented the use of germanium (Ge) semiconductor detectors, reaching an energy resolution of 2.53 ± 0.08 keV at the Qββ and an unprecedented low background level of 5.2×10−4 cts/(keV·kg·yr), respectively. In this paper, we will review the path of 0νββ decay search with Ge detectors from the original idea of E. Fiorini et al. in 1967, to the final recent results of the Gerda experiment setting a limit on the half-life of 76Ge 0νββ decay at T1/2>1.8×1026 yr (90% C.L.). We will then present the LEGEND project designed to reach a sensitivity to the half-life up to 1028 yr and beyond, opening the way to the exploration of the normal ordering region.
Collapse
|
19
|
Abstract
An overview of searches related to neutrinos of astronomical and astrophysical origin performed within the framework of the Standard-Model Extension is provided. For this effective field theory, key definitions, intriguing physical consequences, and the mathematical formalism are summarized within the neutrino sector to search for effects from a background that could lead to small deviations from Lorentz symmetry. After an introduction to the fundamental theory, examples of various experiments within the astronomical and astrophysical context are provided. Order-of-magnitude bounds of SME coefficients are shown illustratively for the tight constraints that this sector allows us to place on such violations.
Collapse
|
20
|
Adams DQ, Alduino C, Alfonso K, Avignone FT, Azzolini O, Bari G, Bellini F, Benato G, Biassoni M, Branca A, Brofferio C, Bucci C, Camilleri J, Caminata A, Campani A, Canonica L, Cao XG, Capelli S, Cappelli L, Cardani L, Carniti P, Casali N, Chiesa D, Clemenza M, Copello S, Cosmelli C, Cremonesi O, Creswick RJ, D'Addabbo A, Dafinei I, Davis CJ, Dell'Oro S, Di Domizio S, Dompè V, Fang DQ, Fantini G, Faverzani M, Ferri E, Ferroni F, Fiorini E, Franceschi MA, Freedman SJ, Fu SH, Fujikawa BK, Giachero A, Gironi L, Giuliani A, Gorla P, Gotti C, Gutierrez TD, Han K, Heeger KM, Huang RG, Huang HZ, Johnston J, Keppel G, Kolomensky YG, Ligi C, Ma L, Ma YG, Marini L, Maruyama RH, Mayer D, Mei Y, Moggi N, Morganti S, Napolitano T, Nastasi M, Nikkel J, Nones C, Norman EB, Nucciotti A, Nutini I, O'Donnell T, Ouellet JL, Pagan S, Pagliarone CE, Pagnanini L, Pallavicini M, Pattavina L, Pavan M, Pessina G, Pettinacci V, Pira C, Pirro S, Pozzi S, Previtali E, Puiu A, Rosenfeld C, Rusconi C, Sakai M, Sangiorgio S, Schmidt B, Scielzo ND, Sharma V, Singh V, Sisti M, Speller D, Surukuchi PT, Taffarello L, Terranova F, Tomei C, Vetter KJ, Vignati M, Wagaarachchi SL, Wang BS, Welliver B, Wilson J, Wilson K, Winslow LA, Zimmermann S, Zucchelli S. Measurement of the 2νββ Decay Half-Life of ^{130}Te with CUORE. PHYSICAL REVIEW LETTERS 2021; 126:171801. [PMID: 33988435 DOI: 10.1103/physrevlett.126.171801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/23/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
We measured two-neutrino double beta decay of ^{130}Te using an exposure of 300.7 kg yr accumulated with the CUORE detector. Using a Bayesian analysis to fit simulated spectra to experimental data, it was possible to disentangle all the major background sources and precisely measure the two-neutrino contribution. The half-life is in agreement with past measurements with a strongly reduced uncertainty: T_{1/2}^{2ν}=7.71_{-0.06}^{+0.08}(stat)_{-0.15}^{+0.12}(syst)×10^{20} yr. This measurement is the most precise determination of the ^{130}Te 2νββ decay half-life to date.
Collapse
Affiliation(s)
- D Q Adams
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - C Alduino
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - K Alfonso
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - F T Avignone
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - O Azzolini
- INFN-Laboratori Nazionali di Legnaro, Legnaro (Padova) I-35020, Italy
| | - G Bari
- INFN-Sezione di Bologna, Bologna I-40127, Italy
| | - F Bellini
- Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - G Benato
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
| | - M Biassoni
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - A Branca
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - C Brofferio
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - C Bucci
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
| | - J Camilleri
- Center for Neutrino Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - A Caminata
- INFN-Sezione di Genova, Genova I-16146, Italy
| | - A Campani
- INFN-Sezione di Genova, Genova I-16146, Italy
- Dipartimento di Fisica, Università di Genova, Genova I-16146, Italy
| | - L Canonica
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - X G Cao
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - S Capelli
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - L Cappelli
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - L Cardani
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - P Carniti
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - N Casali
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - D Chiesa
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - M Clemenza
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - S Copello
- INFN-Sezione di Genova, Genova I-16146, Italy
- Dipartimento di Fisica, Università di Genova, Genova I-16146, Italy
| | - C Cosmelli
- Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - O Cremonesi
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - R J Creswick
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - A D'Addabbo
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Gran Sasso Science Institute, L'Aquila I-67100, Italy
| | - I Dafinei
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - C J Davis
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Dell'Oro
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - S Di Domizio
- INFN-Sezione di Genova, Genova I-16146, Italy
- Dipartimento di Fisica, Università di Genova, Genova I-16146, Italy
| | - V Dompè
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Gran Sasso Science Institute, L'Aquila I-67100, Italy
| | - D Q Fang
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - G Fantini
- Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - M Faverzani
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - E Ferri
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - F Ferroni
- INFN-Sezione di Roma, Roma I-00185, Italy
- Gran Sasso Science Institute, L'Aquila I-67100, Italy
| | - E Fiorini
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - M A Franceschi
- INFN-Laboratori Nazionali di Frascati, Frascati (Roma) I-00044, Italy
| | - S J Freedman
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - S H Fu
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - B K Fujikawa
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - A Giachero
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - L Gironi
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - A Giuliani
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
| | - P Gorla
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
| | - C Gotti
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - T D Gutierrez
- Physics Department, California Polytechnic State University, San Luis Obispo, California 93407, USA
| | - K Han
- INPAC and School of Physics and Astronomy, Shanghai Jiao Tong University; Shanghai Laboratory for Particle Physics and Cosmology, Shanghai 200240, China
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - R G Huang
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - H Z Huang
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - J Johnston
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - G Keppel
- INFN-Laboratori Nazionali di Legnaro, Legnaro (Padova) I-35020, Italy
| | - Yu G Kolomensky
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - C Ligi
- INFN-Laboratori Nazionali di Frascati, Frascati (Roma) I-00044, Italy
| | - L Ma
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Y G Ma
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - L Marini
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - R H Maruyama
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - D Mayer
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Y Mei
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - N Moggi
- INFN-Sezione di Bologna, Bologna I-40127, Italy
- Dipartimento di Fisica e Astronomia, Alma Mater Studiorum-Università di Bologna, Bologna I-40127, Italy
| | - S Morganti
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - T Napolitano
- INFN-Laboratori Nazionali di Frascati, Frascati (Roma) I-00044, Italy
| | - M Nastasi
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - J Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - C Nones
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - E B Norman
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- Department of Nuclear Engineering, University of California, Berkeley, California 94720, USA
| | - A Nucciotti
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - I Nutini
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - T O'Donnell
- Center for Neutrino Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - J L Ouellet
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - S Pagan
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - C E Pagliarone
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Cassino I-03043, Italy
| | - L Pagnanini
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Gran Sasso Science Institute, L'Aquila I-67100, Italy
| | - M Pallavicini
- INFN-Sezione di Genova, Genova I-16146, Italy
- Dipartimento di Fisica, Università di Genova, Genova I-16146, Italy
| | - L Pattavina
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
| | - M Pavan
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - G Pessina
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | | | - C Pira
- INFN-Laboratori Nazionali di Legnaro, Legnaro (Padova) I-35020, Italy
| | - S Pirro
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
| | - S Pozzi
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - E Previtali
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - A Puiu
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Gran Sasso Science Institute, L'Aquila I-67100, Italy
| | - C Rosenfeld
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - C Rusconi
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
| | - M Sakai
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - S Sangiorgio
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - B Schmidt
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - N D Scielzo
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - V Sharma
- Center for Neutrino Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - V Singh
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - M Sisti
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - D Speller
- Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street Baltimore, Maryland 21211, USA
| | - P T Surukuchi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | | | - F Terranova
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - C Tomei
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - K J Vetter
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - M Vignati
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - S L Wagaarachchi
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B S Wang
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- Department of Nuclear Engineering, University of California, Berkeley, California 94720, USA
| | - B Welliver
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J Wilson
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - K Wilson
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - L A Winslow
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - S Zimmermann
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - S Zucchelli
- INFN-Sezione di Bologna, Bologna I-40127, Italy
- Dipartimento di Fisica e Astronomia, Alma Mater Studiorum-Università di Bologna, Bologna I-40127, Italy
| |
Collapse
|
21
|
Ota R. Photon counting detectors and their applications ranging from particle physics experiments to environmental radiation monitoring and medical imaging. Radiol Phys Technol 2021; 14:134-148. [PMID: 33742329 DOI: 10.1007/s12194-021-00615-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
Photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) have played essential roles in various applications, such as fundamental particle physics experiments, nuclear medicine, and environmental radiation monitoring, for several decades. Understandings their physical properties as well as present applications is indispensable for the development and future applications of these detectors. In this review, we describe the physical principles of PMTs and SiPMs and introduce various applications of these detectors.
Collapse
Affiliation(s)
- Ryosuke Ota
- Central Research Laboratory, Hamamatsu Photonics K. K, Hamamatsu, Japan. .,, 5000, Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan.
| |
Collapse
|
22
|
Abstract
We review the canonical transformation in quantum physics known as the Bogoliubov transformation and present its application to the general theory of quantum field mixing and oscillations with an arbitrary number of mixed particles with either boson or fermion statistics. The mixing relations for quantum states are derived directly from the definition of mixing for quantum fields and the unitary inequivalence of the Fock space of energy and flavor eigenstates is shown by a straightforward algebraic method. The time dynamics of the interacting fields is then explicitly solved and the flavor oscillation formulas are derived in a unified general formulation with emphasis on antiparticle content and effect introduced by nontrivial flavor vacuum.
Collapse
|
23
|
Kim BC, Kim YJ, Choi JY, Joo KK, Park SY, Song YS, Woo HJ. Range measurement and fluorescence imaging analysis using electron beams with new liquid scintillator based on alcohol. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:014103. [PMID: 33514224 DOI: 10.1063/5.0033454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/18/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
This paper proposes a new base material, a mixture of alcohol and water, for liquid scintillators. To date, there are no previous R&D studies for particle detectors with alcohol. In this study, 2-ethoxyethanol, which has a higher density than ethanol, was used to make an equivalent substance to the human body, namely, the skin or epidermis. This paper describes the brief synthesizing process of the alcohol-based liquid scintillator that was investigated and presents some of the feasible results. As one of its applications, a range (beam-path-length) measurement using an electron beam in medical physics is also described. Then, Monte Carlo simulation was performed for comparison with several other measurement results in medical physics. One of the intriguing results is that liquid scintillator component analysis can be performed through the pixel information stored in a mobile digital camera. Through the emission spectra of light, the component of the wavelength converting substances dissolved in the liquid scintillator can be known in the visible region without opening the sealed liquid scintillator. In the near future, the new alcohol-based liquid scintillator currently developed could be used for particle detector or medical imaging applications.
Collapse
Affiliation(s)
- Byoung Chan Kim
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Seoyang-ro 322, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, South Korea
| | - Ye Ji Kim
- Institute for Universe and Elementary Particles, Department of Physics, Chonnam National University, Yongbong-ro 77, Puk-gu, Gwangju 61186, South Korea
| | - Ji Young Choi
- Institute for Universe and Elementary Particles, Department of Physics, Chonnam National University, Yongbong-ro 77, Puk-gu, Gwangju 61186, South Korea
| | - Kyung Kwang Joo
- Institute for Universe and Elementary Particles, Department of Physics, Chonnam National University, Yongbong-ro 77, Puk-gu, Gwangju 61186, South Korea
| | - Seon Yeoung Park
- Institute for Universe and Elementary Particles, Department of Physics, Chonnam National University, Yongbong-ro 77, Puk-gu, Gwangju 61186, South Korea
| | - Ye Sung Song
- Institute for Universe and Elementary Particles, Department of Physics, Chonnam National University, Yongbong-ro 77, Puk-gu, Gwangju 61186, South Korea
| | - Hee Jin Woo
- Institute for Universe and Elementary Particles, Department of Physics, Chonnam National University, Yongbong-ro 77, Puk-gu, Gwangju 61186, South Korea
| |
Collapse
|
24
|
Hashimoto T, Suematsu D. Inflation and DM phenomenology in a scotogenic model extended with a real singlet scalar. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.102.115041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
25
|
Abstract
Neutrinoless double beta decay (DBD) is a useful probe to study neutrino properties such as the Majorana nature, the absolute neutrino mass, the CP phase and the others, which are beyond the standard model. The nuclear matrix element (NME) for DBD is crucial to extract the neutrino properties from the experimental transition rate. The neutrino-mass sensitivity, i.e., the minimum neutrino-mass to be measured by the DBD experiment, is very sensitive to the DBD NME. Actually, the NME is one of the key elements for designing the DBD experiment. Theoretical evaluation for the DBD NME, however, is very hard. Recently experimental studies of charge-exchange nuclear and leptonic reactions have shown to be used to get single-β NMEs associated with the DBD NME. Critical discussions are made on the neutrino-mass sensitivity and the NME for the DBD neutrino-mass study and on the experimental studies of the single-β NMEs and nuclear structures associated with DBD NMEs.
Collapse
|
26
|
Febbraro M, deBoer RJ, Pain SD, Toomey R, Becchetti FD, Boeltzig A, Chen Y, Chipps KA, Couder M, Jones KL, Lamere E, Liu Q, Lyons S, Macon KT, Morales L, Peters WA, Robertson D, Rasco BC, Smith K, Seymour C, Seymour G, Smith MS, Stech E, Kolk BV, Wiescher M. New ^{13}C(α,n)^{16}O Cross Section with Implications for Neutrino Mixing and Geoneutrino Measurements. PHYSICAL REVIEW LETTERS 2020; 125:062501. [PMID: 32845657 DOI: 10.1103/physrevlett.125.062501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/15/2019] [Revised: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Precise antineutrino measurements are very sensitive to proper background characterization. We present an improved measurement of the ^{13}C(α,n)^{16}O reaction cross section which constitutes significant background for large ν[over ¯] detectors. We greatly improve the precision and accuracy by utilizing a setup that is sensitive to the neutron energies while making measurements of the excited state transitions via secondary γ-ray detection. Our results shows a 54% reduction in the background contributions from the ^{16}O(3^{-},6.13 MeV) state used in the KamLAND analysis.
Collapse
Affiliation(s)
- M Febbraro
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - R J deBoer
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S D Pain
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - R Toomey
- Rutgers University, Piscataway, New Jersey 08854, USA
- University of Surrey, GU2 7XH, Guildford, United Kingdom
| | - F D Becchetti
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A Boeltzig
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Y Chen
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - K A Chipps
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M Couder
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - K L Jones
- University of Tennessee, Knoxville, Tennessee 37996, USA
| | - E Lamere
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Q Liu
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S Lyons
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - K T Macon
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - L Morales
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - W A Peters
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- University of Tennessee, Knoxville, Tennessee 37996, USA
| | - D Robertson
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - B C Rasco
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- University of Tennessee, Knoxville, Tennessee 37996, USA
| | - K Smith
- University of Tennessee, Knoxville, Tennessee 37996, USA
| | - C Seymour
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - G Seymour
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - M S Smith
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - E Stech
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - B Vande Kolk
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - M Wiescher
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
27
|
Abstract
Symmetries in the Physical Laws of Nature lead to observable effects. Beyond the regularities and conserved magnitudes, the last few decades in particle physics have seen the identification of symmetries, and their well-defined breaking, as the guiding principle for the elementary constituents of matter and their interactions. Flavour SU(3) symmetry of hadrons led to the Quark Model and the antisymmetric requirement under exchange of identical fermions led to the colour degree of freedom. Colour became the generating charge for flavour-independent strong interactions of quarks and gluons in the exact colour SU(3) local gauge symmetry. Parity Violation in weak interactions led us to consider the chiral fields of fermions as the objects with definite transformation properties under the weak isospin SU(2) gauge group of the Unifying Electro-Weak SU(2) × U(1) symmetry, which predicted novel weak neutral current interactions. CP-Violation led to three families of quarks opening the field of Flavour Physics. Time-reversal violation has recently been observed with entangled neutral mesons, compatible with CPT-invariance. The cancellation of gauge anomalies, which would invalidate the gauge symmetry of the quantum field theory, led to Quark–Lepton Symmetry. Neutrinos were postulated in order to save the conservation laws of energy and angular momentum in nuclear beta decay. After the ups and downs of their mass, neutrino oscillations were discovered in 1998, opening a new era about their origin of mass, mixing, discrete symmetries and the possibility of global lepton-number violation through Majorana mass terms and Leptogenesis as the source of the matter–antimatter asymmetry in the universe. The experimental discovery of quarks and leptons and the mediators of their interactions, with physical observables in spectacular agreement with this Standard Theory, is the triumph of Symmetries. The gauge symmetry is exact only when the particles are massless. One needs a subtle breaking of the symmetry, providing the origin of mass without affecting the excellent description of the interactions. This is the Brout–Englert–Higgs Mechanism, which produces the Higgs Boson as a remnant, discovered at CERN in 2012. Open present problems are addressed with by searching the New Physics Beyond-the-Standard-Model.
Collapse
|
28
|
Yao JM, Bally B, Engel J, Wirth R, Rodríguez TR, Hergert H. Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ^{48}Ca. PHYSICAL REVIEW LETTERS 2020; 124:232501. [PMID: 32603157 DOI: 10.1103/physrevlett.124.232501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/20/2019] [Revised: 02/04/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Working with Hamiltonians from chiral effective field theory, we develop a novel framework for describing arbitrary deformed medium-mass nuclei by combining the in-medium similarity renormalization group with the generator coordinate method. The approach leverages the ability of the first method to capture dynamic correlations and the second to include collective correlations without violating symmetries. We use our scheme to compute the matrix element that governs the neutrinoless double beta decay of ^{48}Ca to ^{48}Ti, and find it to have the value 0.61, near or below the predictions of most phenomenological methods. The result opens the door to ab initio calculations of the matrix elements for the decay of heavier nuclei such as ^{76}Ge, ^{130}Te, and ^{136}Xe.
Collapse
Affiliation(s)
- J M Yao
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
| | - B Bally
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA
| | - J Engel
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA
| | - R Wirth
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
| | - T R Rodríguez
- Departamento de Física Teórica y Centro de Investigación Avanzada en Física Fundamental, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - H Hergert
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
- Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824-1321, USA
| |
Collapse
|
29
|
Papa A. Towards a new generation of Charged Lepton Flavour Violation searches at the Paul Scherrer Institut: The MEG upgrade and the Mu3e experiment. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023401011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
The MEG experiment has recently set a new upper limit on the branching ratio of the µ+ → e+γ decay, ℬ(µ+ → e+γ) < 4.2 × 10−13 (at 90% confidence level) and un upgrade of the experiment (the MEGII experiment) is ongoing with the aim of improving the single event sensitivity (SES) by one order of magnitude with respect to the previous MEG experiment’s SES. The strong scientific motivation associated with the charged Lepton Flavour Violation (cLFV) searches pushes also towards searching for the complementary muon cLFV µ+ → e+e+e− decay with a completely new apparatus, the Mu3e experiment, aiming at a SES improved by at least three orders of magnitude with respect to the previous SINDRUM experiment’s SES (Mu3e phase I). An ultimate SES of few ×10−16 is foreseen requiring 109 µ/s (Mu3e phase II). Both experiments will be hosted at the Paul Scherrer Institut which currently delivers the most intense continuous low energy muon beam in the world up to few ×108 µ/s. The status of both the MEGII and Mu3e phase I experiments is given.
Collapse
|
30
|
Present and Future Contributions of Reactor Experiments to Mass Ordering and Neutrino Oscillation Studies. UNIVERSE 2020. [DOI: 10.3390/universe6040052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
After a long a glorious history, marked by the first direct proofs of neutrino existence and of the mixing between the first and third neutrino generations, the reactor antineutrino experiments are still well alive and will continue to give important contributions to the development of elementary particle physics and astrophysics. In parallel to the SBL (short baseline) experiments, that will be dedicated mainly to the search for sterile neutrinos, a new kind of experiments will start playing an important role: reactor experiments with a “medium” value, around 50 km, of the baseline, somehow in the middle between the SBL and the LBL (long baselines), like KamLAND, which in the recent past gave essential contributions to the developments of neutrino physics. These new medium baseline reactor experiments can be very important, mainly for the study of neutrino mass ordering. The first example of this kind, the liquid scintillator JUNO experiment, characterized by a very high mass and an unprecedented energy resolution, will soon start data collecting in China. Its main aspects are discussed here, together with its potentialities for what concerns the mass ordering investigation and also the other issues that can be studied with this detector, spanning from the accurate oscillation parameter determination to the study of solar neutrinos, geoneutrinos, atmospheric neutrinos and neutrinos emitted by supernovas and to the search for signals of potential Lorentz invariance violation.
Collapse
|
31
|
|
32
|
Abstract
Several anomalies observed in short-baseline neutrino experiments suggest the existence of new light sterile neutrino species. In this review, we describe the potential role of long-baseline experiments in the searches of sterile neutrino properties and, in particular, the new CP-violation phases that appear in the enlarged 3 + 1 scheme. We also assess the impact of light sterile states on the discovery potential of long-baseline experiments of important targets such as the standard 3-flavor CP violation, the neutrino mass hierarchy, and the octant of θ 23 .
Collapse
|
33
|
Abstract
This work explores the possibility of resorting to neutrino phenomenology to detect evidence of new physics, caused by the residual signals of the supposed quantum structure of spacetime. In particular, this work investigates the effects on neutrino oscillations and mass hierarchy detection, predicted by models that violate Lorentz invariance, preserving the spacetime isotropy and homogeneity. Neutrino physics is the ideal environment where conducting the search for new “exotic” physics, since the oscillation phenomenon is not included in the original formulation of the minimal Standard Model (SM) of particles. The confirmed observation of the neutrino oscillation phenomenon is, therefore, the first example of physics beyond the SM and can indicate the necessity to resort to new theoretical models. In this work, the hypothesis that the supposed Lorentz Invariance Violation (LIV) perturbations can influence the oscillation pattern is investigated. LIV theories are indeed constructed assuming modified kinematics, caused by the interaction of massive particles with the spacetime background. This means that the dispersion relations are modified, so it appears natural to search for effects caused by LIV in physical phenomena governed by masses, as in the case of neutrino oscillations. In addition, the neutrino oscillation phenomenon is interesting since there are three different mass eigenstates and in a LIV scenario, which preserves isotropy, at least two different species of particle must interact.
Collapse
|
34
|
|
35
|
|
36
|
SUZUKI Y. The Sun, neutrinos and Super-Kamiokande. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:204-233. [PMID: 32522939 PMCID: PMC7298169 DOI: 10.2183/pjab.96.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/03/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
In the standard model of elementary particle physics neutrinos are massless, and therefore the actuality of finite neutrino mass indicates a theory beyond the standard model. The Sun produces abundant neutrinos due to nuclear fusion reactions. A pioneering experiment in the early '70s detected neutrinos from the Sun, but found that the observed flux was smaller than expected, which was then called the missing solar neutrino problem. Tremendous efforts were made both experimentally and theoretically to solve this problem. In 2001, almost 30 years after the first indication, data from Super-Kamiokande in Japan and SNO in Canada together provided evidence that neutrino oscillation effectively converts the solar (electron) neutrinos to non-electron type neutrinos. Neutrino oscillation can occur only for those neutrinos with finite neutrino mass.
Collapse
|
37
|
Acero MA, Adamson P, Aliaga L, Alion T, Allakhverdian V, Altakarli S, Anfimov N, Antoshkin A, Aurisano A, Back A, Backhouse C, Baird M, Balashov N, Baldi P, Bambah BA, Bashar S, Bays K, Bending S, Bernstein R, Bhatnagar V, Bhuyan B, Bian J, Blackburn T, Blair J, Booth AC, Bour P, Bromberg C, Buchanan N, Butkevich A, Calvez S, Campbell M, Carroll TJ, Catano-Mur E, Cedeno A, Childress S, Choudhary BC, Chowdhury B, Coan TE, Colo M, Cooper J, Corwin L, Cremonesi L, Davies GS, Derwent PF, Ding P, Djurcic Z, Doyle D, Dukes EC, Duyang H, Edayath S, Ehrlich R, Elkins M, Feldman GJ, Filip P, Flanagan W, Frank MJ, Gallagher HR, Gandrajula R, Gao F, Germani S, Giri A, Gomes RA, Goodman MC, Grichine V, Groh M, Group R, Guo B, Habig A, Hakl F, Hartnell J, Hatcher R, Hatzikoutelis A, Heller K, Hewes J, Himmel A, Holin A, Howard B, Huang J, Hylen J, Jediny F, Johnson C, Judah M, Kakorin I, Kalra D, Kaplan DM, Keloth R, Klimov O, Koerner LW, Kolupaeva L, Kotelnikov S, Kourbanis I, Kreymer A, Kulenberg C, Kumar A, Kuruppu CD, Kus V, Lackey T, Lang K, Lin S, Lokajicek M, Lozier J, Luchuk S, Maan K, Magill S, Mann WA, Marshak ML, Martinez-Casales M, Matveev V, Méndez DP, Messier MD, Meyer H, Miao T, Miller WH, Mishra SR, Mislivec A, Mohanta R, Moren A, Mualem L, Muether M, Mufson S, Mulder K, Murphy R, Musser J, Naples D, Nayak N, Nelson JK, Nichol R, Nikseresht G, Niner E, Norman A, Nosek T, Olshevskiy A, Olson T, Paley J, Patterson RB, Pawloski G, Pershey D, Petrova O, Petti R, Phan DD, Plunkett RK, Potukuchi B, Principato C, Psihas F, Radovic A, Raj V, Rameika RA, Rebel B, Rojas P, Ryabov V, Samoylov O, Sanchez MC, Sánchez Falero S, Seong IS, Shanahan P, Sheshukov A, Singh P, Singh V, Smith E, Smolik J, Snopok P, Solomey N, Song E, Sousa A, Soustruznik K, Strait M, Suter L, Sutton A, Talaga RL, Tapia Oregui B, Tas P, Thayyullathil RB, Thomas J, Tiras E, Torbunov D, Tripathi J, Tsaris A, Torun Y, Urheim J, Vahle P, Vasel J, Vinton L, Vokac P, Vrba T, Wallbank M, Wang B, Warburton TK, Wetstein M, While M, Whittington D, Wojcicki SG, Wolcott J, Yadav N, Yallappa Dombara A, Yonehara K, Yu S, Zadorozhnyy S, Zalesak J, Zamorano B, Zwaska R. First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA. PHYSICAL REVIEW LETTERS 2019; 123:151803. [PMID: 31702305 DOI: 10.1103/physrevlett.123.151803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/13/2019] [Indexed: 06/10/2023]
Abstract
The NOvA experiment has seen a 4.4σ signal of ν[over ¯]_{e} appearance in a 2 GeV ν[over ¯]_{μ} beam at a distance of 810 km. Using 12.33×10^{20} protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν[over ¯]_{μ}→ν[over ¯]_{e} candidates with a background of 10.3 and 102 ν[over ¯]_{μ}→ν[over ¯]_{μ} candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm_{32}^{2}|=2.48_{-0.06}^{+0.11}×10^{-3} eV^{2}/c^{4} and sin^{2}θ_{23} in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δ_{CP}=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ_{23} values in the upper octant by 1.6σ.
Collapse
Affiliation(s)
- M A Acero
- Universidad del Atlantico, Km. 7 antigua via a Puerto Colombia, Barranquilla, Colombia
| | - P Adamson
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - L Aliaga
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - T Alion
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - V Allakhverdian
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - S Altakarli
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67206, USA
| | - N Anfimov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - A Antoshkin
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - A Aurisano
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - A Back
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - C Backhouse
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - M Baird
- Indiana University, Bloomington, Indiana 47405, USA
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - N Balashov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - P Baldi
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - B A Bambah
- School of Physics, University of Hyderabad, Hyderabad 500 046, India
| | - S Bashar
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - K Bays
- California Institute of Technology, Pasadena, California 91125, USA
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - S Bending
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - R Bernstein
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - V Bhatnagar
- Department of Physics, Panjab University, Chandigarh 160 014, India
| | - B Bhuyan
- Department of Physics, IIT Guwahati, Guwahati 781 039, India
| | - J Bian
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - T Blackburn
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - J Blair
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - A C Booth
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - P Bour
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - C Bromberg
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - N Buchanan
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - A Butkevich
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - S Calvez
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - M Campbell
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - T J Carroll
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - E Catano-Mur
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
- Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, USA
| | - A Cedeno
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67206, USA
| | - S Childress
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - B C Choudhary
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - B Chowdhury
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - T E Coan
- Department of Physics, Southern Methodist University, Dallas, Texas 75275, USA
| | - M Colo
- Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, USA
| | - J Cooper
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - L Corwin
- South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - L Cremonesi
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - G S Davies
- Indiana University, Bloomington, Indiana 47405, USA
| | - P F Derwent
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - P Ding
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - Z Djurcic
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - D Doyle
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - E C Dukes
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - H Duyang
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - S Edayath
- Department of Physics, Cochin University of Science and Technology, Kochi 682 022, India
| | - R Ehrlich
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - M Elkins
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - G J Feldman
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - P Filip
- Institute of Physics, The Czech Academy of Sciences, 182 21 Prague, Czech Republic
| | - W Flanagan
- University of Dallas, 1845 E Northgate Drive, Irving, Texas 75062 USA
| | - M J Frank
- Department of Physics, University of South Alabama, Mobile, Alabama 36688, USA
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - H R Gallagher
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - R Gandrajula
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - F Gao
- Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - S Germani
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - A Giri
- Department of Physics, IIT Hyderabad, Hyderabad 502 205, India
| | - R A Gomes
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil
| | - M C Goodman
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - V Grichine
- Nuclear Physics and Astrophysics Division, Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow, Russia
| | - M Groh
- Indiana University, Bloomington, Indiana 47405, USA
| | - R Group
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - B Guo
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - A Habig
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - F Hakl
- Institute of Computer Science, The Czech Academy of Sciences, 182 07 Prague, Czech Republic
| | - J Hartnell
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - R Hatcher
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Hatzikoutelis
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - K Heller
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - J Hewes
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - A Himmel
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Holin
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - B Howard
- Indiana University, Bloomington, Indiana 47405, USA
| | - J Huang
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - J Hylen
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - F Jediny
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - C Johnson
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - M Judah
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - I Kakorin
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - D Kalra
- Department of Physics, Panjab University, Chandigarh 160 014, India
| | - D M Kaplan
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - R Keloth
- Department of Physics, Cochin University of Science and Technology, Kochi 682 022, India
| | - O Klimov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - L W Koerner
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - L Kolupaeva
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - S Kotelnikov
- Nuclear Physics and Astrophysics Division, Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow, Russia
| | - I Kourbanis
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Kreymer
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - Ch Kulenberg
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - A Kumar
- Department of Physics, Panjab University, Chandigarh 160 014, India
| | - C D Kuruppu
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - V Kus
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - T Lackey
- Indiana University, Bloomington, Indiana 47405, USA
| | - K Lang
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - S Lin
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - M Lokajicek
- Institute of Physics, The Czech Academy of Sciences, 182 21 Prague, Czech Republic
| | - J Lozier
- California Institute of Technology, Pasadena, California 91125, USA
| | - S Luchuk
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - K Maan
- Department of Physics, Panjab University, Chandigarh 160 014, India
| | - S Magill
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - W A Mann
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - M L Marshak
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - M Martinez-Casales
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - V Matveev
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - D P Méndez
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - M D Messier
- Indiana University, Bloomington, Indiana 47405, USA
| | - H Meyer
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67206, USA
| | - T Miao
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - W H Miller
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - S R Mishra
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - A Mislivec
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - R Mohanta
- School of Physics, University of Hyderabad, Hyderabad 500 046, India
| | - A Moren
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - L Mualem
- California Institute of Technology, Pasadena, California 91125, USA
| | - M Muether
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67206, USA
| | - S Mufson
- Indiana University, Bloomington, Indiana 47405, USA
| | - K Mulder
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - R Murphy
- Indiana University, Bloomington, Indiana 47405, USA
| | - J Musser
- Indiana University, Bloomington, Indiana 47405, USA
| | - D Naples
- Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - N Nayak
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - J K Nelson
- Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, USA
| | - R Nichol
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - G Nikseresht
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - E Niner
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Norman
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - T Nosek
- Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague 116 36, Czech Republic
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - T Olson
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - J Paley
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - R B Patterson
- California Institute of Technology, Pasadena, California 91125, USA
| | - G Pawloski
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - D Pershey
- California Institute of Technology, Pasadena, California 91125, USA
| | - O Petrova
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - R Petti
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - D D Phan
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - R K Plunkett
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - B Potukuchi
- Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, Jammu and Kashmir, India
| | - C Principato
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - F Psihas
- Indiana University, Bloomington, Indiana 47405, USA
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - A Radovic
- Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, USA
| | - V Raj
- California Institute of Technology, Pasadena, California 91125, USA
| | - R A Rameika
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - B Rebel
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - P Rojas
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - V Ryabov
- Nuclear Physics and Astrophysics Division, Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow, Russia
| | - O Samoylov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - M C Sanchez
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - S Sánchez Falero
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - I S Seong
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - P Shanahan
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Sheshukov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - P Singh
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - V Singh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - E Smith
- Indiana University, Bloomington, Indiana 47405, USA
| | - J Smolik
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - P Snopok
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - N Solomey
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67206, USA
| | - E Song
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - A Sousa
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - K Soustruznik
- Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague 116 36, Czech Republic
| | - M Strait
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - L Suter
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Sutton
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - R L Talaga
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - B Tapia Oregui
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - P Tas
- Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague 116 36, Czech Republic
| | - R B Thayyullathil
- Department of Physics, Cochin University of Science and Technology, Kochi 682 022, India
| | - J Thomas
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - E Tiras
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - D Torbunov
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - J Tripathi
- Department of Physics, Panjab University, Chandigarh 160 014, India
| | - A Tsaris
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - Y Torun
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J Urheim
- Indiana University, Bloomington, Indiana 47405, USA
| | - P Vahle
- Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, USA
| | - J Vasel
- Indiana University, Bloomington, Indiana 47405, USA
| | - L Vinton
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - P Vokac
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - T Vrba
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - M Wallbank
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - B Wang
- Department of Physics, Southern Methodist University, Dallas, Texas 75275, USA
| | - T K Warburton
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - M Wetstein
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - M While
- South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - D Whittington
- Indiana University, Bloomington, Indiana 47405, USA
- Department of Physics, Syracuse University, Syracuse, New York 13210, USA
| | - S G Wojcicki
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - J Wolcott
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - N Yadav
- Department of Physics, IIT Guwahati, Guwahati 781 039, India
| | - A Yallappa Dombara
- Department of Physics, Syracuse University, Syracuse, New York 13210, USA
| | - K Yonehara
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - S Yu
- Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - S Zadorozhnyy
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - J Zalesak
- Institute of Physics, The Czech Academy of Sciences, 182 21 Prague, Czech Republic
| | - B Zamorano
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - R Zwaska
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| |
Collapse
|
38
|
Agostini M, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Borowicz D, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D'Andrea V, Demidova EV, Di Marco N, Domula A, Doroshkevich E, Egorov V, Falkenstein R, Fomina M, Gangapshev A, Garfagnini A, Giordano M, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hegai A, Heisel M, Hemmer S, Hiller R, Hofmann W, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Kihm T, Kirpichnikov IV, Kirsch A, Kish A, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lazzaro A, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Nemchenok I, Panas K, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Riboldi S, Rumyantseva N, Sada C, Sala E, Salamida F, Schmitt C, Schneider B, Schönert S, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Simgen H, Smolnikov A, Stanco L, Stukov D, Vanhoefer L, Vasenko AA, Veresnikova A, von Sturm K, Wagner V, Wegmann A, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, Zuzel G. Probing Majorana neutrinos with double-β decay. Science 2019; 365:1445-1448. [PMID: 31488705 DOI: 10.1126/science.aav8613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2018] [Accepted: 08/20/2019] [Indexed: 11/02/2022]
Abstract
A discovery that neutrinos are Majorana fermions would have profound implications for particle physics and cosmology. The Majorana character of neutrinos would make possible the neutrinoless double-β (0νββ) decay, a matter-creating process without the balancing emission of antimatter. The GERDA Collaboration searches for the 0νββ decay of 76Ge by operating bare germanium detectors in an active liquid argon shield. With a total exposure of 82.4 kg⋅year, we observe no signal and derive a lower half-life limit of T 1/2 > 0.9 × 1026 years (90% C.L.). Our T 1/2 sensitivity, assuming no signal, is 1.1 × 1026 years. Combining the latter with those from other 0νββ decay searches yields a sensitivity to the effective Majorana neutrino mass of 0.07 to 0.16 electron volts.
Collapse
Affiliation(s)
- M Agostini
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - A M Bakalyarov
- National Research Centre "Kurchatov Institute," Moscow 123182, Russia
| | - M Balata
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, I-67100 Assergi, Italy
| | - I Barabanov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - L Baudis
- Physik Institut der Universität Zürich, CH-8057 Zurich, Switzerland
| | - C Bauer
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - E Bellotti
- Dipartimento di Fisica, Università Milano Bicocca, I-20126 Milan, Italy.,INFN Milano Bicocca, I-20126 Milan, Italy
| | - S Belogurov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia.,Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
| | - A Bettini
- Dipartimento di Fisica e Astronomia dell'Università di Padova, I-35121 Padua, Italy.,INFN Padova, I-35131 Padua, Italy
| | - L Bezrukov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - D Borowicz
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - V Brudanin
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - R Brugnera
- Dipartimento di Fisica e Astronomia dell'Università di Padova, I-35121 Padua, Italy.,INFN Padova, I-35131 Padua, Italy
| | - A Caldwell
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | | | - A Chernogorov
- Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
| | - T Comellato
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - V D'Andrea
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell'Aquila, I-67100 L'Aquila, Italy
| | - E V Demidova
- Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
| | - N Di Marco
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, I-67100 Assergi, Italy
| | - A Domula
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01069 Dresden, Germany
| | - E Doroshkevich
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - V Egorov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - R Falkenstein
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - M Fomina
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - A Gangapshev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - A Garfagnini
- Dipartimento di Fisica e Astronomia dell'Università di Padova, I-35121 Padua, Italy.,INFN Padova, I-35131 Padua, Italy
| | - M Giordano
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell'Aquila, I-67100 L'Aquila, Italy
| | - P Grabmayr
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - V Gurentsov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - K Gusev
- Physik Department, Technische Universität München, D-85748 Munich, Germany.,National Research Centre "Kurchatov Institute," Moscow 123182, Russia.,Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - J Hakenmüller
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - A Hegai
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - M Heisel
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - S Hemmer
- INFN Padova, I-35131 Padua, Italy
| | - R Hiller
- Physik Institut der Universität Zürich, CH-8057 Zurich, Switzerland
| | - W Hofmann
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - M Hult
- European Commission, JRC-Geel, B-2440 Geel, Belgium
| | - L V Inzhechik
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - J Janicskó Csáthy
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - J Jochum
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - M Junker
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, I-67100 Assergi, Italy
| | - V Kazalov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Y Kermaïdic
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - T Kihm
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - I V Kirpichnikov
- Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
| | - A Kirsch
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - A Kish
- Physik Institut der Universität Zürich, CH-8057 Zurich, Switzerland
| | - A Klimenko
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany.,Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - R Kneißl
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | - K T Knöpfle
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany.
| | - O Kochetov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - V N Kornoukhov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia.,Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
| | - P Krause
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - V V Kuzminov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - M Laubenstein
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, I-67100 Assergi, Italy
| | - A Lazzaro
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - M Lindner
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - I Lippi
- INFN Padova, I-35131 Padua, Italy
| | - A Lubashevskiy
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - B Lubsandorzhiev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - G Lutter
- European Commission, JRC-Geel, B-2440 Geel, Belgium
| | - C Macolino
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, I-67100 Assergi, Italy
| | - B Majorovits
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | - W Maneschg
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - M Miloradovic
- Physik Institut der Universität Zürich, CH-8057 Zurich, Switzerland
| | - R Mingazheva
- Physik Institut der Universität Zürich, CH-8057 Zurich, Switzerland
| | - M Misiaszek
- Institute of Physics, Jagiellonian University, Cracow 40-348, Poland
| | - P Moseev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - I Nemchenok
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - K Panas
- Institute of Physics, Jagiellonian University, Cracow 40-348, Poland
| | - L Pandola
- INFN Laboratori Nazionali del Sud, I-95123 Catania, Italy
| | - K Pelczar
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, I-67100 Assergi, Italy
| | - L Pertoldi
- Dipartimento di Fisica e Astronomia dell'Università di Padova, I-35121 Padua, Italy.,INFN Padova, I-35131 Padua, Italy
| | - P Piseri
- Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, I-20133 Milan, Italy
| | - A Pullia
- Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, I-20133 Milan, Italy
| | - C Ransom
- Physik Institut der Universität Zürich, CH-8057 Zurich, Switzerland
| | - S Riboldi
- Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, I-20133 Milan, Italy
| | - N Rumyantseva
- National Research Centre "Kurchatov Institute," Moscow 123182, Russia.,Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - C Sada
- Dipartimento di Fisica e Astronomia dell'Università di Padova, I-35121 Padua, Italy.,INFN Padova, I-35131 Padua, Italy
| | - E Sala
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | - F Salamida
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell'Aquila, I-67100 L'Aquila, Italy
| | - C Schmitt
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - B Schneider
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01069 Dresden, Germany
| | - S Schönert
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - A-K Schütz
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - O Schulz
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | - M Schwarz
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | | | - O Selivanenko
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - E Shevchik
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - M Shirchenko
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - H Simgen
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - A Smolnikov
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany.,Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - L Stanco
- INFN Padova, I-35131 Padua, Italy
| | - D Stukov
- National Research Centre "Kurchatov Institute," Moscow 123182, Russia
| | - L Vanhoefer
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | - A A Vasenko
- Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
| | - A Veresnikova
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - K von Sturm
- Dipartimento di Fisica e Astronomia dell'Università di Padova, I-35121 Padua, Italy.,INFN Padova, I-35131 Padua, Italy
| | - V Wagner
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - A Wegmann
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - T Wester
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01069 Dresden, Germany
| | - C Wiesinger
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - M Wojcik
- Institute of Physics, Jagiellonian University, Cracow 40-348, Poland
| | - E Yanovich
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - I Zhitnikov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - S V Zhukov
- National Research Centre "Kurchatov Institute," Moscow 123182, Russia
| | - D Zinatulina
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - A Zschocke
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - A J Zsigmond
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | - K Zuber
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01069 Dresden, Germany
| | - G Zuzel
- Institute of Physics, Jagiellonian University, Cracow 40-348, Poland
| | | |
Collapse
|
39
|
Ashenfelter J, Balantekin AB, Band HR, Bass CD, Bergeron DE, Berish D, Bowden NS, Brodsky JP, Bryan CD, Cherwinka JJ, Classen T, Conant AJ, Cox AA, Davee D, Dean D, Deichert G, Diwan MV, Dolinski MJ, Erickson A, Febbraro M, Foust BT, Gaison JK, Galindo-Uribarri A, Gilbert CE, Gilje KE, Hackett BT, Hans S, Hansell AB, Heeger KM, Insler J, Jaffe DE, Ji X, Jones DC, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Littlejohn BR, Lu X, Martinez Caicedo DA, Matta JT, McKeown RD, Mendenhall MP, Minock JM, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Norcini D, Nour S, Pushin DA, Qian X, Romero-Romero E, Rosero R, Sarenac D, Surukuchi PT, Telles AB, Tyra MA, Varner RL, Viren B, White C, Wilhelmi J, Wise T, Yeh M, Yen YR, Zhang A, Zhang C, Zhang X. Measurement of the Antineutrino Spectrum from ^{235}U Fission at HFIR with PROSPECT. PHYSICAL REVIEW LETTERS 2019; 122:251801. [PMID: 31347897 DOI: 10.1103/physrevlett.122.251801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/31/2018] [Revised: 03/22/2019] [Indexed: 06/10/2023]
Abstract
This Letter reports the first measurement of the ^{235}U ν[over ¯]_{e} energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9 m from the 85 MW_{th} highly enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678±304(stat) ν[over ¯]_{e}-induced inverse beta decays, the largest sample from HEU fission to date, 99% of which are attributed to ^{235}U. Despite broad agreement, comparison of the Huber ^{235}U model to the measured spectrum produces a χ^{2}/ndf=51.4/31, driven primarily by deviations in two localized energy regions. The measured ^{235}U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the ν[over ¯]_{e} energy region of 5-7 MeV.
Collapse
Affiliation(s)
- J Ashenfelter
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A B Balantekin
- Department of Physics, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - H R Band
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - C D Bass
- Department of Physics, Le Moyne College, Syracuse, New York 13214, USA
| | - D E Bergeron
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D Berish
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - N S Bowden
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J P Brodsky
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C D Bryan
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - J J Cherwinka
- Physical Sciences Laboratory, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - T Classen
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A J Conant
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - A A Cox
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - D Davee
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
| | - D Dean
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - G Deichert
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A Erickson
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - M Febbraro
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - B T Foust
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J K Gaison
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A Galindo-Uribarri
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - C E Gilbert
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - K E Gilje
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - B T Hackett
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A B Hansell
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J Insler
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Ji
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D C Jones
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - O Kyzylova
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - C E Lane
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - T J Langford
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J LaRosa
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - X Lu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - D A Martinez Caicedo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J T Matta
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - R D McKeown
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
| | - M P Mendenhall
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J M Minock
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - P E Mueller
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - H P Mumm
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J Napolitano
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - R Neilson
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - J A Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - D Norcini
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Nour
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D A Pushin
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - E Romero-Romero
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D Sarenac
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - P T Surukuchi
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - A B Telles
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - M A Tyra
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - R L Varner
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - B Viren
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J Wilhelmi
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - T Wise
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Y-R Yen
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Zhang
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
40
|
Ballett P, Hostert M, Pascoli S. Neutrino masses from a dark neutrino sector below the electroweak scale. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.99.091701] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
41
|
Das A, Jana S, Mandal S, Nandi S. Probing right handed neutrinos at the LHeC and lepton colliders using fat jet signatures. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.99.055030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
42
|
Qian X, Peng JC. Physics with reactor neutrinos. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:036201. [PMID: 30523922 DOI: 10.1088/1361-6633/aae881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
Neutrinos produced by nuclear reactors have played a major role in advancing our knowledge of the properties of neutrinos. The first direct detection of the neutrino, confirming its existence, was performed using reactor neutrinos. More recent experiments utilizing reactor neutrinos have also found clear evidence for neutrino oscillation, providing unique input for the determination of neutrino mass and mixing. Ongoing and future reactor neutrino experiments will explore other important issues, including the neutrino mass hierarchy and the search for sterile neutrinos and other new physics beyond the standard model. In this article, we review the recent progress in physics using reactor neutrinos and the opportunities they offer for future discoveries.
Collapse
Affiliation(s)
- Xin Qian
- Physics Department, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | | |
Collapse
|
43
|
|
44
|
Abstract
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay that has been able to reach the 1-ton scale. The detector consists of an array of 988 TeO 2 crystals arranged in a cylindrical compact structure of 19 towers, each of them made of 52 crystals. The construction of the experiment was completed in August 2016 and the data taking started in spring 2017 after a period of commissioning and tests. In this work we present the neutrinoless double beta decay results of CUORE from examining a total TeO 2 exposure of 86.3 kg yr , characterized by an effective energy resolution of 7.7 keV FWHM and a background in the region of interest of 0.014 counts / ( keV kg yr ) . In this physics run, CUORE placed a lower limit on the decay half-life of neutrinoless double beta decay of 130 Te > 1.3 · 10 25 yr (90% C.L.). Moreover, an analysis of the background of the experiment is presented as well as the measurement of the 130 Te 2 ν β β decay with a resulting half-life of T 1 / 2 2 ν = [ 7.9 ± 0.1 ( stat . ) ± 0.2 ( syst . ) ] × 10 20 yr which is the most precise measurement of the half-life and compatible with previous results.
Collapse
|
45
|
Ashenfelter J, Balantekin AB, Baldenegro C, Band HR, Bass CD, Bergeron DE, Berish D, Bignell LJ, Bowden NS, Bricco J, Brodsky JP, Bryan CD, Bykadorova Telles A, Cherwinka JJ, Classen T, Commeford K, Conant AJ, Cox AA, Davee D, Dean D, Deichert G, Diwan MV, Dolinski MJ, Erickson A, Febbraro M, Foust BT, Gaison JK, Galindo-Uribarri A, Gilbert CE, Gilje KE, Glenn A, Goddard BW, Hackett BT, Han K, Hans S, Hansell AB, Heeger KM, Heffron B, Insler J, Jaffe DE, Ji X, Jones DC, Koehler K, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Littlejohn BR, Lopez F, Lu X, Martinez Caicedo DA, Matta JT, McKeown RD, Mendenhall MP, Miller HJ, Minock JM, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Norcini D, Nour S, Pushin DA, Qian X, Romero-Romero E, Rosero R, Sarenac D, Seilhan BS, Sharma R, Surukuchi PT, Trinh C, Tyra MA, Varner RL, Viren B, Wagner JM, Wang W, White B, White C, Wilhelmi J, Wise T, Yao H, Yeh M, Yen YR, Zhang A, Zhang C, Zhang X, Zhao M. First Search for Short-Baseline Neutrino Oscillations at HFIR with PROSPECT. PHYSICAL REVIEW LETTERS 2018; 121:251802. [PMID: 30608854 DOI: 10.1103/physrevlett.121.251802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/15/2018] [Indexed: 06/09/2023]
Abstract
This Letter reports the first scientific results from the observation of antineutrinos emitted by fission products of ^{235}U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segmented 4 ton ^{6}Li-doped liquid scintillator detector covering a baseline range of 7-9 m from the reactor and operating under less than 1 m water equivalent overburden. Data collected during 33 live days of reactor operation at a nominal power of 85 MW yield a detection of 25 461±283 (stat) inverse beta decays. Observation of reactor antineutrinos can be achieved in PROSPECT at 5σ statistical significance within 2 h of on-surface reactor-on data taking. A reactor model independent analysis of the inverse beta decay prompt energy spectrum as a function of baseline constrains significant portions of the previously allowed sterile neutrino oscillation parameter space at 95% confidence level and disfavors the best fit of the reactor antineutrino anomaly at 2.2σ confidence level.
Collapse
Affiliation(s)
- J Ashenfelter
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A B Balantekin
- Department of Physics, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - C Baldenegro
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - H R Band
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - C D Bass
- Department of Physics, Le Moyne College, Syracuse, New York 13214, USA
| | - D E Bergeron
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D Berish
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - L J Bignell
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - N S Bowden
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J Bricco
- Physical Sciences Laboratory, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - J P Brodsky
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C D Bryan
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - A Bykadorova Telles
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J J Cherwinka
- Physical Sciences Laboratory, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - T Classen
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - K Commeford
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A J Conant
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - A A Cox
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - D Davee
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - D Dean
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - G Deichert
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A Erickson
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - M Febbraro
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - B T Foust
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J K Gaison
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A Galindo-Uribarri
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - C E Gilbert
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - K E Gilje
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - A Glenn
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - B W Goddard
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - B T Hackett
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - K Han
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A B Hansell
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - B Heffron
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - J Insler
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Ji
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D C Jones
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - K Koehler
- Physical Sciences Laboratory, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - O Kyzylova
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - C E Lane
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - T J Langford
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J LaRosa
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - F Lopez
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - X Lu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - D A Martinez Caicedo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J T Matta
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - R D McKeown
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - M P Mendenhall
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - H J Miller
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J M Minock
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - P E Mueller
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - H P Mumm
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J Napolitano
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - R Neilson
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - J A Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - D Norcini
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Nour
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D A Pushin
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - E Romero-Romero
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D Sarenac
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - B S Seilhan
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R Sharma
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - P T Surukuchi
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - C Trinh
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - M A Tyra
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - R L Varner
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - B Viren
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - J M Wagner
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - W Wang
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - B White
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - C White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J Wilhelmi
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - T Wise
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - H Yao
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Y-R Yen
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Zhang
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - M Zhao
- Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
46
|
Weinberg S. Essay: Half a Century of the Standard Model*,†. PHYSICAL REVIEW LETTERS 2018; 121:220001. [PMID: 30547652 DOI: 10.1103/physrevlett.121.220001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/22/2018] [Indexed: 06/09/2023]
Abstract
The standard model is a quantum field theory that successfully accounts for the strong, weak, and electromagnetic interactions of the known elementary particles. In this essay I reminisce about the forerunners of the standard model, the beginnings of the model half a century ago, and its development and confirmation from then to the present.
Collapse
Affiliation(s)
- Steven Weinberg
- Theory Group, Department of Physics, University of Texas at Austin
| |
Collapse
|
47
|
Clemenza M. Low background neutron activation: a high sensitivity technique for long-lived radionuclides determination in rare events physics experiments. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6333-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
|
48
|
Li Z, Abe K, Bronner C, Hayato Y, Ikeda M, Iyogi K, Kameda J, Kato Y, Kishimoto Y, Marti L, Miura M, Moriyama S, Nakahata M, Nakajima Y, Nakano Y, Nakayama S, Orii A, Pronost G, Sekiya H, Shiozawa M, Sonoda Y, Takeda A, Takenaka A, Tanaka H, Tasaka S, Tomura T, Akutsu R, Kajita T, Nishimura Y, Okumura K, Tsui K, Fernandez P, Labarga L, Blaszczyk F, Gustafson J, Kachulis C, Kearns E, Raaf J, Stone J, Sulak L, Berkman S, Tobayama S, Elnimr M, Kropp W, Locke S, Mine S, Weatherly P, Smy M, Sobel H, Takhistov V, Ganezer K, Hill J, Kim J, Lim I, Park R, Himmel A, O’Sullivan E, Scholberg K, Walter C, Ishizuka T, Nakamura T, Jang J, Choi K, Learned J, Matsuno S, Smith S, Amey J, Litchfield R, Ma W, Uchida Y, Wascko M, Cao S, Friend M, Hasegawa T, Ishida T, Ishii T, Kobayashi T, Nakadaira T, Nakamura K, Oyama Y, Sakashita K, Sekiguchi T, Tsukamoto T, Abe KE, Hasegawa M, Suzuki A, Takeuchi Y, Yano T, Hayashino T, Hiraki T, Hirota S, Huang K, Jiang M, Mori M, Nakamura KE, Nakaya T, Patel N, Wendell R, Anthony L, McCauley N, Pritchard A, Fukuda Y, Itow Y, Murase M, Muto F, Mijakowski P, Frankiewicz K, Jung C, Li X, Palomino J, Santucci G, Vilela C, Wilking M, Yanagisawa C, Yang G, Ito S, Fukuda D, Ishino H, Kibayashi A, Koshio Y, Nagata H, Sakuda M, Xu C, Kuno Y, Wark D, Di Lodovico F, Richards B, Sedgwick S, Tacik R, Kim S, Cole A, Thompson L, Okazawa H, Choi Y, Ito K, Nishijima K, Koshiba M, Suda Y, Yokoyama M, Calland R, Hartz M, Martens K, Murdoch M, Quilain B, Simpson C, Suzuki Y, Vagins M, Hamabe D, Kuze M, Okajima Y, Yoshida T, Ishitsuka M, Martin J, Nantais C, Tanaka H, Towstego T, Konaka A, Chen S, Wan L, Zhang Y, Minamino A, Wilkes R. Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande. Int J Clin Exp Med 2018. [DOI: 10.1103/physrevd.98.052006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
|
49
|
Papa A. Charged lepton flavour violation searches at the Paul Scherrer Institut: Status of the MEGII and Mu3e experiments. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201817901018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
The MEG experiment has recently set a new upper limit on the branching ratio of the μ+ → e+γ decay, B(μ+ → e+γ) < 4.2 × 10-13 (at 90% confidence level) and un upgrade of the experiment (the MEGII experiment) is ongoing with the aim of improving the single event sensitivity (SES) by one order of magnitude with respect to the previous MEG experiment’s SES. The strong scientific motivation associated with the charged Lepton Flavour Violation (cLFV) searches pushes also towards searching for the complementary muon cLFV μ+ → e+e+e- decay with the Mu3e experiment aiming at a SES improved by at least three orders of magnitude with respect to the previous SINDRUM experiment’s SES (phase I) up to an ultimate SES of few ×10-16. Both experiments will be hosted at the Paul Scherrer Institut which delivers the most intense continuous low energy muon beam in the world up to few ×108 μ/s. The status of both the MEGII and Mu3e experiments is given.
Collapse
|
50
|
Nieto MM, Hayes AC, Wilson WB, Teeter CM, Stanbro WD. Detection of Antineutrinos for Nonproliferation. NUCL SCI ENG 2017. [DOI: 10.13182/nse05-a2493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michael Martin Nieto
- Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545
| | - A. C. Hayes
- Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545
| | - William B. Wilson
- Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545
| | - Corinne M. Teeter
- Physics Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545
| | - William D. Stanbro
- Nuclear Nonproliferation Division Los Alamos, Los Alamos National Laboratory Los Alamos, New Mexico 87545
| |
Collapse
|