4
|
Yue AT, Anderson ES, Dewey MS, Gilliam DM, Greene GL, Laptev AB, Nico JS, Snow WM. Precision determination of absolute neutron flux. METROLOGIA 2018; 55:10.1088/1681-7575/aac283. [PMID: 30983634 PMCID: PMC6459403 DOI: 10.1088/1681-7575/aac283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using an alpha-gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478 keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performed to determine the mean de Broglie wavelength of the beam to a precision of 0.024%. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058%. We discuss the principle of the alpha-gamma method and present details of how the measurement was performed including the systematic effects. We also describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.
Collapse
Affiliation(s)
- A T Yue
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - E S Anderson
- Indiana University, Bloomington, IN 47408, United States of America
| | - M S Dewey
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - D M Gilliam
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - G L Greene
- University of Tennessee, Knoxville, TN 37996, United States of America
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - A B Laptev
- Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - J S Nico
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - W M Snow
- Indiana University, Bloomington, IN 47408, United States of America
| |
Collapse
|
5
|
Bales M, Alarcon R, Bass C, Beise E, Breuer H, Byrne J, Chupp T, Coakley K, Cooper R, Dewey M, Gardner S, Gentile T, He D, Mumm H, Nico J, O’Neill B, Thompson A, Wietfeldt F. Precision Measurement of the Radiative β Decay of the Free Neutron. PHYSICAL REVIEW LETTERS 2016; 116:242501. [PMID: 27367385 PMCID: PMC6058315 DOI: 10.1103/physrevlett.116.242501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 06/06/2023]
Abstract
The standard model predicts that, in addition to a proton, an electron, and an antineutrino, a continuous spectrum of photons is emitted in the β decay of the free neutron. We report on the RDK II experiment which measured the photon spectrum using two different detector arrays. An annular array of bismuth germanium oxide scintillators detected photons from 14 to 782 keV. The spectral shape was consistent with theory, and we determined a branching ratio of 0.00335±0.00005[stat]±0.00015[syst]. A second detector array of large area avalanche photodiodes directly detected photons from 0.4 to 14 keV. For this array, the spectral shape was consistent with theory, and the branching ratio was determined to be 0.00582±0.00023[stat]±0.00062[syst]. We report the first precision test of the shape of the photon energy spectrum from neutron radiative decay and a substantially improved determination of the branching ratio over a broad range of photon energies.
Collapse
Affiliation(s)
- M.J. Bales
- University of Michigan, Ann Arbor, MI 48104, USA
- Physikdepartment, Technische Universität München, D-85748, Germany
| | - R. Alarcon
- Arizona State University, Tempe, AZ 85287, USA
| | - C.D. Bass
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - E.J. Beise
- University of Maryland, College Park, MD 20742, USA
| | - H. Breuer
- University of Maryland, College Park, MD 20742, USA
| | - J. Byrne
- University of Sussex, Brighton, BN1 9QH, UK
| | - T.E. Chupp
- University of Michigan, Ann Arbor, MI 48104, USA
| | - K.J. Coakley
- National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - R.L. Cooper
- Indiana University, Bloomington, IN 47408, USA
| | - M.S. Dewey
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - S. Gardner
- University of Kentucky, Lexington, KY 40506 USA
| | - T.R. Gentile
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - D. He
- University of Kentucky, Lexington, KY 40506 USA
| | - H.P. Mumm
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - J.S. Nico
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - B O’Neill
- Arizona State University, Tempe, AZ 85287, USA
| | - A.K. Thompson
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | | |
Collapse
|
6
|
Brambilla N, Eidelman S, Foka P, Gardner S, Kronfeld AS, Alford MG, Alkofer R, Butenschoen M, Cohen TD, Erdmenger J, Fabbietti L, Faber M, Goity JL, Ketzer B, Lin HW, Llanes-Estrada FJ, Meyer HB, Pakhlov P, Pallante E, Polikarpov MI, Sazdjian H, Schmitt A, Snow WM, Vairo A, Vogt R, Vuorinen A, Wittig H, Arnold P, Christakoglou P, Di Nezza P, Fodor Z, Garcia i Tormo X, Höllwieser R, Janik MA, Kalweit A, Keane D, Kiritsis E, Mischke A, Mizuk R, Odyniec G, Papadodimas K, Pich A, Pittau R, Qiu JW, Ricciardi G, Salgado CA, Schwenzer K, Stefanis NG, von Hippel GM, Zakharov VI. QCD and strongly coupled gauge theories: challenges and perspectives. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS 2014; 74:2981. [PMID: 25972760 PMCID: PMC4413533 DOI: 10.1140/epjc/s10052-014-2981-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/05/2014] [Indexed: 05/17/2023]
Abstract
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.
Collapse
Affiliation(s)
- N. Brambilla
- Physik Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - S. Eidelman
- Budker Institute of Nuclear Physics, SB RAS, Novosibirsk , 630090 Russia
- Novosibirsk State University, Novosibirsk , 630090 Russia
| | - P. Foka
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - S. Gardner
- Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 USA
| | - A. S. Kronfeld
- Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510-5011 USA
| | - M. G. Alford
- Department of Physics, Washington University, St Louis, MO 63130 USA
| | | | - M. Butenschoen
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria
| | - T. D. Cohen
- Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, MD 20742-4111 USA
| | - J. Erdmenger
- Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich, Germany
| | - L. Fabbietti
- Excellence Cluster “Origin and Structure of the Universe”, Technische Universität München, 85748 Garching, Germany
| | - M. Faber
- Atominstitut, Technische Universität Wien, 1040 Vienna, Austria
| | - J. L. Goity
- Hampton University, Hampton, VA 23668 USA
- Jefferson Laboratory, Newport News, VA 23606 USA
| | - B. Ketzer
- Physik Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
- Present Address: Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 53115 Bonn, Germany
| | - H. W. Lin
- Department of Physics, University of Washington, Seattle, WA 98195-1560 USA
| | - F. J. Llanes-Estrada
- Department Fisica Teorica I, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - H. B. Meyer
- PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut Mainz, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - P. Pakhlov
- Institute of Theoretical and Experimental Physics, Moscow, 117218 Russia
- Moscow Institute for Physics and Technology, Dolgoprudny, 141700 Russia
| | - E. Pallante
- Centre for Theoretical Physics, University of Groningen, 9747 AG Groningen, The Netherlands
| | - M. I. Polikarpov
- Institute of Theoretical and Experimental Physics, Moscow, 117218 Russia
- Moscow Institute for Physics and Technology, Dolgoprudny, 141700 Russia
| | - H. Sazdjian
- Institut de Physique Nucléaire CNRS/IN2P3, Université Paris-Sud, 91405 Orsay, France
| | - A. Schmitt
- Institut für Theoretische Physik, Technische Universität Wien, 1040 Vienna, Austria
| | - W. M. Snow
- Center for Exploration of Energy and Matter and Department of Physics, Indiana University, Bloomington, IN 47408 USA
| | - A. Vairo
- Physik Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - R. Vogt
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94551 USA
- Physics Department, University of California, Davis, CA 95616 USA
| | - A. Vuorinen
- Department of Physics and Helsinki Institute of Physics, University of Helsinki, Helsinki, P.O. Box 64, 00014 Finland
| | - H. Wittig
- PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut Mainz, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - P. Arnold
- Department of Physics, University of Virginia, 382 McCormick Rd., P.O. Box 400714, Charlottesville, VA 22904-4714 USA
| | | | - P. Di Nezza
- Istituto Nazionale di Fisica Nucleare (INFN), Via E. Fermi 40, 00044 Frascati, Italy
| | - Z. Fodor
- Wuppertal University, 42119 Wuppertal, Germany
- Eötvös University, 1117 Budapest, Hungary
- Forschungszentrum Jülich, 52425 Jülich, Germany
| | - X. Garcia i Tormo
- Albert Einstein Center for Fundamental Physics, Institut für Theoretische Physik, Universität Bern, Sidlerstraße 5, 3012 Bern, Switzerland
| | - R. Höllwieser
- Atominstitut, Technische Universität Wien, 1040 Vienna, Austria
| | - M. A. Janik
- Faculty of Physics, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - A. Kalweit
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - D. Keane
- Department of Physics, Kent State University, Kent, OH 44242 USA
| | - E. Kiritsis
- Crete Center for Theoretical Physics, Department of Physics, University of Crete, 71003 Heraklion, Greece
- Laboratoire APC, Université Paris Diderot, Paris Cedex 13, Sorbonne Paris-Cité , 75205 France
- Theory Group, Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - A. Mischke
- Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - R. Mizuk
- Institute of Theoretical and Experimental Physics, Moscow, 117218 Russia
- Moscow Physical Engineering Institute, Moscow, 115409 Russia
| | - G. Odyniec
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - K. Papadodimas
- Centre for Theoretical Physics, University of Groningen, 9747 AG Groningen, The Netherlands
| | - A. Pich
- IFIC, Universitat de València, CSIC, Apt. Correus 22085, 46071 València, Spain
| | - R. Pittau
- Departamento de Fisica Teorica y del Cosmos and CAFPE, Campus Fuentenueva s. n., Universidad de Granada, 18071 Granada, Spain
| | - J.-W. Qiu
- Physics Department, Brookhaven National Laboratory, Upton, NY 11973 USA
- C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 USA
| | - G. Ricciardi
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
- INFN, Sezione di Napoli, 80126 Napoli, Italy
| | - C. A. Salgado
- Departamento de Fisica de Particulas y IGFAE, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - K. Schwenzer
- Department of Physics, Washington University, St Louis, MO 63130 USA
| | - N. G. Stefanis
- Institut für Theoretische Physik II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - G. M. von Hippel
- PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut Mainz, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - V. I. Zakharov
- Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich, Germany
- Institute of Theoretical and Experimental Physics, Moscow, 117218 Russia
- Moscow Institute for Physics and Technology, Dolgoprudny, 141700 Russia
- School of Biomedicine, Far Eastern Federal University, Sukhanova str 8, Vladivostok, 690950 Russia
| |
Collapse
|
7
|
Yue AT, Dewey MS, Gilliam DM, Greene GL, Laptev AB, Nico JS, Snow WM, Wietfeldt FE. Improved determination of the neutron lifetime. PHYSICAL REVIEW LETTERS 2013; 111:222501. [PMID: 24329445 DOI: 10.1103/physrevlett.111.222501] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Indexed: 06/03/2023]
Abstract
The most precise determination of the neutron lifetime using the beam method was completed in 2005 and reported a result of τ(n)=(886.3±1.2[stat]±3.2[syst]) s. The dominant uncertainties were attributed to the absolute determination of the fluence of the neutron beam (2.7 s). The fluence was measured with a neutron monitor that counted the neutron-induced charged particles from absorption in a thin, well-characterized 6Li deposit. The detection efficiency of the monitor was calculated from the areal density of the deposit, the detector solid angle, and the evaluated nuclear data file, ENDF/B-VI 6Li(n,t)4He thermal neutron cross section. In the current work, we measure the detection efficiency of the same monitor used in the neutron lifetime measurement with a second, totally absorbing neutron detector. This direct approach does not rely on the 6Li(n,t)4He cross section or any other nuclear data. The detection efficiency is consistent with the value used in 2005 but is measured with a precision of 0.057%, which represents a fivefold improvement in the uncertainty. We verify the temporal stability of the neutron monitor through ancillary measurements, allowing us to apply the measured neutron monitor efficiency to the lifetime result from the 2005 experiment. The updated lifetime is τ(n)=(887.7±1.2[stat]±1.9[syst]) s.
Collapse
Affiliation(s)
- A T Yue
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA and National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA and University of Tennessee, Knoxville, Tennessee 37996, USA
| | - M S Dewey
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D M Gilliam
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - G L Greene
- University of Tennessee, Knoxville, Tennessee 37996, USA and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - A B Laptev
- Tulane University, New Orleans, Louisiana 70118, USA and Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J S Nico
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - W M Snow
- Indiana University, Bloomington, Indiana 47408, USA
| | - F E Wietfeldt
- Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
9
|
Saunders A, Makela M, Bagdasarova Y, Back HO, Boissevain J, Broussard LJ, Bowles TJ, Carr R, Currie SA, Filippone B, García A, Geltenbort P, Hickerson KP, Hill RE, Hoagland J, Hoedl S, Holley AT, Hogan G, Ito TM, Lamoreaux S, Liu CY, Liu J, Mammei RR, Martin J, Melconian D, Mendenhall MP, Morris CL, Mortensen RN, Pattie RW, Pitt M, Plaster B, Ramsey J, Rios R, Sallaska A, Seestrom SJ, Sharapov EI, Sjue S, Sondheim WE, Teasdale W, Young AR, VornDick B, Vogelaar RB, Wang Z, Xu Y. Performance of the Los Alamos National Laboratory spallation-driven solid-deuterium ultra-cold neutron source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:013304. [PMID: 23387639 DOI: 10.1063/1.4770063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, we describe the performance of the Los Alamos spallation-driven solid-deuterium ultra-cold neutron (UCN) source. Measurements of the cold neutron flux, the very low energy neutron production rate, and the UCN rates and density at the exit from the biological shield are presented and compared to Monte Carlo predictions. The cold neutron rates compare well with predictions from the Monte Carlo code MCNPX and the UCN rates agree with our custom UCN Monte Carlo code. The source is shown to perform as modeled. The maximum delivered UCN density at the exit from the biological shield is 52(9) UCN/cc with a solid deuterium volume of ~1500 cm(3).
Collapse
Affiliation(s)
- A Saunders
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|