1
|
Kapon Y, Kammerbauer F, Balland T, Yochelis S, Kläui M, Paltiel Y. Effects of Chiral Polypeptides on Skyrmion Stability and Dynamics. NANO LETTERS 2025; 25:306-312. [PMID: 39680908 PMCID: PMC11719627 DOI: 10.1021/acs.nanolett.4c05035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Magnetic skyrmions, topologically stabilized chiral spin textures in magnetic thin films, have garnered considerable interest due to their efficient manipulation and resulting potential as efficient nanoscale information carriers. One intriguing approach to address the challenge of tuning skyrmion properties involves using chiral molecules. Chiral molecules can locally manipulate magnetic properties by inducing magnetization through spin exchange interactions and by creating spin currents. Here, Magneto-Optical Kerr Effect (MOKE) microscopy is used to image the impact of chiral polypeptides on chiral magnetic structures. The chiral polypeptides shift the spin reorientation transition temperature, reduce thermal skyrmion motion, and alter the coercive field locally, enhancing skyrmion stability and thus enabling local control. These findings demonstrate the potential of chiral molecules to address challenges for skyrmion based devices, thus paving the way to applications such as the racetrack memory, reservoir computing and others.
Collapse
Affiliation(s)
- Yael Kapon
- Institute
of Applied Physics, Faculty of Sciences,
The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Fabian Kammerbauer
- Institute
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Theo Balland
- Institute
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Shira Yochelis
- Institute
of Applied Physics, Faculty of Sciences,
The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Mathias Kläui
- Institute
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Yossi Paltiel
- Institute
of Applied Physics, Faculty of Sciences,
The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
2
|
Likholetova MV, Charnaya EV, Shevchenko EV, Kumzerov YA, Fokin AV. Coexistence of Superconductivity and Magnetic Ordering in the In-Ag Alloy Under Nanoconfinement. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1792. [PMID: 39591034 PMCID: PMC11597133 DOI: 10.3390/nano14221792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
The impact of the interface phenomena on the properties of nanostructured materials is the focus of modern physics. We studied the magnetic properties of the nanostructured In-Ag alloy confined within a porous glass. The alloy composition was close to the eutectic point in the indium-rich range of the phase diagram. Temperature dependences of DC magnetization evidenced two superconducting transitions at 4.05 and 3.38 K. The magnetization isotherms demonstrated the superposition of two hysteresis loops with low and high critical fields below the second transition, a single hysteresis between the transitions and ferromagnetism with weak remanence in the normal state of the alloy. The shape of the loop seen below the second transition, which closes at a low magnetic field, corresponded to the intermediate state of the type-I superconductor. It was ascribed to strongly linked indium segregates. The loop observed below the first transition is referred to as type-II superconductivity. The secondary and tertiary magnetization branches measured at decreasing and increasing fields were shifted relative to each other, revealing the proximity of superconducting and ferromagnetic phases at the nanometer scale. This phenomenon was observed for the first time in the alloy, whose components were not magnetic in bulk. The sign of the shift shows the dominant role of the stray fields of ferromagnetic regions. Ferromagnetism was suggested to emerge at the interface between the In and AgIn2 segregates.
Collapse
Affiliation(s)
- Marina V. Likholetova
- Physics Department, St. Petersburg State University, 198504 St. Petersburg, Russia; (M.V.L.); (E.V.S.)
| | - Elena V. Charnaya
- Physics Department, St. Petersburg State University, 198504 St. Petersburg, Russia; (M.V.L.); (E.V.S.)
| | - Evgenii V. Shevchenko
- Physics Department, St. Petersburg State University, 198504 St. Petersburg, Russia; (M.V.L.); (E.V.S.)
| | | | | |
Collapse
|
3
|
Mehla N, Mukhopadhyaya A, Ali S, Ali ME. Orchestration of ferro- and anti-ferromagnetic ordering in gold nanoclusters. NANOSCALE 2024; 16:13445-13456. [PMID: 38920340 DOI: 10.1039/d4nr00856a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The unpaired electron in the gold clusters (Aun, n = no. of Au atoms) with an odd number of total electrons is solely responsible for the magnetic properties in the small-sized Au nano-clusters. However, no such unpaired electron is available due to pairing in the even number of atom gold clusters and behaving as a diamagnetic entity similar to bulk gold. In this work, we unveiled the spin-density distribution of odd Aun clusters with n = 1 to 19 that reveals that a single unpaired electron gets distributed non-uniformly among all Au-atoms depending on the cluster size and morphology. The delocalization of the unpaired electron leads to the spin dilution approaching a value of ∼1/n spin moments on each atom for the higher clusters. Interestingly, small odd-numbered gold clusters possess spin-magnetic moments similar to the delocalized spin moments as of organic radicals. Can cooperative magnetic properties be obtained by coupling these individual magnetic gold nanoparticles? In this work, by applying state-of-the-art computational methodologies, we have demonstrated ferromagnetic or anti-ferromagnetic couplings between such magnetic nanoclusters upon designing suitable organic spacers. These findings will open up a new avenue of nanoscale magnetic materials combining organic spacers and odd-electron nano-clusters.
Collapse
Affiliation(s)
- Nisha Mehla
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Aritra Mukhopadhyaya
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Shahjad Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
4
|
Li S, Miyazaki T, Nakata A. Theoretical search for characteristic atoms in supported gold nanoparticles: a large-scale DFT study. Phys Chem Chem Phys 2024. [PMID: 38922670 DOI: 10.1039/d4cp01094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The size and site dependences of atomic and electronic structures in isolated and supported gold nanoparticles have been investigated using large-scale density functional theory (DFT) calculations using multi-site support functions. The effects of the substrate on nanoparticles with diameters of 2 nm and several different shapes have been examined. First, isolated gold nanoparticles with diameters of 0.6 nm (13 atoms) to 4.5 nm (2057 atoms), which have comparable sizes to nanoparticles used in experiments, were considered. To analyse huge amounts of data obtained from large-scale DFT calculations, we performed principal component analysis (PCA), which helps systematically and efficiently clarify the electronic structures of large nanoparticles. The PCA results reveal the site dependence of the electronic structures. Notably, the atoms in the surface and subsurface have different electronic structures to those located in the inner layers, especially at the vertexes of the particles. The convergence of local electronic structures with respect to the particle size has also been demonstrated. For supported nanoparticles, PCA helps indicate which atoms are affected, and how much, by the substrate. The correlation between the PCA results and site dependence of reaction activity is also discussed herein.
Collapse
Affiliation(s)
- Shengzhou Li
- Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.
| | - Tsuyoshi Miyazaki
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.
| | - Ayako Nakata
- Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
5
|
Vensaus P, Liang Y, Zigon N, Avarvari N, Mujica V, Soler-Illia GJAA, Lingenfelder M. Hybrid mesoporous electrodes evidence CISS effect on water oxidation. J Chem Phys 2024; 160:111103. [PMID: 38511663 DOI: 10.1063/5.0199339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Controlling product selectivity is essential for improving the efficiency of multi-product reactions. Electrochemical water oxidation is a reaction of main importance in different applications, e.g., renewable energy schemes and environmental protection, where H2O2 and O2 are the two principal products. In this Communication, the product selectivity of electrochemical water oxidation was controlled by making use of the chiral induced spin selectivity (CISS) effect at mesoporous-TiO2 on the molecule-modified Au substrate. Our results show a decrease in H2O2 formation when using chiral hetero-helicene molecules adsorbed on the Au substrate. We propose a mechanism for this kinetic effect based on the onset of CISS-induced spin polarization on the Au-helicene chiral interface. We also present a new tunable substrate to investigate the CISS mechanism.
Collapse
Affiliation(s)
- Priscila Vensaus
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín, San Martín B1650, Buenos Aires, Argentina
| | - Yunchang Liang
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolas Zigon
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Narcis Avarvari
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Vladimiro Mujica
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Galo J A A Soler-Illia
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín, San Martín B1650, Buenos Aires, Argentina
| | - Magalí Lingenfelder
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Mendoza C, Nirwan VP, Fahmi A. Nanofabrication of hybrid nanomaterials: Macroscopically aligned nanoparticles pattern via directed self‐assembly of block copolymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Viraj Pratap Nirwan
- Faculty of Technology and Bionics Rhine‐Waal University of Applied Sciences Kleve Germany
| | - Amir Fahmi
- Faculty of Technology and Bionics Rhine‐Waal University of Applied Sciences Kleve Germany
| |
Collapse
|
7
|
Magnetic control over the fundamental structure of atomic wires. Nat Commun 2022; 13:4113. [PMID: 35840588 PMCID: PMC9287401 DOI: 10.1038/s41467-022-31456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
When reducing the size of materials towards the nanoscale, magnetic properties can emerge due to structural variations. Here, we show the reverse effect, where the structure of nanomaterials is controlled by magnetic manipulations. Using the break-junction technique, we find that the interatomic distance in platinum atomic wires is shorter or longer by up to ∼20%, when a magnetic field is applied parallel or perpendicular to the wires during their formation, respectively. The magnetic field direction also affects the wire length, where longer (shorter) wires are formed under a parallel (perpendicular) field. Our experimental analysis, supported by calculations, indicates that the direction of the applied magnetic field promotes the formation of suspended atomic wires with a specific magnetization orientation associated with typical orbital characteristics, interatomic distance, and stability. A similar effect is found for various metal and metal-oxide atomic wires, demonstrating that magnetic fields can control the atomistic structure of different nanomaterials when applied during their formation stage. Magnetic effects can emerge due to structural variations when the size of materials is reduced towards the nanoscale. Here, Chakrabarti et al demonstrates the opposite effect, showing that the interatomic distance in atomic wires changes by up to 20% depending on the orientation of an applied magnetic field.
Collapse
|
8
|
Ostruszka R, Zoppellaro G, Tomanec O, Pinkas D, Filimonenko V, Šišková K. Evidence of Au(II) and Au(0) States in Bovine Serum Albumin-Au Nanoclusters Revealed by CW-EPR/LEPR and Peculiarities in HR-TEM/STEM Imaging. NANOMATERIALS 2022; 12:nano12091425. [PMID: 35564133 PMCID: PMC9105226 DOI: 10.3390/nano12091425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023]
Abstract
Bovine serum albumin-embedded Au nanoclusters (BSA-AuNCs) are thoroughly probed by continuous wave electron paramagnetic resonance (CW-EPR), light-induced EPR (LEPR), and sequences of microscopic investigations performed via high-resolution transmission electron microscopy (HR-TEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray analysis (EDS). To the best of our knowledge, this is the first report analyzing the BSA-AuNCs by CW-EPR/LEPR technique. Besides the presence of Au(0) and Au(I) oxidation states in BSA-AuNCs, the authors observe a significant amount of Au(II), which may result from a disproportionation event occurring within NCs: 2Au(I) → Au(II) + Au(0). Based on the LEPR experiments, and by comparing the behavior of BSA versus BSA-AuNCs under UV light irradiation (at 325 nm) during light off-on-off cycles, any energy and/or charge transfer event occurring between BSA and AuNCs during photoexcitation can be excluded. According to CW-EPR results, the Au nano assemblies within BSA-AuNCs are estimated to contain 6–8 Au units per fluorescent cluster. Direct observation of BSA-AuNCs by STEM and HR-TEM techniques confirms the presence of such diameters of gold nanoclusters in BSA-AuNCs. Moreover, in situ formation and migration of Au nanostructures are observed and evidenced after application of either a focused electron beam from HR-TEM, or an X-ray from EDS experiments.
Collapse
Affiliation(s)
- Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
- Correspondence: (G.Z.); (K.Š.)
| | - Ondřej Tomanec
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
| | - Dominik Pinkas
- Institute of Molecular Genetics of the Czech Academy of Sciences, Microscopy Centre, Electron Microscopy Core Facility, Vídeňská 1083, 14220 Prague, Czech Republic; (D.P.); (V.F.)
| | - Vlada Filimonenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Microscopy Centre, Electron Microscopy Core Facility, Vídeňská 1083, 14220 Prague, Czech Republic; (D.P.); (V.F.)
| | - Karolína Šišková
- Department of Experimental Physics, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
- Correspondence: (G.Z.); (K.Š.)
| |
Collapse
|
9
|
Observation of Cu Spin Fluctuations in High- Tc Cuprate Superconductor Nanoparticles Investigated by Muon Spin Relaxation. NANOMATERIALS 2021; 11:nano11123450. [PMID: 34947799 PMCID: PMC8706420 DOI: 10.3390/nano11123450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
The nano-size effects of high-Tc cuprate superconductor La2-xSrxCuO4 with x = 0.20 are investigated using X-ray diffractometry, Transmission electron microscopy, and muon-spin relaxation (μSR). It is investigated whether an increase in the bond distance of Cu and O atoms in the conducting layer compared to those of the bulk state might affect its physical and magnetic properties. The μSR measurements revealed the slowing down of Cu spin fluctuations in La2-xSrxCuO4 nanoparticles, indicating the development of a magnetic correlation at low temperatures. The magnetic correlation strengthens as the particle size reduces. This significantly differs from those observed in the bulk form, which show a superconducting state below Tc. It is indicated that reducing the particle size of La2-xSrxCuO4 down to nanometer size causes the appearance of magnetism. The magnetism enhances with decreasing particle size.
Collapse
|
10
|
Kapon Y, Saha A, Duanis-Assaf T, Stuyver T, Ziv A, Metzger T, Yochelis S, Shaik S, Naaman R, Reches M, Paltiel Y. Evidence for new enantiospecific interaction force in chiral biomolecules. Chem 2021. [DOI: 10.1016/j.chempr.2021.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Ulloa J, Lorusso G, Evangelisti M, Camón A, Barberá J, Serrano JL. Magnetism of Dendrimer-Coated Gold Nanoparticles: A Size and Functionalization Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:20482-20487. [PMID: 35774116 PMCID: PMC9236199 DOI: 10.1021/acs.jpcc.1c04213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 06/15/2023]
Abstract
Highly sensitive magnetometry reveals paramagnetism in dendrimer-coated gold nanoparticles. Different types of such nanoparticles, as a result of (i) functionalizing with two distinct Percec-type dendrons, linked to gold via dodecanethiol groups, and (ii) postsynthesis annealing in a solvent-free environment that further promotes their growth have been prepared. Ultimately, for each of the two functionalization configurations, we obtain highly monodisperse and stable nanoparticles of two different sizes, with spherical shape. These characteristics allow singling out the source of the measured paramagnetic signals as exclusively arising from the undercoordinated gold atoms on the surfaces of the nanoparticles. Bulk gold and the functional groups of the ligands contribute only diamagnetically.
Collapse
Affiliation(s)
- José
A. Ulloa
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, 160-C, Calle Edmundo Larenas 129, 4070371 Concepción, Chile
| | - Giulia Lorusso
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, 50009 Zaragoza, Spain
- CNR
- Istituto per la Microelettronica e Microsistemi, Unità di Bologna, Via Gobetti 101, 40129 Bologna, Italy
| | - Marco Evangelisti
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Agustín Camón
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Joaquín Barberá
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Departamento
de Química Orgánica, Universidad
de Zaragoza-CSIC, C/
Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - José L. Serrano
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Departamento
de Química Orgánica, Universidad
de Zaragoza-CSIC, C/
Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
12
|
Miyamoto M, Taketsugu T, Iwasa T. A comparative study of structural, electronic, and optical properties of thiolated gold clusters with icosahedral vs face-centered cubic cores. J Chem Phys 2021; 155:094304. [PMID: 34496588 DOI: 10.1063/5.0057566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The structural, electronic, and optical properties of the protected Au clusters with icosahedral (Ih) and face-centered cubic (FCC)-like Au13 cores were studied to understand the origin of the difference in the optical gaps of these clusters. It has been demonstrated that the choice of density functionals does not qualitatively affect the properties of Au23 and Au25 clusters with Ih and FCC cores. The density of states, molecular orbitals, and natural charges were analyzed in detail using the B3LYP functional. The substantial energy difference in the lowest-energy absorption peaks for the clusters with the Ih and FCC cores is attributed to the difference in the natural charges of the central Au atoms (Auc) in the Ih and FCC cores, the former of which is more negative than the latter. Natural population analysis demonstrates that the excess negative charge of the Auc atom in clusters with Ih cores occupies the 6p atomic orbitals. This difference in Auc is attributed to the smaller size of the Ih core compared to the FCC core, as a less bulky ligand allows a smaller core with increased electron density, which, in turn, increases the highest occupied molecular orbital energy and decreases the optical gap.
Collapse
Affiliation(s)
- Maho Miyamoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
13
|
Swain DK, Mallik G, Srivastava P, Kushwaha AK, Rajput P, Jha SN, Lim S, Kim S, Rath S. Single Mn Atom Doping in Chiral Sensitive Assembled Gold Clusters to Molecular Magnet. ACS NANO 2021; 15:6289-6295. [PMID: 33666080 DOI: 10.1021/acsnano.0c10260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chiral stirred optical and magnetic properties, through the doping of assembled ultrasmall metal clusters (AMCs), are promising discernment to rivet the molecule-like quantum devices. Here, the single manganese (Mn) atom doping and assembly of the gold cluster (Au8), leading to the chirality driven magnetism, has been achieved through a ligand-mediated growth. The X-ray absorption near edge structure and electron paramagnetic resonance studies corroborate the tetrahedral coordinated local structure of Mn dopant in the Au host. The optical and vibrational circular dichroic analysis affirms the modulation of chirality (negative to positive) in the presence of the Mn. A distinct ferromagnetic hysteresis loop at 300 K shows Mn ridden chiral sensitive ferromagnetism in contrary to the ligand influenced superparamagnetic undoped AMCs. The spin-polarized density functional theory level of calculations reveal the partial overlapping of spin-up and -down density of states in the doped AMCs, attributing to the ferromagnetic nature as like a molecular magnet suitable for the opto-spintronics application.
Collapse
Affiliation(s)
- Deepak K Swain
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul Jatni, 752050, India
| | - Gyanadeep Mallik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul Jatni, 752050, India
| | - Pooja Srivastava
- Department of Physics, Amity University Uttar Pradesh, Lucknow, 226010, India
| | - Anoop K Kushwaha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul Jatni, 752050, India
| | - Parasmani Rajput
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Shambhu N Jha
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Seokmin Lim
- Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano and Information Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Seungchul Kim
- Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Satchidananda Rath
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul Jatni, 752050, India
| |
Collapse
|
14
|
Yoshimune W, Kuwaki A, Kusano T, Matsunaga T, Nakamura H. In Situ Small-Angle X-ray Scattering Studies on the Growth Mechanism of Anisotropic Platinum Nanoparticles. ACS OMEGA 2021; 6:10866-10874. [PMID: 34056240 PMCID: PMC8153930 DOI: 10.1021/acsomega.1c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Shape-controlled platinum nanoparticles exhibit extremely high oxygen reduction activity. Platinum nanoparticles were synthesized by the reduction of a platinum complex in the presence of a soft template formed by organic surfactants in oleylamine. The formation of platinum nanoparticles was investigated using in situ small-angle X-ray scattering experiments. Time-resolved measurements revealed that different particle shapes appeared during the reaction. After the nuclei were generated, they grew into anisotropic rod-shaped nanoparticles. The shape, size, number density, reaction yield, and specific surface area of the nanoparticles were successfully determined using small-angle X-ray scattering profiles. Anisotropic platinum nanoparticles appeared at a low reaction temperature (∼100 °C) after a short reaction time (∼30 min). The aspect ratio of these platinum nanoparticles was correlated with the local packing motifs of the surfactant molecules and their stability. Our findings suggest that the interfacial structure between the surfactant and platinum nuclei can be important as a controlling factor for tailoring the aspect ratio of platinum nanoparticles and further optimizing the fuel cell performance.
Collapse
|
15
|
Dong P, Fisher EA, Meli MV, Trudel S. Tuning the magnetism of gold nanoparticles by changing the thiol coating. NANOSCALE 2020; 12:19797-19803. [PMID: 32966519 DOI: 10.1039/d0nr05674j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Room-temperature ferromagnetic behaviour has been reported in nanoscale materials expected to be diamagnetic, including gold. However, it is yet unclear which factors (size, shape, surface coating) predominantly influence the magnitude of the magnetic response. In this work, we study the magnetic and electronic properties of similarly-sized gold nanoparticles (Au NPs) coated with four different n-alkanethiols, as well as hydroxyl- and carboxyl-functionalized alkanethiols using superconducting quantum interference device (SQUID) magnetometry and ultraviolet photoelectron spectroscopy (UPS). We find room-temperature behaviour (hysteresis in magnetization vs. field strength loops) in all samples, as well as large effective magnetic anisotropy. Importantly, we find the nanoparticles coated with polar chain end-groups (-OH and -COOH) show markedly higher magnetization; this increased magnetization correlates with a higher work function. This work establishes chemical handles to enhance magnetism in nanoscale gold particles.
Collapse
Affiliation(s)
- Pengcheng Dong
- Department of Chemistry and Institute for Quantum Science and Technology, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada T2N 1N4.
| | - Elizabeth A Fisher
- Department of Chemistry and Biochemistry, Mount Allison University, 63 C York Street, Sackville, NB, Canada E4L 1G8.
| | - M-Vicki Meli
- Department of Chemistry and Biochemistry, Mount Allison University, 63 C York Street, Sackville, NB, Canada E4L 1G8.
| | - Simon Trudel
- Department of Chemistry and Institute for Quantum Science and Technology, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada T2N 1N4.
| |
Collapse
|
16
|
Dolinska J, Holdynski M, Pieta P, Lisowski W, Ratajczyk T, Palys B, Jablonska A, Opallo M. Noble Metal Nanoparticles in Pectin Matrix. Preparation, Film Formation, Property Analysis, and Application in Electrocatalysis. ACS OMEGA 2020; 5:23909-23918. [PMID: 32984711 PMCID: PMC7513339 DOI: 10.1021/acsomega.0c03167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 05/23/2023]
Abstract
Stable polymeric materials with embedded nano-objects, retaining their specific properties, are indispensable for the development of nanotechnology. Here, a method to obtain Pt, Pd, Au, and Ag nanoparticles (ca. 10 nm, independent of the metal) by the reduction of their ions in pectin, in the absence of additional reducing agents, is described. Specific interactions between the pectin functional groups and nanoparticles were detected, and they depend on the metal. Bundles and protruding nanoparticles are present on the surface of nanoparticles/pectin films. These films, deposited on the electrode surface, exhibit electrochemical response, characteristic for a given metal. Their electrocatalytic activity toward the oxidation of a few exemplary organic molecules was demonstrated. In particular, a synergetic effect of simultaneously prepared Au and Pt nanoparticles in pectin films on glucose electro-oxidation was found.
Collapse
Affiliation(s)
- Joanna Dolinska
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Marcin Holdynski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Piotr Pieta
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Wojciech Lisowski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Tomasz Ratajczyk
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Barbara Palys
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland
| | - Anna Jablonska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland
| | - Marcin Opallo
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
17
|
Zheng R, Bevacqua GM, Young NR, Allison TC, Tong YJ. Site-Dependent Spin Delocalization and Evidence of Ferrimagnetism in Atomically Precise Au 25(SR) 180 Clusters as Seen by Solution 13C NMR Spectroscopy. J Phys Chem A 2020; 124:7464-7469. [PMID: 32819099 DOI: 10.1021/acs.jpca.0c02915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We report a simple but detailed solution 13C nuclear magnetic resonance spectroscopic study of atomically precise neutral Au25(SR)180 (SR = alkyl thiolate) clusters. The paramagnetic 13C Knight shift of alkyl chain carbons, which is proportional to the local electron spin density, exhibits an electron spin delocalization that exponentially decays along the alkyl chain. The magnitude and decay constant of the observed electron spin delocalization, although largely independent of alkyl chain length, depend on where, that is, "in" versus "out" (vide infra) position, the alkyl chain is bound, in agreement with density functional theory calculations. Notably, the determined position-dependent decay constants, 1.70/Å and 0.41/Å for "in" and "out" ligands, respectively, not only could have important ramifications in molecular spintronics but are also comparable to measured decay constants in molecular electrical conductance of alkyl chains, potentially offering an alternative, simple method for estimating the latter. Moreover, the negative intercept temperatures of linear fits of reciprocal 13C (as well its bound 1H) Knight shift versus temperature strongly suggest the existence of local ferrimagnetism in individual Au25(SR)180 clusters.
Collapse
Affiliation(s)
- Rongfeng Zheng
- Department of Chemistry, Georgetown University, 37th & O Streets, NW, Washington, District of Columbia 20057, United States
| | - Gianna M Bevacqua
- Department of Chemistry, Georgetown University, 37th & O Streets, NW, Washington, District of Columbia 20057, United States
| | - Nicholas R Young
- Department of Chemistry, Georgetown University, 37th & O Streets, NW, Washington, District of Columbia 20057, United States
| | - Thomas C Allison
- Chemical Informatics Group, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8320, Gaithersburg, Maryland 20899-8320, United States
| | - YuYe J Tong
- Department of Chemistry, Georgetown University, 37th & O Streets, NW, Washington, District of Columbia 20057, United States
| |
Collapse
|
18
|
Hsu CC, Hsu KL, Chang PC, Liu SY, Hsu CC, Lin WC. Organic/metal interface-modulated magnetism in [Fe/C 60] 3 multilayers and Fe-C 60 composites. NANOTECHNOLOGY 2020; 31:325701. [PMID: 32311680 DOI: 10.1088/1361-6528/ab8b0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of the expected long spin-transport length of organic materials, the magnetic metal/organic interface is crucial to the application of organic spintronics. In this study, [Fe/C60]3 multilayers were fabricated for the investigation of C60-mediated magnetic interlayer coupling. [Fe/C60]3 thin films were characterized using the magneto-optical Kerr effect, transmission electron microscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). The thin films revealed in-plane magnetic anisotropy, and the magnetic coercivity (H c ) drastically decreased from 6-8 mT to 0.5 mT with the increase of C60 thickness from 0.1 nm to 5 nm. The insertion of the C60 layer considerably reduced H c because a thickness greater than 1 nm of the C60 layer is sufficient for blocking magnetic exchange coupling between Fe layers. In addition, post-annealing increased H c because of Fe inter-diffusion, which promotes magnetic exchange coupling and further Fe-C bonding, as confirmed by a comparative study of XPS C-spectra. The thermally triggered inter-diffusion between Fe and C60 layers turned the multilayers into a mixed composite film and thus caused magnetic variation. Annealing time and temperature can be used as control parameters for the tuning of magnetism in Fe-C60 composites.
Collapse
Affiliation(s)
- Chuan-Che Hsu
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Shornikova EV, Golovatenko AA, Yakovlev DR, Rodina AV, Biadala L, Qiang G, Kuntzmann A, Nasilowski M, Dubertret B, Polovitsyn A, Moreels I, Bayer M. Surface spin magnetism controls the polarized exciton emission from CdSe nanoplatelets. NATURE NANOTECHNOLOGY 2020; 15:277-282. [PMID: 31988504 DOI: 10.1038/s41565-019-0631-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The surface of nominally diamagnetic colloidal CdSe nanoplatelets can demonstrate paramagnetic behaviour owing to the uncompensated spins of dangling bonds, as we reveal here by optical spectroscopy in high magnetic fields up to 15 T using the exciton spin as a probe of the surface magnetism. The strongly nonlinear magnetic field dependence of the circular polarization of the exciton emission is determined by the magnetization of the dangling-bond spins (DBSs), the exciton spin polarization as well as the spin-dependent recombination of dark excitons. The sign of the exciton-DBS exchange interaction depends on the nanoplatelet growth conditions.
Collapse
Affiliation(s)
- Elena V Shornikova
- Experimentelle Physik 2, Technische Universität Dortmund, Dortmund, Germany.
| | | | - Dmitri R Yakovlev
- Experimentelle Physik 2, Technische Universität Dortmund, Dortmund, Germany.
- Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Anna V Rodina
- Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Louis Biadala
- Institut d'Electronique, de Microélectronique et de Nanotechnologie, CNRS, Villeneuve-d'Ascq, France
| | - Gang Qiang
- Experimentelle Physik 2, Technische Universität Dortmund, Dortmund, Germany
| | - Alexis Kuntzmann
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI, CNRS, Paris, France
| | - Michel Nasilowski
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI, CNRS, Paris, France
| | - Benoit Dubertret
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI, CNRS, Paris, France
| | - Anatolii Polovitsyn
- Department of Chemistry, Ghent University, Ghent, Belgium
- Istituto Italiano di Tecnologia, Genova, Italy
| | - Iwan Moreels
- Department of Chemistry, Ghent University, Ghent, Belgium
- Istituto Italiano di Tecnologia, Genova, Italy
| | - Manfred Bayer
- Experimentelle Physik 2, Technische Universität Dortmund, Dortmund, Germany
- Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
20
|
Uddin AKMR, Siddique MAB, Rahman F, Ullah AKMA, Khan R. Cocos nucifera Leaf Extract Mediated Green Synthesis of Silver Nanoparticles for Enhanced Antibacterial Activity. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01506-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
The di(thiourea)gold(I) complex [Au{S=C(NH2)2}2][SO3Me] as a precursor for the convenient preparation of gold nanoparticles. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2020. [DOI: 10.1515/znb-2019-0213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
The synthesis of [Au{S=C(NH2)2}2][SO3Me] (1) (a) by the anodic oxidation of gold metal in an anolyte of thiourea and methansulfonic acid and (b) by the reaction of Au(OH)3 with an aqueous solution of methanesulfonic acid in the presence of thiourea is reported. The structure of 1 in the solid state has been determined by single-crystal X-ray diffraction showing a linear S–Au–S unit with the thiourea ligands in a leaflet structure folded by 113.2(3)°. The cation of complex 1 is a dimer, based on short S · · · C interactions between two adjacent mononuclear cations. The thermal decomposition behavior of 1 was studied by TG and TG-MS confirming that it decomposes under inert gas or oxygen atmosphere in four steps in the temperature range of 200–650°C. Initial decomposition starts with the release and fragmentation of one of the thiourea ligands, followed by the anion degradation. Powder X-ray diffraction studies specified the formation of gold metal. Based on this observation, complex 1 was used as precursor for the formation of gold nanoparticles (Au NPs) in 1-hexadecylamine (c = 4.0 mol L−1) at T = 330°C without any addition of reducing agents. TEM, electron diffraction, and UV/Vis spectroscopy studies were carried out. Au NPs of size 15 ± 4 nm were formed, showing the characteristic surface plasmon resonance at 528 nm.
Collapse
|
22
|
Abstract
Magnetic materials are usually classified into a distinct category such as diamagnets, paramagnets or ferromagnets. The enormous progress in materials science allows one nowadays, however, to change the magnetic nature of an element in a material. Gold, in bulk form, is traditionally a diamagnet. But in a ferromagnetic environment, it can adopt an induced ferromagnetic moment. Moreover, the growth of gold under certain conditions may lead to a spontaneous ferromagnetic or paramagnetic response. Here, we report on paramagnetic gold in a highly disordered Au-Ni-O alloy and focus on the unusual magnetic response. Such materials are mainly considered for plasmonic applications. Thin films containing Au, Ni and NiO are fabricated by co-deposition of Ni and Au in a medium vacuum of 2 × 10-2 mbar. As a result, Au is in a fully disordered state forming in some cases isolated nanocrystallites of up to 4 nm in diameter as revealed by high resolution transmission electron microscopy. The disorder and the environment, which is rich in oxygen, lead to remarkable magnetic properties of Au: an induced ferromagnetic and a paramagnetic state. This can be proven by measuring the x-ray magnetic circular dichroism. Our experiments show a way to establish and monitor Au paramagnetism in alloys.
Collapse
|
23
|
|
24
|
Niihori Y, Yoshida K, Hossain S, Kurashige W, Negishi Y. Deepening the Understanding of Thiolate-Protected Metal Clusters Using High-Performance Liquid Chromatography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Yoshida
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Wataru Kurashige
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
25
|
Koplovitz G, Leitus G, Ghosh S, Bloom BP, Yochelis S, Rotem D, Vischio F, Striccoli M, Fanizza E, Naaman R, Waldeck DH, Porath D, Paltiel Y. Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804557. [PMID: 30462882 DOI: 10.1002/smll.201804557] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 05/19/2023]
Abstract
The rapid growth in demand for data and the emerging applications of Big Data require the increase of memory capacity. Magnetic memory devices are among the leading technologies for meeting this demand; however, they rely on the use of ferromagnets that creates size reduction limitations and poses complex materials requirements. Usually magnetic memory sizes are limited to 30-50 nm. Reducing the size even further, to the ≈10-20 nm scale, destabilizes the magnetization and its magnetic orientation becomes susceptible to thermal fluctuations and stray magnetic fields. In the present work, it is shown that 10 nm single domain ferromagnetism can be achieved. Using asymmetric adsorption of chiral molecules, superparamagnetic iron oxide nanoparticles become ferromagnetic with an average coercive field of ≈80 Oe. The asymmetric adsorption of molecules stabilizes the magnetization direction at room temperature and the orientation is found to depend on the handedness of the chiral molecules. These studies point to a novel method for the miniaturization of ferromagnets (down to ≈10 nm) using established synthetic protocols.
Collapse
Affiliation(s)
- Guy Koplovitz
- Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Gregory Leitus
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Supriya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Brian P Bloom
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Shira Yochelis
- Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dvir Rotem
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Fabio Vischio
- Institute for Chemical and Physical Processes (IPCF) - National Council of Researches CNR, Via Orabona 4, Bari, 70126, Italy
| | - Marinella Striccoli
- Institute for Chemical and Physical Processes (IPCF) - National Council of Researches CNR, Via Orabona 4, Bari, 70126, Italy
| | - Elisabetta Fanizza
- Department of Chemistry, University of Bari, Via Orabona 4, Bari, 70126, Italy
| | - Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Danny Porath
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yossi Paltiel
- Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
26
|
Abstract
Intriguing ferromagnetic behaviour has been reported in gold thin films — a diamagnetic material in the bulk — wherein large magnetic moments and uncommon anisotropy are often hallmark features. The tuning of the electronic and magnetic properties by the presence of molecular self-assembled monolayers has been proposed. In this work, we present the study of the magnetism of a wide collection of alkanethiols of differing chain lengths coated on Au. We find no or only very weak magnetism, casting doubt on the universality and reproducibility of this phenomenon.
Collapse
Affiliation(s)
- Pengcheng Dong
- Department of Chemistry and Institute for Quantum Science and Technology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry and Institute for Quantum Science and Technology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Simon Trudel
- Department of Chemistry and Institute for Quantum Science and Technology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry and Institute for Quantum Science and Technology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
27
|
Ullah AKMA, Kabir MF, Akter M, Tamanna AN, Hossain A, Tareq ARM, Khan MNI, Kibria AKMF, Kurasaki M, Rahman MM. Green synthesis of bio-molecule encapsulated magnetic silver nanoparticles and their antibacterial activity. RSC Adv 2018; 8:37176-37183. [PMID: 35557822 PMCID: PMC9088908 DOI: 10.1039/c8ra06908e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
Persuaded by the necessity of finding new sources of antibiotics, silver nanoparticles (Ag NPs) were synthesized by adopting a newly developed green synthesis technique and subsequently, their antibacterial activity against different pathogenic bacteria was evaluated. We have successfully synthesized bio-molecule capped ferromagnetic Ag NPs with an average crystallite size of 13 nm using AgNO3 solution as a precursor and Artocarpus heterophyllus leaf extract as a reducing and capping agent. The characterization of the synthesized Ag NPs was carried out using various techniques such as UV-visible (UV-Vis) spectroscopy, energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetry (TG), and vibrating sample magnetometer (VSM) analyses. After exposing the synthesized Ag NPs to two Gram-positive bacteria - Staphylococcus aureus and Bacillus cereus and two Gram-negative bacteria - Escherichia coli and Salmonella typhimurium, the zones of inhibition were found to be 15, 16, 19, and 18 mm, respectively. These results imply that the Artocarpus heterophyllus leaf extract mediated green synthesized bio-molecules encapsulated Ag NPs can be considered as a potential antibiotic against human pathogens which is very encouraging.
Collapse
Affiliation(s)
- A K M Atique Ullah
- Nanoscience and Technology Research Laboratory, Atomic Energy Centre, Bangladesh Atomic Energy Commission Dhaka 1000 Bangladesh
- Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission Dhaka 1000 Bangladesh
| | - M F Kabir
- Department of Physics, University of Dhaka Dhaka 1000 Bangladesh
| | - M Akter
- Graduate School of Environmental Science, Hokkaido University 060-0810 Sapporo Japan
| | - A N Tamanna
- Department of Physics, University of Dhaka Dhaka 1000 Bangladesh
| | - A Hossain
- Department of Physical and Inorganic Chemistry, Institute of Natural Sciences and Mathematics, Ural Federal University 620000 Yekaterinburg Russia
| | - A R M Tareq
- Nanoscience and Technology Research Laboratory, Atomic Energy Centre, Bangladesh Atomic Energy Commission Dhaka 1000 Bangladesh
- Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission Dhaka 1000 Bangladesh
| | - M N I Khan
- Nanoscience and Technology Research Laboratory, Atomic Energy Centre, Bangladesh Atomic Energy Commission Dhaka 1000 Bangladesh
- Materials Science Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission Dhaka 1000 Bangladesh
| | - A K M Fazle Kibria
- Nanoscience and Technology Research Laboratory, Atomic Energy Centre, Bangladesh Atomic Energy Commission Dhaka 1000 Bangladesh
- Nuclear Safety, Security and Safeguards Division, Bangladesh Atomic Energy Commission Dhaka 1207 Bangladesh
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University 060-0810 Sapporo Japan
| | - M M Rahman
- Department of Physics, University of Dhaka Dhaka 1000 Bangladesh
| |
Collapse
|
28
|
Al-Bustami H, Koplovitz G, Primc D, Yochelis S, Capua E, Porath D, Naaman R, Paltiel Y. Single Nanoparticle Magnetic Spin Memristor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801249. [PMID: 29952065 DOI: 10.1002/smll.201801249] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/09/2018] [Indexed: 05/21/2023]
Abstract
There is an increasing demand for the development of a simple Si-based universal memory device at the nanoscale that operates at high frequencies. Spin-electronics (spintronics) can, in principle, increase the efficiency of devices and allow them to operate at high frequencies. A primary challenge for reducing the dimensions of spintronic devices is the requirement for high spin currents. To overcome this problem, a new approach is presented that uses helical chiral molecules exhibiting spin-selective electron transport, which is called the chiral-induced spin selectivity (CISS) effect. Using the CISS effect, the active memory device is miniaturized for the first time from the micrometer scale to 30 nm in size, and this device presents memristor-like nonlinear logic operation at low voltages under ambient conditions and room temperature. A single nanoparticle, along with Au contacts and chiral molecules, is sufficient to function as a memory device. A single ferromagnetic nanoplatelet is used as a fixed hard magnet combined with Au contacts in which the gold contacts act as soft magnets due to the adsorbed chiral molecules.
Collapse
Affiliation(s)
- Hammam Al-Bustami
- Applied Physics, Hebrew University of Jerusalem, Edmond J Safra Campus, Jerusalem, 919041, Israel
| | - Guy Koplovitz
- Applied Physics, Hebrew University of Jerusalem, Edmond J Safra Campus, Jerusalem, 919041, Israel
| | - Darinka Primc
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Tan Hall 373A, Berkeley, CA, 94720, USA
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| | - Shira Yochelis
- Applied Physics, Hebrew University of Jerusalem, Edmond J Safra Campus, Jerusalem, 919041, Israel
| | - Eyal Capua
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Danny Porath
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ron Naaman
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yossi Paltiel
- Applied Physics, Hebrew University of Jerusalem, Edmond J Safra Campus, Jerusalem, 919041, Israel
| |
Collapse
|
29
|
Wang L, Li Q. Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev 2018; 47:1044-1097. [PMID: 29251304 DOI: 10.1039/c7cs00630f] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to manipulate the structure and function of promising nanosystems via energy input and external stimuli is emerging as an attractive paradigm for developing reconfigurable and programmable nanomaterials and multifunctional devices. Light stimulus manifestly represents a preferred external physical and chemical tool for in situ remote command of the functional attributes of nanomaterials and nanosystems due to its unique advantages of high spatial and temporal resolution and digital controllability. Photochromic moieties are known to undergo reversible photochemical transformations between different states with distinct properties, which have been extensively introduced into various functional nanosystems such as nanomachines, nanoparticles, nanoelectronics, supramolecular nanoassemblies, and biological nanosystems. The integration of photochromism into these nanosystems has endowed the resultant nanostructures or advanced materials with intriguing photoresponsive behaviors and more sophisticated functions. In this Review, we provide an account of the recent advancements in reversible photocontrol of the structures and functions of photochromic nanosystems and their applications. The important design concepts of such truly advanced materials are discussed, their fabrication methods are emphasized, and their applications are highlighted. The Review is concluded by briefly outlining the challenges that need to be addressed and the opportunities that can be tapped into. We hope that the review of the flourishing and vibrant topic with myriad possibilities would shine light on exploring the future nanoworld by encouraging and opening the windows to meaningful multidisciplinary cooperation of engineers from different backgrounds and scientists from the fields such as chemistry, physics, engineering, biology, nanotechnology and materials science.
Collapse
Affiliation(s)
- Ling Wang
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, USA.
| | | |
Collapse
|
30
|
Khort A, Podbolotov K, Serrano-García R, Gun’ko Y. One-Step Solution Combustion Synthesis of Cobalt Nanopowder in Air Atmosphere: The Fuel Effect. Inorg Chem 2018; 57:1464-1473. [DOI: 10.1021/acs.inorgchem.7b02848] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Kirill Podbolotov
- Department
of Glass and Ceramic Technologies, Belarusian State Technological University, Minsk 220006, Belarus
| | | | - Yurii Gun’ko
- Trinity College Dublin, Dublin 2, Ireland
- ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
31
|
|
32
|
One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: The fuel effect. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.05.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
One-step synthesis of gold colloids using amidoaminocalix[4]resorcinarenes as reducing and stabilizing agents. Investigation of naproxen binding. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Ohba T, Kubo H, Ohshima Y, Makita Y, Nakamura N, Uehara H, Takakusagi S, Asakura K. An Origin for Lattice Expansion in PVP-Protected Small Pd Metal Nanoparticles. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tadashi Ohba
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021
| | - Hitoshi Kubo
- Tanaka Kikinzoku Kogyo Co., Ltd., Wadai 22, Tsukuba, Ibaraki 300-4247
| | - Yusuke Ohshima
- Tanaka Kikinzoku Kogyo Co., Ltd., Wadai 22, Tsukuba, Ibaraki 300-4247
| | - Yuichi Makita
- Tanaka Kikinzoku Kogyo Co., Ltd., Wadai 22, Tsukuba, Ibaraki 300-4247
| | - Noriaki Nakamura
- Tanaka Kikinzoku Kogyo Co., Ltd., Wadai 22, Tsukuba, Ibaraki 300-4247
| | - Hiromitsu Uehara
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021
| | - Satoru Takakusagi
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021
| | - Kiyotaka Asakura
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021
| |
Collapse
|
35
|
Al Ma'Mari F, Rogers M, Alghamdi S, Moorsom T, Lee S, Prokscha T, Luetkens H, Valvidares M, Teobaldi G, Flokstra M, Stewart R, Gargiani P, Ali M, Burnell G, Hickey BJ, Cespedes O. Emergent magnetism at transition-metal-nanocarbon interfaces. Proc Natl Acad Sci U S A 2017; 114:5583-5588. [PMID: 28507160 PMCID: PMC5465901 DOI: 10.1073/pnas.1620216114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Charge transfer at metallo-molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc-C60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo-carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp3 orbitals are annealed into sp2-π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π*-molecular levels, whereas the dichroism in the σ*-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz-π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices.
Collapse
Affiliation(s)
- Fatma Al Ma'Mari
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
- Department of Physics, Sultan Qaboos University, 123 Muscat, Oman
| | - Matthew Rogers
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Shoug Alghamdi
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Timothy Moorsom
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen Lee
- School of Physics and Astronomy, Scottish Universities Physics Alliance, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Thomas Prokscha
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Hubertus Luetkens
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | | | - Gilberto Teobaldi
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, United Kingdom
- Beijing Computational Science Research Centre, Beijing 100193 China
| | - Machiel Flokstra
- School of Physics and Astronomy, Scottish Universities Physics Alliance, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Rhea Stewart
- School of Physics and Astronomy, Scottish Universities Physics Alliance, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
| | | | - Mannan Ali
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gavin Burnell
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - B J Hickey
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|
36
|
Koplovitz G, Primc D, Ben Dor O, Yochelis S, Rotem D, Porath D, Paltiel Y. Magnetic Nanoplatelet-Based Spin Memory Device Operating at Ambient Temperatures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606748. [PMID: 28256757 DOI: 10.1002/adma.201606748] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/16/2017] [Indexed: 06/06/2023]
Abstract
There is an increasing demand for realizing a simple Si based universal memory device working at ambient temperatures. In principle, nonvolatile magnetic memory can operate at low power consumption and high frequencies. However, in order to compete with existing memory technology, size reduction and simplification of the used material systems are essential. In this work, the chiral-induced spin selectivity effect is used along with 30-50 nm ferromagnetic nanoplatelets in order to realize a simple magnetic memory device. The vertical memory is Si compatible, easy to fabricate, and in principle can be scaled down to a single nanoparticle size. Results show clear dual magnetization behavior with threefold enhancement between the one and zero states. The magnetization of the device is accompanied with large avalanche like noise that is ascribed to the redistribution of current densities due to spin accumulation inducing coupling effects between the different nanoplatelets.
Collapse
Affiliation(s)
- Guy Koplovitz
- Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Darinka Primc
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Oren Ben Dor
- Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Shira Yochelis
- Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dvir Rotem
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Danny Porath
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yossi Paltiel
- Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
37
|
Ben Dor O, Yochelis S, Radko A, Vankayala K, Capua E, Capua A, Yang SH, Baczewski LT, Parkin SSP, Naaman R, Paltiel Y. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. Nat Commun 2017; 8:14567. [PMID: 28230054 PMCID: PMC5331337 DOI: 10.1038/ncomms14567] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/10/2017] [Indexed: 11/10/2022] Open
Abstract
Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm-2, or about 1 × 1025 electrons s-1 cm-2. This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions.
Collapse
Affiliation(s)
- Oren Ben Dor
- Applied Physics Department and the Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Shira Yochelis
- Applied Physics Department and the Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Anna Radko
- Applied Physics Department and the Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Kiran Vankayala
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal Capua
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amir Capua
- IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
| | - See-Hun Yang
- IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
| | - Lech Tomasz Baczewski
- Magnetic Heterostructures Laboratory, Institute of Physics Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warszawa, Poland
| | - Stuart Stephen Papworth Parkin
- IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
- Max Planck Institute for Microstructure Physics, Halle (Saale) D-06120, Germany
| | - Ron Naaman
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yossi Paltiel
- Applied Physics Department and the Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
38
|
|
39
|
Di Paola C, D'Agosta R, Baletto F. Geometrical Effects on the Magnetic Properties of Nanoparticles. NANO LETTERS 2016; 16:2885-2889. [PMID: 27007172 DOI: 10.1021/acs.nanolett.6b00916] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Elucidating the connection between shape and properties is a challenging but essential task for a rational design of nanoparticles at the atomic level. As a paradigmatic example we investigate how geometry can influence the magnetic properties of nanoparticles, focusing in particular on platinum clusters of 1-2 nm in size. Through first-principle calculations, we have found that the total magnetization depends strongly on the local atomic arrangements. This is due to a contraction of the nearest neighbor distance together with an elongation of the second nearest neighbor distance, resulting in an interatomic partial charge transfer from the atoms lying on the subsurface layer (donors) toward the vertexes (acceptors).
Collapse
Affiliation(s)
- Cono Di Paola
- Department of Physics, King's College London , WC2R 2LS, London, United Kingdom
- Department of Earth Sciences, University College London , WC1E 6BT, London, United Kingdom
| | - Roberto D'Agosta
- Department of Physics, King's College London , WC2R 2LS, London, United Kingdom
- Nano-bio Spectroscopy Group and ETSF, Universidad del País Vasco , CFM CSIC-UPV/EHU, E-20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, E-48013, Bilbao, Spain
| | - Francesca Baletto
- Department of Physics, King's College London , WC2R 2LS, London, United Kingdom
| |
Collapse
|
40
|
Fujita A, Matsumoto Y, Takeuchi M, Ryuto H, Takaoka GH. Growth behavior of gold nanoparticles synthesized in unsaturated fatty acids by vacuum evaporation methods. Phys Chem Chem Phys 2016; 18:5464-70. [PMID: 26821883 DOI: 10.1039/c5cp07323e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Physical vapor evaporation of metals on low vapor pressure liquids is a simple and clean method to synthesize nanoparticles and thin films, though only little work has been conducted so far. Here, gold nanoparticles were synthesized by vacuum evaporation (VE) methods in ricinoleic acid and oleic acid, two typical unsaturated fatty acids (UFAs). The two solvents formed black aggregates after deposition and then shrunk and finally disappeared with the progress of time. By transmission electron microscopy (TEM) images, nanoparticles in ricinoleic acids formed aggregates and then dispersed by time, while in oleic acid big aggregates were not observed in all timescales. From TEM images and small angle X-ray scattering (SAXS) measurements, the mean size of the nanoparticles was about 4 nm in both ricinoleic and oleic acids. UV-Vis spectra were also taken as a function of time and the results were consistent with the growth behavior presumed by TEM images. Air exposure had an influence on the behavior of the sample triggering the nanoparticle formation in both solvents. From control experiments, we discovered that oxygen gas triggered the phenomenon and nanoparticles function as a catalyst for the oxidation of the UFAs. It stimulates the phenomenon and in ricinoleic acid, specifically, electrons are transferred from riconleic acid to the gold nanoparticles, enhancing the surface potential of the nanoparticles and the repulsive force between their electronic double layers.
Collapse
Affiliation(s)
- Akito Fujita
- Photonics and Electronics Science and Engineering Center, Kyoto University, Kyoto 615-8510, Japan.
| | | | | | | | | |
Collapse
|
41
|
Prusty S, Siva V, Shukla N, Satpati B, Senapati K, Sahoo PK. Unusual ferromagnetic behaviour of embedded non-functionalized Au nanoparticles in Bi/Au bilayer films. RSC Adv 2016. [DOI: 10.1039/c6ra23047d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Observation of ferromagnetic behavior of non-functionalized gold nanoparticles in contrast to the diamagnetic nature of bulk gold synthesized by single step Au ion irradiation.
Collapse
Affiliation(s)
- Sudakshina Prusty
- School of Physical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar
- India
| | - Vantari Siva
- School of Physical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar
- India
| | | | - Biswarup Satpati
- Surface Physics & Materials Science Division
- Saha Institute of Nuclear Physics
- Kolkata
- India – 700064
| | - K. Senapati
- School of Physical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar
- India
| | - Pratap K. Sahoo
- School of Physical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar
- India
| |
Collapse
|
42
|
Shil S, Bhattacharya D, Misra A, Klein DJ. A high-spin organic diradical as a spin filter. Phys Chem Chem Phys 2015; 17:23378-83. [PMID: 26287641 DOI: 10.1039/c5cp03193a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here, in this work we have designed a molecular bridge structure which can be used as a spin filter where the prototypical highly ferromagnetic m-phenylene connected bis(aminoxyl) diradical is used as a bridging fragment between two semi-infinitely widened gold (Au) electrodes along the [100] direction. A state-of-the-art non-equilibrium Green function's (NEGF) method coupled with the density functional theory (DFT) was carried out on this two-probe molecular bridge system to understand its electrical spin transport characteristics. The spin current at various bias voltages from 0.00 V to 4.00 V at intervals of 0.20 V for this Au-diradical-Au molecular junction is evaluated. We also quantify the bias-dependent spin injection coefficients (BDSIC) at different bias voltages and also the spin-filter efficiency at equilibrium, i.e., at zero bias voltage. Also plots of BDSIC vs. voltage, the up- and down-spin current vs. voltage (I-V) curves, and density of states (DOS) at zero bias voltage are evaluated.
Collapse
Affiliation(s)
- Suranjan Shil
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, West Bengal, India
| | | | | | | |
Collapse
|
43
|
Liu X, Zhang X, Bo M, Li L, Tian H, Nie Y, Sun Y, Xu S, Wang Y, Zheng W, Sun CQ. Coordination-resolved electron spectrometrics. Chem Rev 2015; 115:6746-810. [PMID: 26110615 DOI: 10.1021/cr500651m] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xinjuan Liu
- †Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
| | - Xi Zhang
- ‡Institute of Nanosurface Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Maolin Bo
- §Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education) and School of Materials Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Lei Li
- ∥School of Materials Science, Jilin University, Changchun 130012, China
| | - Hongwei Tian
- ∥School of Materials Science, Jilin University, Changchun 130012, China
| | - Yanguang Nie
- ⊥School of Science, Jiangnan University, Wuxi 214122, China
| | - Yi Sun
- #Harris School of Public Policy, University of Chicago, Chicago, Illinois 60637, United States
| | - Shiqing Xu
- †Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yan Wang
- ∇School of Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Weitao Zheng
- ∥School of Materials Science, Jilin University, Changchun 130012, China
| | - Chang Q Sun
- ○NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
44
|
Pradhani A, Halder O, Nozaki S, Rath S. Raman modes, dipole moment and chirality in periodically positioned Au8clusters. RSC Adv 2015. [DOI: 10.1039/c5ra09646d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The solution-based assembly of h-Au8clusters into a local periodic structure (LPS) of periodicity 1.47 nm with negative chirality as confirmed by experimental and theoretical analyses exhibits excitonic couplet state.
Collapse
Affiliation(s)
- A. Pradhani
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar-751007
- India
| | - O. Halder
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar-751007
- India
| | - S. Nozaki
- Graduate School of Informatics and Engineering
- The University of Electro-Communication
- Chofu-Shi
- Japan
| | - S. Rath
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar-751007
- India
| |
Collapse
|
45
|
Sakuragi S, Tajiri H, Sato T. Ferromagnetism in Pd(100) Ultrathin Films Enhanced by Distortion. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.phpro.2015.12.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Fatayer S, Veiga RGA, Prieto MJ, Perim E, Landers R, Miwa RH, de Siervo A. Self-assembly of NiTPP on Cu(111): a transition from disordered 1D wires to 2D chiral domains. Phys Chem Chem Phys 2015; 17:18344-52. [DOI: 10.1039/c5cp01288k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growth mechanism of NiTPP on Cu(111): from disordered 1D wires to self-assembled chiral domains.
Collapse
Affiliation(s)
- Shadi Fatayer
- Instituto de Física Gleb Wataghin
- Universidade Estadual de Campinas
- Campinas 13083-859
- Brazil
| | - Roberto G. A. Veiga
- Departamento de Engenharia Metalúrgica e de Materiais
- Escola Politécnica
- Universidade de São Paulo
- São Paulo 05508-010
- Brazil
| | - Mauricio J. Prieto
- Instituto de Física Gleb Wataghin
- Universidade Estadual de Campinas
- Campinas 13083-859
- Brazil
| | - Eric Perim
- Instituto de Física Gleb Wataghin
- Universidade Estadual de Campinas
- Campinas 13083-859
- Brazil
| | - Richard Landers
- Instituto de Física Gleb Wataghin
- Universidade Estadual de Campinas
- Campinas 13083-859
- Brazil
| | - Roberto H. Miwa
- Departamento de Física
- Universidade Federal de Uberlandia
- Uberlândia 38400-902
- Brazil
| | - Abner de Siervo
- Instituto de Física Gleb Wataghin
- Universidade Estadual de Campinas
- Campinas 13083-859
- Brazil
| |
Collapse
|
47
|
Kuzmin A, Chaboy J. EXAFS and XANES analysis of oxides at the nanoscale. IUCRJ 2014; 1:571-89. [PMID: 25485137 PMCID: PMC4224475 DOI: 10.1107/s2052252514021101] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/22/2014] [Indexed: 05/19/2023]
Abstract
Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.). As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS) analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS) is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs) and iron oxide nanoparticles.
Collapse
Affiliation(s)
- Alexei Kuzmin
- Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia
| | - Jesús Chaboy
- Instituto de Ciencia de Materiales de Aragón, Consejo Superior de Investigaciones Científicas and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
48
|
van der Laan G, Figueroa AI. X-ray magnetic circular dichroism—A versatile tool to study magnetism. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.018] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
49
|
Singh SB, Wang YF, Shao YC, Lai HY, Hsieh SH, Limaye MV, Chuang CH, Hsueh HC, Wang H, Chiou JW, Tsai HM, Pao CW, Chen CH, Lin HJ, Lee JF, Wu CT, Wu JJ, Pong WF, Ohigashi T, Kosugi N, Wang J, Zhou J, Regier T, Sham TK. Observation of the origin of d0 magnetism in ZnO nanostructures using X-ray-based microscopic and spectroscopic techniques. NANOSCALE 2014; 6:9166-9176. [PMID: 24978624 DOI: 10.1039/c4nr01961j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Efforts have been made to elucidate the origin of d(0) magnetism in ZnO nanocactuses (NCs) and nanowires (NWs) using X-ray-based microscopic and spectroscopic techniques. The photoluminescence and O K-edge and Zn L3,2-edge X-ray-excited optical luminescence spectra showed that ZnO NCs contain more defects than NWs do and that in ZnO NCs, more defects are present at the O sites than at the Zn sites. Specifically, the results of O K-edge scanning transmission X-ray microscopy (STXM) and the corresponding X-ray-absorption near-edge structure (XANES) spectroscopy demonstrated that the impurity (non-stoichiometric) region in ZnO NCs contains a greater defect population than the thick region. The intensity of O K-edge STXM-XANES in the impurity region is more predominant in ZnO NCs than in NWs. The increase in the unoccupied (occupied) density of states at/above (at/below) the conduction-band minimum (valence-band maximum) or the Fermi level is related to the population of defects at the O sites, as revealed by comparing the ZnO NCs to the NWs. The results of O K-edge and Zn L3,2-edge X-ray magnetic circular dichroism demonstrated that the origin of magnetization is attributable to the O 2p orbitals rather than the Zn d orbitals. Further, the local density approximation (LDA) + U verified that vacancies in the form of dangling or unpaired 2p states (due to Zn vacancies) induced a significant local spin moment in the nearest-neighboring O atoms to the defect center, which was determined from the uneven local spin density by analyzing the partial density of states of O 2p in ZnO.
Collapse
Affiliation(s)
- Shashi B Singh
- Department of Physics, Tamkang University, Tamsui 251, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bunău O, Bartolomé J, Bartolomé F, Garcia LM. Large orbital magnetic moment in Pt₁₃ clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:196006. [PMID: 24883454 DOI: 10.1088/0953-8984/26/19/196006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present an extensive study of Pt₁₃ clusters embedded in a Na-Y zeolite, by comparing calculations for isolated clusters to experimental data. We perform structural refinements for various geometries involving the isolated clusters and calculate the corresponding x-ray absorption and magnetic circular dichroism spectra, from the joint perspective of pseudopotential plane wave calculations and real space multiple scattering theory. Taking into account the spin-orbit coupling significantly improves the previous scalar relativistic predictions of magnetic properties. The ensemble of embedded Pt₁₃ is found to be dominated by a non-magnetic cuboctahedral geometry. One of the implications is that the ground state of Pt₁₃ clusters in the zeolite environment is different from that of isolated particles. We investigate several isomers that yield a magnetic signature. Furthermore, their abundance was estimated by direct comparison with experiment. We found that one third of the magnetic moment of Pt₁₃ comes from the orbital contribution, in agreement with the experimental value. We therefore provide theoretical proof of the extraordinary orbital magnetization in Pt13 clusters.
Collapse
|