1
|
Hendrikse RL, Amador C, Wilson MR. DPD simulations of anionic surfactant micelles: a critical role for polarisable water models. SOFT MATTER 2024; 20:7521-7534. [PMID: 39268749 DOI: 10.1039/d4sm00873a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
We investigate the effects of polarisable water models in dissipative particle dynamics (DPD) simulations, focussing on the influence these models have on the aggregation behaviour of sodium dodecyl sulfate solutions. Studies in the literature commonly report that DPD approaches underpredict the micellar aggregation number of ionic surfactants compared to experimental values. One of the proposed reasons for this discrepancy is that existing water models are insufficient to accurately model micellar solutions, as they fail to account for structural changes in water close to micellar surfaces. We show that polarisable DPD water models lead to more realistic counterion behaviour in micellar solutions, including the degree of counterion disassociation. These water models can also accurately reproduce changes in the dielectric constant of surfactant solutions as a function of concentration. We find evidence that polarisable water leads to the formation of more stable micelles at higher aggregation numbers. However, we also show that the choice of water model is not responsible for the underestimated aggregation numbers observed in DPD simulations. This finding addresses a key question in the literature surrounding the importance of water models in DPD simulations of ionic micellar solutions.
Collapse
Affiliation(s)
| | - Carlos Amador
- Procter and Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK
| | - Mark R Wilson
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
2
|
Xu S, Wang Z, Yu Y, Zhu Q, Zhang X. Conformations and dynamic behaviors of confined wormlike chains in a pressure-driven flow. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
The conformations and dynamic behaviors of wormlike chains confined by a slit in a pressure-driven flow were investigated using dissipative particle dynamics method. The wormlike chains exhibit varying conformations due to the varying shear stresses across the slit. The wormlike chain solution can be well described by the power-law fluid, and the power-law index decreases with the increase in chain rigidity. We also presented that the wormlike chain undergoes tumbling motion in the vicinity of the wall in the presence of pressure-driven flow. We also found that the wormlike chains can migrate both away from the wall and slightly away from the slit center, and the migration away from the slit center increases as the chain rigidity is increased because of hydrodynamic interactions induced in a more rigid wormlike chain.
Collapse
Affiliation(s)
- Shaofeng Xu
- School of Mechatronics and Energy Engineering, NingboTech University , Ningbo , 315000 , China
| | - Ziheng Wang
- Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University , Hangzhou , 310000 , China
| | - Yifan Yu
- School of Mechanical Engineering, Zhejiang University , Hangzhou , 310000 , China
| | - Qiaohui Zhu
- School of Mechanical Engineering, Zhejiang University , Hangzhou , 310000 , China
| | - Xuechang Zhang
- School of Mechatronics and Energy Engineering, NingboTech University , Ningbo , 315000 , China
| |
Collapse
|
3
|
Procházka K, Limpouchová Z, Štěpánek M, Šindelka K, Lísal M. DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers (Basel) 2022; 14:404. [PMID: 35160394 PMCID: PMC8838752 DOI: 10.3390/polym14030404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
This review article is addressed to a broad community of polymer scientists. We outline and analyse the fundamentals of the dissipative particle dynamics (DPD) simulation method from the point of view of polymer physics and review the articles on polymer systems published in approximately the last two decades, focusing on their impact on macromolecular science. Special attention is devoted to polymer and polyelectrolyte self- and co-assembly and self-organisation and to the problems connected with the implementation of explicit electrostatics in DPD numerical machinery. Critical analysis of the results of a number of successful DPD studies of complex polymer systems published recently documents the importance and suitability of this coarse-grained method for studying polymer systems.
Collapse
Affiliation(s)
- Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
| | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632, 400 96 Ústí n. Labem, Czech Republic
| |
Collapse
|
4
|
Santo KP, Neimark AV. Dissipative particle dynamics simulations in colloid and Interface science: a review. Adv Colloid Interface Sci 2021; 298:102545. [PMID: 34757286 DOI: 10.1016/j.cis.2021.102545] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022]
Abstract
Dissipative particle dynamics (DPD) is one of the most efficient mesoscale coarse-grained methodologies for modeling soft matter systems. Here, we comprehensively review the progress in theoretical formulations, parametrization strategies, and applications of DPD over the last two decades. DPD bridges the gap between the microscopic atomistic and macroscopic continuum length and time scales. Numerous efforts have been performed to improve the computational efficiency and to develop advanced versions and modifications of the original DPD framework. The progress in the parametrization techniques that can reproduce the engineering properties of experimental systems attracted a lot of interest from the industrial community longing to use DPD to characterize, help design and optimize the practical products. While there are still areas for improvements, DPD has been efficiently applied to numerous colloidal and interfacial phenomena involving phase separations, self-assembly, and transport in polymeric, surfactant, nanoparticle, and biomolecules systems.
Collapse
Affiliation(s)
- Kolattukudy P Santo
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Alexander V Neimark
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| |
Collapse
|
5
|
Dhamankar S, Webb MA. Chemically specific coarse‐graining of polymers: Methods and prospects. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satyen Dhamankar
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| | - Michael A. Webb
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| |
Collapse
|
6
|
Li P, Wang S, Meng F, Wang Y, Guo F, Rajendran S, Gao C, Xu Z, Xu Z. Conformational Scaling Relations of Two-Dimensional Macromolecular Graphene Oxide in Solution. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Peng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Shijun Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Fanxu Meng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Ya Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Fan Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Sangeetha Rajendran
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| |
Collapse
|
7
|
Schneider J, Meinel MK, Dittmar H, Müller-Plathe F. Different Stages of Polymer-Chain Collapse Following Solvent Quenching–Scaling Relations from Dissipative Particle Dynamics Simulations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jurek Schneider
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Melissa K. Meinel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Han Dittmar
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| |
Collapse
|
8
|
Tzorín A, Zamarripa AL, Goicochea AG, Vallejo-Montesinos J. Effect of increasing the number of amino groups in the solubility of Copolysiloxanes using dissipative particle dynamics. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1800006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Amanda Tzorín
- Edificio T-12, Facultad de Ciencias Químicas y Farmacia, Ciudad Universitaria, Guatemala, Guatemala
| | - Ana L. Zamarripa
- División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Armando Gama Goicochea
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Ecatepec, Estado de México, Mexico
| | | |
Collapse
|
9
|
Hess M, Gratz M, Remmer H, Webers S, Landers J, Borin D, Ludwig F, Wende H, Odenbach S, Tschöpe A, Schmidt AM. Scale-dependent particle diffusivity and apparent viscosity in polymer solutions as probed by dynamic magnetic nanorheology. SOFT MATTER 2020; 16:7562-7575. [PMID: 32716420 DOI: 10.1039/c9sm00747d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In several upcoming rheological approaches, including methods of micro- and nanorheology, the measurement geometry is of critical impact on the interpretation of the results. The relative size of the probe objects employed (as compared to the intrinsic length scales of the sample to be investigated) becomes of crucial importance, and there is increasing interest to investigate the dynamic processes and mobility in nanostructured materials. A combination of different rheological approaches based on the rotation of magnetically blocked nanoprobes is used to systematically investigate the size-dependent diffusion behavior in aqueous poly(ethylene glycol) (PEG) solutions with special attention paid to the relation of probe size to characteristic length scales within the polymer solutions. We employ two types of probe particles: nickel rods of hydrodynamic length Lh between 200 nm and 650 nm, and cobalt ferrite spheres with diameter dh between 13 nm and 23 nm, and examine the influence of particle size and shape on the nanorheological information obtained in model polymer solutions based on two related, dynamic-magnetic approaches. The results confirm that as long as the investigated solutions are not entangled, and the particles are much larger than the macromolecular correlation length, a good accordance between macroscopic and nanoscopic results, whereas a strong size-dependent response is observed in cases where the particles are of similar size or smaller than the radius of gyration Rg or the correlation length ξ of the polymer solution.
Collapse
Affiliation(s)
- Melissa Hess
- Institute of Physical Chemistry, Chemistry Department, Faculty of Mathematics and Natural Sciences, University of Cologne, Luxemburger Str. 116, D-50939 Köln, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lei J, Xu S, Li Z, Liu Z. Study on Large Deformation Behavior of Polyacrylamide Hydrogel Using Dissipative Particle Dynamics. Front Chem 2020; 8:115. [PMID: 32158745 PMCID: PMC7052281 DOI: 10.3389/fchem.2020.00115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Meso-scale models for hydrogels are crucial to bridge the conformation change of polymer chains in micro-scale to the bulk deformation of hydrogel in macro-scale. In this study, we construct coarse-grain bead-spring models for polyacrylamide (PAAm) hydrogel and investigate the large deformation and fracture behavior by using Dissipative Particle Dynamics (DPD) to simulate the crosslinking process. The crosslinking simulations show that sufficiently large diffusion length of polymer beads is necessary for the formation of effective polymer. The constructed models show the reproducible realistic structure of PAAm hydrogel network, predict the reasonable crosslinking limit of water content and prove to be sufficiently large for statistical averaging. Incompressible uniaxial tension tests are performed in three different loading rates. From the nominal stress-stretch curves, it demonstrated that both the hyperelasticity and the viscoelasticity in our PAAm hydrogel models are reflected. The scattered large deformation behaviors of three PAAm hydrogel models with the same water content indicate that the mesoscale conformation of polymer network dominates the mechanical behavior in large stretch. This is because the effective chains with different initial length ratio stretch to straight at different time. We further propose a stretch criterion to measure the fracture stretch of PAAm hydrogel using the fracture stretch of C-C bonds. Using the stretch criterion, specific upper and lower limits of the fracture stretch are given for each PAAm hydrogel model. These ranges of fracture stretch agree quite well with experimental results. The study shows that our coarse-grain PAAm hydrogel models can be applied to numerous single network hydrogel systems.
Collapse
Affiliation(s)
- Jincheng Lei
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Xu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, China
| | - Ziqian Li
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, China
| | - Zishun Liu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Vallejo-Montesinos J, Villegas A, Cervantes J, Pérez E, Goicochea AG. Study of Polymer-Solvent Interactions of Complex Polysiloxanes Using Dissipative Particle Dynamics. J MACROMOL SCI B 2018. [DOI: 10.1080/00222348.2018.1503336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Antonio Villegas
- División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Jorge Cervantes
- División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Elías Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Armando Gama Goicochea
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Ecatepec, Mexico
| |
Collapse
|
12
|
Chen S, Yong X. Dissipative particle dynamics modeling of hydrogel swelling by osmotic ensemble method. J Chem Phys 2018; 149:094904. [DOI: 10.1063/1.5045100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shensheng Chen
- Department of Mechanical Engineering, Binghamton University, The State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, USA
| | - Xin Yong
- Department of Mechanical Engineering, Binghamton University, The State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, USA
- Institute for Materials Research, Binghamton University, The State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, USA
| |
Collapse
|
13
|
Weng YH, Tsao HK, Sheng YJ. Self-healing and dewetting dynamics of a polymer nanofilm on a smooth substrate: strategies for dewetting suppression. Phys Chem Chem Phys 2018; 20:20459-20467. [PMID: 30043813 DOI: 10.1039/c8cp03215g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-healing and dewetting dynamics of a polymer nanofilm on a smooth, partial wetting surface are explored by many-body dissipative particle dynamics. Three types of dewetting phenomena are identified, (i) spinodal decomposition, (ii) nucleation and growth, and (iii) metastable self-healing. The outcome depends on the surface wettability (θY), the polymer film thickness (h0), and the radius of the dry hole (R0). The phase diagram of the dewetting mechanism as a function of θY and h0 is obtained for a specified R0. As the surface wettability decreases (increasing θY), the critical film thickness associated with the nucleation/self-healing crossover (hc) grows so that the metastability of the film can be retained by the self-healing process. In addition to θY and R0, hc depends on the polymer length (N) as well. It is found that a longer polymer requires a thicker nanofilm to avoid dewetting by nucleation. Two strategies for dewetting suppression are proposed. The metastability of a film of polymers with a large molecular weight can be promoted either by the addition of short polymers or by employing compact polymers such as star polymers. In the latter approach, the increment of the arm number enhances the nanofilm stability.
Collapse
Affiliation(s)
- Yu-Hsuan Weng
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| | | | | |
Collapse
|
14
|
Han Y, Dama JF, Voth GA. Mesoscopic coarse-grained representations of fluids rigorously derived from atomistic models. J Chem Phys 2018; 149:044104. [DOI: 10.1063/1.5039738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Yining Han
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - James F. Dama
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory A. Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
15
|
Xu S, Xu Z, Kim OV, Litvinov RI, Weisel JW, Alber M. Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow. J R Soc Interface 2018; 14:rsif.2017.0441. [PMID: 29142014 DOI: 10.1098/rsif.2017.0441] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023] Open
Abstract
Thromboembolism, one of the leading causes of morbidity and mortality worldwide, is characterized by formation of obstructive intravascular clots (thrombi) and their mechanical breakage (embolization). A novel two-dimensional multi-phase computational model is introduced that describes active interactions between the main components of the clot, including platelets and fibrin, to study the impact of various physiologically relevant blood shear flow conditions on deformation and embolization of a partially obstructive clot with variable permeability. Simulations provide new insights into mechanisms underlying clot stability and embolization that cannot be studied experimentally at this time. In particular, model simulations, calibrated using experimental intravital imaging of an established arteriolar clot, show that flow-induced changes in size, shape and internal structure of the clot are largely determined by two shear-dependent mechanisms: reversible attachment of platelets to the exterior of the clot and removal of large clot pieces. Model simulations predict that blood clots with higher permeability are more prone to embolization with enhanced disintegration under increasing shear rate. In contrast, less permeable clots are more resistant to rupture due to shear rate-dependent clot stiffening originating from enhanced platelet adhesion and aggregation. These results can be used in future to predict risk of thromboembolism based on the data about composition, permeability and deformability of a clot under specific local haemodynamic conditions.
Collapse
Affiliation(s)
- Shixin Xu
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Oleg V Kim
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan 420008, Russian Federation
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Alber
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA .,Department of Internal Medicine, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.,Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Liu H, Cavaliere S, Jones DJ, Rozière J, Paddison SJ. Scaling Behavior of Nafion with Different Model Parameterizations in Dissipative Particle Dynamics Simulations. MACROMOL THEOR SIMUL 2018. [DOI: 10.1002/mats.201800003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hongjun Liu
- Department of Chemical and Biomolecular Engineering; University of Tennessee; Knoxville TN 37996 USA
| | - Sara Cavaliere
- Institut Charles Gerhardt de Montpellier; Agrégats; Interfaces et Matériaux pour l'Energie; UMR 5253 CNRS; Université de Montpellier; 34095 Montpellier Cedex 5 France
| | - Deborah J. Jones
- Institut Charles Gerhardt de Montpellier; Agrégats; Interfaces et Matériaux pour l'Energie; UMR 5253 CNRS; Université de Montpellier; 34095 Montpellier Cedex 5 France
| | - Jacques Rozière
- Institut Charles Gerhardt de Montpellier; Agrégats; Interfaces et Matériaux pour l'Energie; UMR 5253 CNRS; Université de Montpellier; 34095 Montpellier Cedex 5 France
| | - Stephen J. Paddison
- Department of Chemical and Biomolecular Engineering; University of Tennessee; Knoxville TN 37996 USA
| |
Collapse
|
17
|
Affiliation(s)
- Pep Español
- Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Aptdo. 60141, E-28080 Madrid, Spain
| | - Patrick B. Warren
- Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, United Kingdom
| |
Collapse
|
18
|
Vijay Anand D, Patnaik BSV, Vedantam S. A dissipative particle dynamics study of a flexible filament in confined shear flow. SOFT MATTER 2017; 13:1472-1480. [PMID: 28125113 DOI: 10.1039/c6sm02490d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we investigate the dynamics of a tethered flexible filament due to fluid flow inside a microchannel. We use the finite sized dissipative particle dynamics (FDPD) approach to model this problem. The flexible filament is modeled as a bead-spring system with both extensional and flexural rigidity. The influence of flow rate and bending stiffness on the filament dynamics is studied in terms of the different conformational modes obtained. The competing effects of the hydrodynamic force and elastic force in the presence of Brownian thermal effects of comparable order influence the mode shapes of the filament. The dynamics of the filament motions are further analyzed using proper orthogonal decomposition. An important consequence of the dynamics of the filament is that it causes cross-flow in the micro-channel, which could potentially be exploited in micro-mixing and pumping applications. The cross stream fluid transport is observed to be more pronounced for higher bending stiffness.
Collapse
Affiliation(s)
- D Vijay Anand
- Department of Engineering Design, Indian Institute of Technology, Madras, India.
| | - B S V Patnaik
- Department of Applied Mechanics, Indian Institute of Technology, Madras, India.
| | - Srikanth Vedantam
- Department of Engineering Design, Indian Institute of Technology, Madras, India.
| |
Collapse
|
19
|
Azhar M, Greiner A, Korvink JG, Kauzlarić D. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers. J Chem Phys 2017; 144:244101. [PMID: 27369491 DOI: 10.1063/1.4953912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.
Collapse
Affiliation(s)
- Mueed Azhar
- Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Andreas Greiner
- Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Jan G Korvink
- Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - David Kauzlarić
- Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
20
|
Kalyuzhnyi O, Ilnytskyi JM, Holovatch Y, von Ferber C. Universal shape characteristics for the mesoscopic polymer chain via dissipative particle dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:505101. [PMID: 27792664 DOI: 10.1088/0953-8984/28/50/505101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper we study the shape characteristics of a polymer chain in a good solvent using a mesoscopic level of modelling. The dissipative particle dynamics simulations are performed in 3D space at a range of chain lengths N. The scaling laws for the end-to-end distance and gyration radius are examined first and found to hold for [Formula: see text] yielding a reasonably accurate value for the Flory exponent ν. Within the same interval of chain lengths, the asphericity, prolateness and some other shape characteristics of the chain are found to become independent of N. Their mean values are found to agree reasonably well with the respective theoretical results and lattice Monte Carlo (MC) simulations. We found the probability distribution for a wide range of shape characteristics. For the asphericity and prolateness they are quite broad, resembling in form the results of lattice MC simulations. By means of the analytic fitting of these distributions, the most probable values for the shape characteristics are found to supplement their mean values.
Collapse
Affiliation(s)
- O Kalyuzhnyi
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, UA-79011 Lviv, Ukraine. L4 Collaboration & Doctoral College for the Statistical Physics of Complex Systems, Leipzig-Lorraine-Lviv-Coventry, D-04009 Leipzig, Germany
| | | | | | | |
Collapse
|
21
|
Yong X. Hydrodynamic Interactions and Entanglements of Polymer Solutions in Many-Body Dissipative Particle Dynamics. Polymers (Basel) 2016; 8:polym8120426. [PMID: 30974702 PMCID: PMC6431898 DOI: 10.3390/polym8120426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022] Open
Abstract
Using many-body dissipative particle dynamics (MDPD), polymer solutions with concentrations spanning dilute and semidilute regimes are modeled. The parameterization of MDPD interactions for systems with liquid⁻vapor coexistence is established by mapping to the mean-field Flory⁻Huggins theory. The characterization of static and dynamic properties of polymer chains is focused on the effects of hydrodynamic interactions and entanglements. The coil⁻globule transition of polymer chains in dilute solutions is probed by varying solvent quality and measuring the radius of gyration and end-to-end distance. Both static and dynamic scaling relations for polymer chains in poor, theta, and good solvents are in good agreement with the Zimm theory with hydrodynamic interactions considered. Semidilute solutions with polymer volume fractions up to 0.7 exhibit the screening of excluded volume interactions and subsequent shrinking of polymer coils. Furthermore, entanglements become dominant in the semidilute solutions, which inhibit diffusion and relaxation of chains. Quantitative analysis of topology violation confirms that entanglements are correctly captured in the MDPD simulations.
Collapse
Affiliation(s)
- Xin Yong
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|
22
|
Chun BJ, Fisher CC, Jang SS. Dissipative particle dynamics simulation study of poly(2-oxazoline)-based multicompartment micelle nanoreactor. Phys Chem Chem Phys 2016; 18:6284-90. [DOI: 10.1039/c5cp07100c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate multicompartment micelles for nanoreactor applications, using the DPD simulation method to characterize the internal structure and the distribution of the reactant.
Collapse
Affiliation(s)
- Byeong Jae Chun
- School of Chemical & Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
- Computational NanoBio Technology Laboratory
| | - Christina Clare Fisher
- Computational NanoBio Technology Laboratory
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Seung Soon Jang
- Computational NanoBio Technology Laboratory
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
23
|
Chen YF, Xiao S, Chen HY, Sheng YJ, Tsao HK. Enhancing rectification of a nano-swimmer system by multi-layered asymmetric barriers. NANOSCALE 2015; 7:16451-16459. [PMID: 26394906 DOI: 10.1039/c5nr04124d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The rectification of nano-swimmers in two chambers separated by a strip of funnel gates is explored by dissipative particle dynamics simulations. According to the trajectories of active colloids across the funnel zone, two rectification mechanisms are identified: geometry-assisted diffusion and trap-hindered diffusion. In general, geometry-assisted diffusion dominates at a small active force (Fa) and run time (τ) while trap-hindered diffusion governs at a large Fa and τ. The rectification ratio is affected by the funnel shape and various geometries are considered: open/closed triangular, circular and rectangular funnels. The rectification ratio of open funnels is always greater than that of closed funnels. Moreover, the open circular funnel has the best performance while the triangular one has the worst. Rectification can be enhanced as the number of funnel layers is increased. It is found that the rectification ratio of self-propelled colloids can be dramatically augmented by triple-layered funnels to be as high as 30. Our simulation study offers an efficient approach for rectification enhancement.
Collapse
Affiliation(s)
- Yen-Fu Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, R.O.C.
| | | | | | | | | |
Collapse
|
24
|
Ranjith SK. Mesoscopic simulation of single DNA dynamics in rotational flows. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:89. [PMID: 26314257 DOI: 10.1140/epje/i2015-15089-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
In this numerical study, the transport and dynamics of an isolated DNA in rotational flow generated in a microchannel have been investigated using dissipative particle dynamics. Often, inertial flow through microchannels with a sudden change in surface structure facilitates a re-circulation or vortex region. The conformation and mobility of the bio-polymer under the influence of such rotating fluid inside a square cavity of the microchannel is analyzed. The flexible polymer chain is found to migrate towards the rotating region and follows the vortex streamline. The orientation, size and tumbling period of polymer strands are affected by the strength of the microvortex. At elevated flow rates, the macromolecule prefers to remain inside the vortex and a hydrodynamic trap is formed. Moreover, residence time of the single molecule in the microcavity is significantly influenced by the chain length and flow strength. Further, it has been demonstrated that, such entrapment duration can be strategically altered by modifying the hydrophobicity of the microchannel.
Collapse
Affiliation(s)
- S Kumar Ranjith
- Micro/nanofluidics Research Laboratory, Department of Mechanical Engineering, College of Engineering Trivandrum, Govermnet of Kerala, 695016, Thiruvananthapuram, India,
| |
Collapse
|
25
|
Li Z, Yazdani A, Tartakovsky A, Karniadakis GE. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems. J Chem Phys 2015; 143:014101. [PMID: 26156459 PMCID: PMC4491025 DOI: 10.1063/1.4923254] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/18/2015] [Indexed: 12/15/2022] Open
Abstract
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.
Collapse
Affiliation(s)
- Zhen Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
| | - Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
| | - Alexandre Tartakovsky
- Computational Mathematics Group, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
26
|
Yeh PD, Alexeev A. Mesoscale modelling of environmentally responsive hydrogels: emerging applications. Chem Commun (Camb) 2015; 51:10083-95. [DOI: 10.1039/c5cc01027f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review recent advances in mesoscale computational modeling, focusing on dissipative particle dynamics, used to probe stimuli-sensitive behavior of hydrogels.
Collapse
Affiliation(s)
- Peter D. Yeh
- George W. Woodruff School of Mechanical Engineering
- Georgia Institute of Technology
- USA
| | - Alexander Alexeev
- George W. Woodruff School of Mechanical Engineering
- Georgia Institute of Technology
- USA
| |
Collapse
|
27
|
Khan M, Mason TG. Trajectories of probe spheres in generalized linear viscoelastic complex fluids. SOFT MATTER 2014; 10:9073-9081. [PMID: 25259775 DOI: 10.1039/c4sm01795a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have developed a fast simulation that generates a random walk of an isolated probe sphere in a generalized linear viscoelastic complex fluid over a highly extended dynamic range. We introduce a coupled harmonically bound Brownian particle (c-HBBP) model, in which the relaxation modes of the viscoelastic medium are treated as harmonic wells. These wells are coupled to the probe sphere and perform Brownian motion in bound harmonic potentials corresponding to the next-longer relaxation mode, according to the relaxation spectrum of the viscoelastic material. We implement this c-HBBP model by generating variable temporal step sizes that have a uniform distribution in logarithmic time. We create and analyze trajectories for several different viscoelastic complex fluids: a polymer system at its gel point, a dense emulsion system, a blend of two monodisperse polystyrene polymers for which the relaxation spectrum has been measured, and a model anisotropic soft system that shows dense emulsion-like and gel-point behaviors along two orthogonal directions. Except for unusual viscoelastic materials, such as the polymer system at its gel point, the generated trajectories are neither self-similar nor self-affine. The resulting mean square displacements predicted by the c-HBBP model are consistent with the single-particle generalized Stokes-Einstein relation of linear passive microrheology.
Collapse
Affiliation(s)
- Manas Khan
- Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
28
|
Peter EK, Pivkin IV. A polarizable coarse-grained water model for dissipative particle dynamics. J Chem Phys 2014; 141:164506. [DOI: 10.1063/1.4899317] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Emanuel K. Peter
- Institute of Computational Science, Faculty of Informatics, University of Lugano, Lugano, Switzerland
| | - Igor V. Pivkin
- Institute of Computational Science, Faculty of Informatics, University of Lugano, Lugano, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
29
|
Li NK, Fuss WH, Yingling YG. An Implicit Solvent Ionic Strength (ISIS) Method to Model Polyelectrolyte Systems with Dissipative Particle Dynamics. MACROMOL THEOR SIMUL 2014. [DOI: 10.1002/mats.201400043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nan K. Li
- Department of Materials Science and Engineering; North Carolina State University; 911 Partners Way Raleigh NC 27695 USA
| | - William H. Fuss
- Department of Materials Science and Engineering; North Carolina State University; 911 Partners Way Raleigh NC 27695 USA
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering; North Carolina State University; 911 Partners Way Raleigh NC 27695 USA
| |
Collapse
|
30
|
Li X, Peng Z, Lei H, Dao M, Karniadakis GE. Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130389. [PMID: 24982252 PMCID: PMC4084529 DOI: 10.1098/rsta.2013.0389] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study is partially motivated by the validation of a new two-component multi-scale cell model we developed recently that treats the lipid bilayer and the cytoskeleton as two distinct components. Here, the whole cell model is validated and compared against several available experiments that examine red blood cell (RBC) mechanics, rheology and dynamics. First, we investigated RBC deformability in a microfluidic channel with a very small cross-sectional area and quantified the mechanical properties of the RBC membrane. Second, we simulated twisting torque cytometry and compared predicted rheological properties of the RBC membrane with experimental measurements. Finally, we modelled the tank-treading (TT) motion of a RBC in a shear flow and explored the effect of channel width variation on the TT frequency. We also investigated the effects of bilayer-cytoskeletal interactions on these experiments and our simulations clearly indicated that they play key roles in the determination of cell membrane mechanical, rheological and dynamical properties. These simulations serve as validation tests and moreover reveal the capabilities and limitations of the new whole cell model.
Collapse
Affiliation(s)
- Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Zhangli Peng
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huan Lei
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
31
|
Ranjith SK, Patnaik BSV, Vedantam S. Transport of DNA in hydrophobic microchannels: a dissipative particle dynamics simulation. SOFT MATTER 2014; 10:4184-4191. [PMID: 24770612 DOI: 10.1039/c3sm53035c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, we numerically study a new means of manipulating single DNA chains in microchannels. The method is based on the effect of finite slip at hydrophobic walls on the hydrodynamics and, consequently, on the dynamics of the DNA in microchannels. We use dissipative particle dynamics to study DNA transport as a function of chain length and the Reynolds number in two dimensional parallel plate channels. We show how an asymmetric velocity profile in a channel with hydrophobic and hydrophilic walls can be used to manipulate the location of the DNA molecules. Using this effect, we propose a simple arrangement of hydrophobic and hydrophilic strips which can be exploited to separate long and short DNA chains.
Collapse
Affiliation(s)
- S Kumar Ranjith
- Department of Applied Mechanics, Indian Institute of Technology Madras, India.
| | | | | |
Collapse
|
32
|
Li NK, Kim HS, Nash JA, Lim M, Yingling YG. Progress in molecular modelling of DNA materials. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.913792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Zhao T, Wang X. Distortion and flow of nematics simulated by dissipative particle dynamics. J Chem Phys 2014; 140:184902. [DOI: 10.1063/1.4873699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
34
|
Li Q, Yuan R, Ying Li. Study on the molecular behavior of hydrophobically modified poly(acrylic acid) in aqueous solution and its emulsion-stabilizing capacity. J Appl Polym Sci 2012. [DOI: 10.1002/app.38169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
GUO J, LI X, LIANG H. DISSIPATIVE PARTICLE DYNAMICS SIMULATIONS OF FLUID-DRIVEN POLYMER CHAINS THROUGH A MICROCHANNEL. ACTA POLYM SIN 2012. [DOI: 10.3724/sp.j.1105.2012.11117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Wang YL, Lu ZY, Laaksonen A. Specific binding structures of dendrimers on lipid bilayer membranes. Phys Chem Chem Phys 2012; 14:8348-59. [DOI: 10.1039/c2cp40700k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
DPD Model of Foraminiferal Chamber Formation: Simulation of Actin Meshwork – Plasma Membrane Interactions. PARALLEL PROCESSING AND APPLIED MATHEMATICS 2012. [DOI: 10.1007/978-3-642-31500-8_61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
38
|
SHILLCOCK JULIAN, LIPOWSKY REINHARD. VISUALIZING SOFT MATTER: MESOSCOPIC SIMULATIONS OF MEMBRANES, VESICLES AND NANOPARTICLES. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048007000428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biological membranes have properties and behavior that emerge from the propagation of the molecular characteristics of their components across many scales. Artificial smart materials, such as drug delivery vehicles and nanoparticles, often rely on modifying naturally-occurring soft matter, such as polymers and lipid vesicles, so that they possess useful behavior. Mesoscopic simulations allow in silico experiments to be easily and cheaply performed on complex, soft materials requiring as input only the molecular structure of the constituents at a coarse-grained level. They can therefore act as a guide to experimenters prior to performing costly assays. Additionally, mesoscopic simulations provide the only currently feasible window on the length and time scales relevant to important biophysical processes such as vesicle fusion. We describe here recent work using Dissipative Particle Dynamics simulations to explore the structure and behavior of amphiphilic membranes, the fusion of vesicles, and the interactions between rigid nanoparticles and soft surfaces.
Collapse
Affiliation(s)
- JULIAN SHILLCOCK
- Theory Department, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - REINHARD LIPOWSKY
- Theory Department, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
39
|
Guo J, Li X, Liu Y, Liang H. Flow-induced translocation of polymers through a fluidic channel: a dissipative particle dynamics simulation study. J Chem Phys 2011; 134:134906. [PMID: 21476773 DOI: 10.1063/1.3578180] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of flow-induced translocation of polymers through a fluidic channel has been studied by dissipative particle dynamics (DPD) approach. Unlike implicit solvent models, the many-body energetic and hydrodynamic interactions are preserved naturally by incorporating explicit solvent particles in this approach. The no-slip wall boundary and the adaptive boundary conditions have been implemented in the modified DPD approach to model the hydrodynamic flow within a specific wall structure of fluidic channel and control the particles' density fluctuations. The results show that the average translocation time versus polymer chain length satisfies a power-law scaling of τ ∼N(1.152). The conformational changes and translocation dynamics of polymers through the fluidic channel have also been investigated in our simulations, and two different translocation processes, i.e., the single-file and double-folded translocation events, have been observed in detail. These findings may be helpful in understanding the conformational and dynamic behaviors of such polymer and/or DNA molecules during the translocation processes.
Collapse
Affiliation(s)
- Jiayi Guo
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | | | | | | |
Collapse
|
40
|
Lei H, Fedosov DA, Karniadakis GE. Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics. JOURNAL OF COMPUTATIONAL PHYSICS 2011; 230:3765-377. [PMID: 21499548 PMCID: PMC3076898 DOI: 10.1016/j.jcp.2011.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e., when the pressure and flowrate at the outflow are approximately in-phase.
Collapse
Affiliation(s)
- Huan Lei
- Division of Applied Mathematics, Brown University, Providence, RI 02912 USA
| | - Dmitry A. Fedosov
- Division of Applied Mathematics, Brown University, Providence, RI 02912 USA
- Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI 02912 USA
- Corresponding author,
| |
Collapse
|
41
|
Pivkin IV, Caswell B, Karniadakisa GE. Dissipative Particle Dynamics. REVIEWS IN COMPUTATIONAL CHEMISTRY 2010. [DOI: 10.1002/9780470890905.ch2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Spaeth JR, Dale T, Kevrekidis IG, Panagiotopoulos AZ. Coarse-Graining of Chain Models in Dissipative Particle Dynamics Simulations. Ind Eng Chem Res 2010. [DOI: 10.1021/ie100337r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Justin R. Spaeth
- Department of Chemical Engineering and Institute for the Science and Technology of Materials; Princeton University, Princeton, New Jersey 08544-5263
| | - Todd Dale
- Department of Chemical Engineering and Institute for the Science and Technology of Materials; Princeton University, Princeton, New Jersey 08544-5263
| | - Ioannis G. Kevrekidis
- Department of Chemical Engineering and Institute for the Science and Technology of Materials; Princeton University, Princeton, New Jersey 08544-5263
| | - Athanassios Z. Panagiotopoulos
- Department of Chemical Engineering and Institute for the Science and Technology of Materials; Princeton University, Princeton, New Jersey 08544-5263
| |
Collapse
|
43
|
Posocco P, Pricl S, Jones S, Barnard A, Smith DK. Less is more – multiscale modelling of self-assembling multivalency and its impact on DNA binding and gene delivery. Chem Sci 2010. [DOI: 10.1039/c0sc00291g] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
44
|
Nardai MM, Zifferer G. Simulation of dilute solutions of linear and star-branched polymers by dissipative particle dynamics. J Chem Phys 2009; 131:124903. [PMID: 19791917 DOI: 10.1063/1.3231854] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A most promising off-lattice technique in order to simulate not only static but in addition dynamic behavior of linear and star-branched chains is the dissipative particle dynamics (DPD) method. In this model the atomistic representation of polymer molecules is replaced by a (coarse-grained) equivalent chain consisting of beads which are repulsive for each other in order to mimic the excluded volume effect (successive beads in addition are linked by springs). Likewise solvent molecules are combined to beads which in turn are repulsive for each other as well as for the polymer segments. The system is relaxed by molecular dynamics solving Newton's laws under the influence of short ranged conservative forces (i.e., repulsion between nonbonded beads and a proper balance of repulsion and attraction between bonded segments) and dissipative forces due to friction between particles, the latter representing the thermostat in conjunction with proper random forces. A variation of the strength of the repulsion between different types of beads allows the simulation of any desired thermodynamic situation. Static and dynamic properties of isolated linear and star-branched chains embedded in athermal, exothermal, and endothermal solvent are presented and theta conditions are examined. The generally accepted scaling concept for athermal systems is fairly well reproduced by linear and star-branched DPD chains and theta conditions appear for a unique parameter independent of functionality as in the case of Monte Carlo simulations. Furthermore, the correspondence between DPD and Monte Carlo data referring to the shape of chains and stars is fairly well, too. For dilute solutions the Zimm behavior is expected for dynamic properties which is indeed realized in DPD systems.
Collapse
Affiliation(s)
- M M Nardai
- Department of Physical Chemistry, University of Vienna, Wahringer Str. 42, A-1090 Wien, Austria
| | | |
Collapse
|
45
|
Vázquez-Quesada A, Ellero M, Español P. Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:056707. [PMID: 19518593 DOI: 10.1103/physreve.79.056707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Indexed: 05/27/2023]
Abstract
We present a fluid-particle model for a polymer solution in nonisothermal situations. The state of the fluid particles is characterized by the thermodynamic variables and a configuration tensor that describes the underlying molecular orientation of the polymer molecules. The specification of very simple physical mechanisms inspired by the dynamics of single polymer molecules allows one, with the help of the general equation for nonequilibrium reversible-irreversible coupling (GENERIC) formalism, to derive the equations of motion for a set of fluid particles carrying polymer molecules in suspension. In the simplest case of Hookean dumbbells we recover a fluid-particle version of the Oldroyd-B model in which thermal fluctuations are included consistently. Generalization to more complex viscoelastic models, such as finitely extensible nonlinear elastic Peterlin (FENE-P) model, with the proper introduction of thermal fluctuations is straightforward.
Collapse
|
46
|
Vázquez-Quesada A, Ellero M, Español P. Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics. J Chem Phys 2009; 130:034901. [DOI: 10.1063/1.3050100] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Tiwari A, Reddy H, Mukhopadhyay S, Abraham J. Simulations of liquid nanocylinder breakup with dissipative particle dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:016305. [PMID: 18764048 DOI: 10.1103/physreve.78.016305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Indexed: 05/26/2023]
Abstract
In this work, we use a dissipative-particle-dynamics-based model for two-phase flows to simulate the breakup of liquid nanocylinders. Rayleigh's criterion for capillary breakup of inviscid liquid cylinders is shown to apply for the cases considered, in agreement with prior molecular dynamics (MD) simulations. Also, as shown previously through MD simulations, satellite drops are not observed, because of the dominant role played by thermal fluctuations which lead to a symmetric breakup of the neck joining the two main drops. The parameters varied in this study are the domain size, cylinder radius, thermal length scale, viscosity, and surface tension. The breakup time does not show the same scaling dependence as in capillary breakup of liquid cylinders at the macroscale. The time variation of the radius at the point of breakup agrees with prior theoretical predictions from expressions derived with the assumption that thermal fluctuations lead to breakup.
Collapse
Affiliation(s)
- A Tiwari
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
48
|
Litvinov S, Ellero M, Hu X, Adams NA. Smoothed dissipative particle dynamics model for polymer molecules in suspension. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:066703. [PMID: 18643393 DOI: 10.1103/physreve.77.066703] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Indexed: 05/26/2023]
Abstract
We present a model for a polymer molecule in solution based on smoothed dissipative particle dynamics (SDPD) [Español and Revenga, Phys. Rev. E 67, 026705 (2003)]. This method is a thermodynamically consistent version of smoothed particle hydrodynamics able to discretize the Navier-Stokes equations and, at the same time, to incorporate thermal fluctuations according to the fluctuation-dissipation theorem. Within the framework of the method developed for mesoscopic multiphase flows by Hu and Adams [J. Comput. Phys. 213, 844 (2006)], we introduce additional finitely extendable nonlinear elastic interactions between particles that represent the beads of a polymer chain. In order to assess the accuracy of the technique, we analyze the static and dynamic conformational properties of the modeled polymer molecule in solution. Extensive tests of the method for the two-dimensional (2D) case are performed, showing good agreement with the analytical theory. Finally, the effect of confinement on the conformational properties of the polymer molecule is investigated by considering a 2D microchannel with gap H varying between 1 and 10 microm , of the same order as the polymer gyration radius. Several SDPD simulations are performed for different chain lengths corresponding to N=20-100 beads, giving a universal behavior of the gyration radius R_{G} and polymer stretch X as functions of the channel gap when normalized properly.
Collapse
Affiliation(s)
- Sergey Litvinov
- Lehrstuhl für Aerodynamik, Technische Universität München, 85747 Garching, Germany
| | | | | | | |
Collapse
|
49
|
Huang J, Luo M, Wang Y. Dissipative Particle Dynamics Simulation on a Ternary System with Nanoparticles, Double-Hydrophilic Block Copolymers, and Solvent. J Phys Chem B 2008; 112:6735-41. [DOI: 10.1021/jp710567f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jianhua Huang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China, Department of Physics, Zhejiang University, Hangzhou 310027, China, and Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152
| | - Mengbo Luo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China, Department of Physics, Zhejiang University, Hangzhou 310027, China, and Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152
| | - Yongmei Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China, Department of Physics, Zhejiang University, Hangzhou 310027, China, and Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152
| |
Collapse
|
50
|
Qiao R, He P. Mapping of dissipative particle dynamics in fluctuating hydrodynamics simulations. J Chem Phys 2008; 128:126101. [DOI: 10.1063/1.2897991] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|