1
|
Itoh T, Yamamoto YS. Plasmon-enhanced two photon excited emission from edges of one-dimensional plasmonic hotspots with continuous-wave laser excitation. J Chem Phys 2024; 161:164704. [PMID: 39440766 DOI: 10.1063/5.0220026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
One-dimensional junctions between parallelly and closely arranged multiple silver nanowires (NWs) exhibit a large electromagnetic (EM) enhancement factor (FR) owing to both localized and surface plasmon resonances. Such junctions are referred to as one-dimensional (1D) hotspots (HSs). This study found that two-photon excited emissions, such as hyper-Rayleigh, hyper-Raman, and two-photon fluorescence of dye molecules, are generated at the edge of 1D HSs of NW dimers with continuous-wave near-infrared (NIR) laser excitation and propagated through 1D HSs; however, they were not generated from the centers of 1D HSs. Numerical EM calculations showed that FR of the NIR region for the edges of 1D HSs was larger than that for the centers by ∼102 times, resulting in the observation of two-photon excited emissions only from the edge of 1D HSs. The analysis of the NW dimer gap distance dependence of FR revealed that the lowest surface plasmon (SP) mode, compressed and localized at the edges of 1D HSs, was the origin of the large FR in the NIR region. The propagation of two-photon-excited emissions was supported by the higher-order coupled SP mode.
Collapse
Affiliation(s)
- Tamitake Itoh
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Yuko S Yamamoto
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
2
|
Kimura Y, Cui Y, Suzuki T, Tanaka Y, Tanaka T, Toku Y, Ju Y. Growth of metal nanowire forests controlled through stress fields induced by grain gradients. Science 2024; 385:641-646. [PMID: 39116236 DOI: 10.1126/science.adn9181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/13/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Pure metal nanowires (NWs) are one-dimensional nanomaterials with distinctive properties for various applications. Nevertheless, mass-growth forests have not been developed because of vapor pressure limitations, chemical reduction problems, or both. We succeeded in the mass growth of aluminum (Al) NW forests at desired locations by controlling atomic diffusion within the solid film. Whereas prior attention has focused only on how to increase the driving force, we show that focused ion beam irradiation created localized regions of high stress, which provided pathways for atomic diffusion as well as nuclei and driving forces for vertical NW growth. The underlying growth process could in principle be extended to other metals.
Collapse
Affiliation(s)
- Yasuhiro Kimura
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yi Cui
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Takamasa Suzuki
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuki Tanaka
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Takaaki Tanaka
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuhki Toku
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yang Ju
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310030, China
| |
Collapse
|
3
|
Ooi ZY, Jiménez-Solano A, Gałkowski K, Sun Y, Ferrer Orri J, Frohna K, Salway H, Kahmann S, Nie S, Vega G, Kar S, Nowak MP, Maćkowski S, Nyga P, Ducati C, Greenham NC, Lotsch BV, Anaya M, Stranks SD. Strong angular and spectral narrowing of electroluminescence in an integrated Tamm-plasmon-driven halide perovskite LED. Nat Commun 2024; 15:5802. [PMID: 38987248 PMCID: PMC11237071 DOI: 10.1038/s41467-024-49838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Next-generation light-emitting applications such as displays and optical communications require judicious control over emitted light, including intensity and angular dispersion. To date, this remains a challenge as conventional methods require cumbersome optics. Here, we report highly directional and enhanced electroluminescence from a solution-processed quasi-2-dimensional halide perovskite light-emitting diode by building a device architecture to exploit hybrid plasmonic-photonic Tamm plasmon modes. By exploiting the processing and bandgap tunability of the halide perovskite device layers, we construct the device stack to optimise both optical and charge-injection properties, leading to narrow forward electroluminescence with an angular full-width half-maximum of 36.6° compared with the conventional isotropic control device of 143.9°, and narrow electroluminescence spectral full-width half-maximum of 12.1 nm. The device design is versatile and tunable to work with emission lines covering the visible spectrum with desired directionality, thus providing a promising route to modular, inexpensive, and directional operating light-emitting devices.
Collapse
Affiliation(s)
- Zher Ying Ooi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Alberto Jiménez-Solano
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
- Departamento de Física, Universidad de Córdoba, Edificio Einstein (C2), Campus de Rabanales, 14071, Córdoba, Spain
| | - Krzysztof Gałkowski
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Toruń, Poland
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Yuqi Sun
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Jordi Ferrer Orri
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Kyle Frohna
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Hayden Salway
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Simon Kahmann
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Shenyu Nie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Guadalupe Vega
- Departamento de Física, Universidad de Córdoba, Edificio Einstein (C2), Campus de Rabanales, 14071, Córdoba, Spain
- Departamento Física de la Materia Condensada, Instituto de Ciencia de Materiales de Sevilla, Universidad de Sevilla-CSIC, Calle Américo Vespucio 49, Sevilla, 41012, Spain
| | - Shaoni Kar
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Michał P Nowak
- Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Sebastian Maćkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Toruń, Poland
| | - Piotr Nyga
- Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Caterina Ducati
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstrasse 5-13, 81377, Munich, Germany
- e-conversion, Lichtenbergstrasse 4a, 85748, Garching, Germany
| | - Miguel Anaya
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
- Departamento Física de la Materia Condensada, Instituto de Ciencia de Materiales de Sevilla, Universidad de Sevilla-CSIC, Calle Américo Vespucio 49, Sevilla, 41012, Spain.
| | - Samuel D Stranks
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Mkhitaryan V, Weber AP, Abdullah S, Fernández L, Abd El-Fattah ZM, Piquero-Zulaica I, Agarwal H, García Díez K, Schiller F, Ortega JE, García de Abajo FJ. Ultraconfined Plasmons in Atomically Thin Crystalline Silver Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302520. [PMID: 37924223 DOI: 10.1002/adma.202302520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/17/2023] [Indexed: 11/06/2023]
Abstract
The ability to confine light down to atomic scales is critical for the development of applications in optoelectronics and optical sensing as well as for the exploration of nanoscale quantum phenomena. Plasmons in metallic nanostructures with just a few atomic layers in thickness can achieve this type of confinement, although fabrication imperfections down to the subnanometer scale hinder actual developments. Here, narrow plasmons are demonstrated in atomically thin crystalline silver nanostructures fabricated by prepatterning silicon substrates and epitaxially depositing silver films of just a few atomic layers in thickness. Specifically, a silicon wafer is lithographically patterned to introduce on-demand lateral shapes, chemically process the sample to obtain an atomically flat silicon surface, and epitaxially deposit silver to obtain ultrathin crystalline metal films with the designated morphologies. Structures fabricated by following this procedure allow for an unprecedented control over optical field confinement in the near-infrared spectral region, which is here illustrated by the observation of fundamental and higher-order plasmons featuring extreme spatial confinement and high-quality factors that reflect the crystallinity of the metal. The present study constitutes a substantial improvement in the degree of spatial confinement and quality factor that should facilitate the design and exploitation of atomic-scale nanoplasmonic devices for optoelectronics, sensing, and quantum-physics applications.
Collapse
Affiliation(s)
- Vahagn Mkhitaryan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Andrew P Weber
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
- Donostia International Physics Center, Paseo Manuel Lardizabal 4, 20018, Donostia-San Sebastián, Spain
| | - Saad Abdullah
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Laura Fernández
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
| | - Zakaria M Abd El-Fattah
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, E-11884, Cairo, Egypt
| | - Ignacio Piquero-Zulaica
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
| | - Hitesh Agarwal
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Kevin García Díez
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
| | - Frederik Schiller
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
| | - J Enrique Ortega
- Donostia International Physics Center, Paseo Manuel Lardizabal 4, 20018, Donostia-San Sebastián, Spain
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
- Departamento de Física Aplicada I, Universidad del País Vasco, 20018, San Sebastián, Spain
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
5
|
Kang M, Kim SJ, Joo H, Koo Y, Lee H, Lee HS, Suh YD, Park KD. Nanoscale Manipulation of Exciton-Trion Interconversion in a MoSe 2 Monolayer via Tip-Enhanced Cavity-Spectroscopy. NANO LETTERS 2024; 24:279-286. [PMID: 38117534 DOI: 10.1021/acs.nanolett.3c03920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Emerging light-matter interactions in metal-semiconductor hybrid platforms have attracted considerable attention due to their potential applications in optoelectronic devices. Here, we demonstrate plasmon-induced near-field manipulation of trionic responses in a MoSe2 monolayer using tip-enhanced cavity-spectroscopy (TECS). The surface plasmon-polariton mode on the Au nanowire can locally manipulate the exciton (X0) and trion (X-) populations of MoSe2. Furthermore, we reveal that surface charges significantly influence the emission and interconversion processes of X0 and X-. In the TECS configuration, the localized plasmon significantly affects the distributions of X0 and X- due to the modified radiative decay rate. Additionally, within the TECS cavity, the electric doping effect and hot electron generation enable dynamic interconversion between X0 and X- at the nanoscale. This work advances our understanding of plasmon-exciton-hot electron interactions in metal-semiconductor-metal hybrid structures, providing a foundation for an optimal trion-based nano-optoelectronic platform.
Collapse
Affiliation(s)
- Mingu Kang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Su Jin Kim
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyun Seok Lee
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yung Doug Suh
- Department of Chemistry and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Yao J, Fang H, Li Y, Liu Z, Xu H, Ding T. Superplastic Nanomolding of Aluminum Waveguides for Subwavelength Light Routing, Splitting, and Encryption. ACS NANO 2023; 17:17342-17349. [PMID: 37638743 DOI: 10.1021/acsnano.3c05358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Plasmonic nanowires (NWs) due to their polarization-dependent optics and enhanced light-matter interactions have presented vibrant capabilities in functional nanophotonic devices. However, current demonstrations have largely been based on chemically synthesized Ag NWs, which are extremely unstable and poorly functional. Here we show single-crystalline Al NWs can be fabricated by a superplastic nanomolding (SPNM) technique on a centimeter scale, which are earth-abundant and highly stable. They present robust properties of multimode waveguiding with long-term stability, high efficiency of beam splitting in response to the polarization, and durable thermal optical modulation, which can be readily applied as nanophotonic routers, splitters, and information encryptors. Moreover, this SNPM technique is extendable to other metals, which are highly exploitable for functional nanophotonic devices and integrated optical chips.
Collapse
Affiliation(s)
- Jiacheng Yao
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hui Fang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Yong Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ze Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Hongxing Xu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
7
|
Song Z, Sistani M, Schwingshandl F, Lugstein A. Controlling Hot Charge Carrier Transfer in Monolithic AlSiAl Heterostructures for Plasmonic On-Chip Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301055. [PMID: 37162487 DOI: 10.1002/smll.202301055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Indexed: 05/11/2023]
Abstract
The generation of hot carriers by Landau damping or chemical interface damping of plasmons is of particular interest to the fundamental aspects of extreme light-matter interactions. Hot charge carriers can be transferred to an attached acceptor for photochemical or photovoltaic energy conversion. However, these lose their excess energy and relax to thermal equilibrium within picoseconds and it is difficult to extract useful work thereof with thermodynamic efficiencies that are of interest for practical devices. Without a detailed understanding of the underlying plasmon decay processes and transfer mechanisms, proper material matching and design considerations for novel plasmonic devices are extremely challenging. Here, a multifunctional AlSiAl heterostructure device with tunable Schottky barriers is presented to control plasmon-induced hot carrier injection at an abrupt metal-semiconductor interface. Light absorption, surface plasmon generation, and separation of hot carriers arising from the non-radiative decay of surface plasmons are realized in a monolithic Schottky barrier field effect transistor. Aside from barrier modulation, a virtual p-n junction can be emulated in the semiconductor channel with the distinct merit that carrier concentration and polarity are tunable by electrostatic gating. The investigations are carried out with a view to possible use for CMOS-compatible plasmonic photovoltaics, with versatile implementations for autonomous nanosystems.
Collapse
Affiliation(s)
- Zehao Song
- Institute of Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, Vienna, 1040, Austria
| | - Masiar Sistani
- Institute of Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, Vienna, 1040, Austria
| | - Fabian Schwingshandl
- Institute of Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, Vienna, 1040, Austria
| | - Alois Lugstein
- Institute of Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, Vienna, 1040, Austria
| |
Collapse
|
8
|
Lyu PT, Yin LX, Shen YT, Gao Z, Chen HY, Xu JJ, Kang B. Plasmonic Cavity-Catalysis by Standing Hot Carrier Waves. J Am Chem Soc 2023; 145:18912-18919. [PMID: 37584625 DOI: 10.1021/jacs.3c05392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Manipulating active sites of catalysts is crucial but challenging in catalysis science and engineering. Beyond the design of the composition and structure of catalysts, the confined electromagnetic field in optical cavities has recently become a promising method for catalyzing chemical reactions via strong light-matter interactions. Another form of confined electromagnetic field, the charge density wave in plasmonic cavities, however, still needs to be explored for catalysis. Here, we present an unprecedented catalytic mode based on plasmonic cavities, called plasmonic cavity-catalysis. We achieve direct control of catalytic sites in plasmonic cavities through standing hot carrier waves. Periodic catalytic hotspots are formed because of localized energy and carrier distribution and can be well tuned by cavity geometry, charge density, and excitation angle. We also found that the catalytic activity of the cavity mode increases several orders of magnitude compared with conventional plasmonic catalysis. We ultimately demonstrate that the locally concentrated long-lived hot carriers in the standing wave mode underlie the formation of the catalytic hotspots. Plasmonic cavity-catalysis provides a new approach to manipulate the catalytic sites and rates and may expand the frontier of heterogeneous catalysis.
Collapse
Affiliation(s)
- Pin-Tian Lyu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Xin Yin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Ting Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhaoshuai Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Liu ACY, Davis TJ, Coenen T, Hari S, Voortman LM, Xu Z, Yuan G, Ballard PM, Funston AM, Etheridge J. Modulation of Cathodoluminescence by Surface Plasmons in Silver Nanowires. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207747. [PMID: 37029699 DOI: 10.1002/smll.202207747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/08/2023] [Indexed: 06/19/2023]
Abstract
The waveguide modes in chemically-grown silver nanowires on silicon nitride substrates are observed using spectrally- and spatially-resolved cathodoluminescence (CL) excited by high-energy electrons in a scanning electron microscope. The presence of a long-range, travelling surface plasmon mode modulates the coupling efficiency of the incident electron energy into the nanowires, which is observed as oscillations in the measured CL with the point of excitation by the focused electron beam. The experimental data are modeled using the theory of surface plasmon polariton modes in cylindrical metal waveguides, enabling the complex mode wavenumbers and excitation strength of the long-range surface plasmon mode to be extracted. The experiments yield insight into the energy transfer mechanisms between fast electrons and coherent oscillations in surface charge density in metal nanowires and the relative amplitudes of the radiative processes excited in the wire by the electron.
Collapse
Affiliation(s)
- Amelia C Y Liu
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
- Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria, 3800, Australia
| | - Timothy J Davis
- School of Physics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Toon Coenen
- Delmic BV, Kanaalweg 4, Delft, 2628 EB, The Netherlands
| | | | - Lenard M Voortman
- Delmic BV, Kanaalweg 4, Delft, 2628 EB, The Netherlands
- Division of Cell and Chemical Biology, Leiden University Medical Centre, Leiden University, Leiden, 2333 ZC, The Netherlands
| | - Zhou Xu
- Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria, 3800, Australia
| | - Gangcheng Yuan
- ARC Centre of Excellence in Exciton Science and School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Patrycja M Ballard
- ARC Centre of Excellence in Exciton Science and School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Alison M Funston
- ARC Centre of Excellence in Exciton Science and School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Joanne Etheridge
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
- Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria, 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
10
|
Lyu PT, Liu XR, Yin LX, Wu P, Sun C, Chen HY, Xu JJ, Kang B. Periodic Distributions and Ultrafast Dynamics of Hot Electrons in Plasmonic Resonators. NANO LETTERS 2023; 23:2269-2276. [PMID: 36897094 DOI: 10.1021/acs.nanolett.2c04964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding and managing hot electrons in metals are of fundamental and practical interest in plasmonic studies and applications. A major challenge for the development of hot electron devices requires the efficient and controllable generation of long-lived hot electrons so that they can be harnessed effectively before relaxation. Here, we report the ultrafast spatiotemporal evolution of hot electrons in plasmonic resonators. Using femtosecond-resolution interferometric imaging, we show the unique periodic distributions of hot electrons due to standing plasmonic waves. In particular, this distribution can be flexibly tuned by the size, shape, and dimension of the resonator. We also demonstrate that the hot electron lifetimes are substantially prolonged at hot spots. This appealing effect is interpreted as a result of the locally concentrated energy density at the antinodes in standing hot electron waves. These results could be useful to control the distributions and lifetimes of hot electrons in plasmonic devices for targeted optoelectronic applications.
Collapse
Affiliation(s)
- Pin-Tian Lyu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiao-Rui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Li-Xin Yin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Pei Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
11
|
Liu X, Xue M, Chen J. Broadband plasmonic indium arsenide photonic antennas. NANOSCALE 2023; 15:3135-3141. [PMID: 36723044 DOI: 10.1039/d2nr06590h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An on-chip integrated mid-infrared Fabry-Perot (F-P) polariton resonator exhibits excellent biosensing, thermal emission, and quantum laser utility potential. However, the narrow optical response range and absence of optoelectronic tunability have hindered the development of a F-P phonon polariton resonator. The discovery of surface plasmons in semiconductor nanowires provides a novel route to F-P polariton resonator devices with a broadband optical response and multi-field tunability. Due to their high electron mobility and crystalline quality, InAs twinning superlattice (TSL) nanowires have become a promising candidate in plasmonic electronics. We systemically studied the F-P plasmonic resonance of individual InAs TSL nanowires with a scattering-type near-field optical microscope. Using a metallic AFM tip to excite surface plasmons, we can observe odd-order and even-order modes of F-P polariton resonance, breaking the symmetric selection rules. Through nano Fourier transform infrared spectroscopy, we found that InAs nanowires' F-P polariton resonances appear in a broadband frequency range (650-1100 cm-1) and calculated that the corresponding Q factor is 5-10. This semiconductor F-P polariton resonator with inherent electrical tunability will be essential in integrated nanophotonic circuits.
Collapse
Affiliation(s)
- Xinghui Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengfei Xue
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jianing Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
12
|
Fernández-Martínez J, Carretero-Palacios S, Molina P, Bravo-Abad J, Ramírez MO, Bausá LE. Silver Nanoparticle Chains for Ultra-Long-Range Plasmonic Waveguides for Nd 3+ Fluorescence. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4296. [PMID: 36500918 PMCID: PMC9737231 DOI: 10.3390/nano12234296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Plasmonic waveguides have been shown to be a promising approach to confine and transport electromagnetic energy beyond the diffraction limit. However, ohmic losses generally prevent their integration at micrometric or millimetric scales. Here, we present a gain-compensated plasmonic waveguide based on the integration of linear chains of Ag nanoparticles on an optically active Nd3+-doped solid-state gain medium. By means of dual confocal fluorescence microscopy, we demonstrate long-range optical energy propagation due to the near-field coupling between the plasmonic nanostructures and the Nd3+ ions. The subwavelength fluorescence guiding is monitored at distances of around 100 µm from the excitation source for two different emission ranges centered at around 900 nm and 1080 nm. In both cases, the guided fluorescence exhibits a strong polarization dependence, consistent with the polarization behavior of the plasmon resonance supported by the chain. The experimental results are interpreted through numerical simulations in quasi-infinite long chains, which corroborate the propagation features of the Ag nanoparticle chains at both excitation (λexc = 590 nm) and emission wavelengths. The obtained results exceed by an order of magnitude that of previous reports on electromagnetic energy transport using linear plasmonic chains. The work points out the potential of combining Ag nanoparticle chains with a small interparticle distance (~2 nm) with rare-earth-based optical gain media as ultra-long-range waveguides with extreme light confinement. The results offer new perspectives for the design of integrated hybrid plasmonic-photonic circuits based on rare-earth-activated solid-state platforms.
Collapse
Affiliation(s)
- Javier Fernández-Martínez
- Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sol Carretero-Palacios
- Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo Molina
- Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorge Bravo-Abad
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mariola O. Ramírez
- Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Luisa E. Bausá
- Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
13
|
Li F, Yang ZY, Shi JJ, He XB. Subwavelength dichroic demultiplexer based on double Fabry-Perot cavities. OPTICS EXPRESS 2022; 30:37753-37759. [PMID: 36258357 DOI: 10.1364/oe.472582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Plasmonic demultiplexers hold promise for the realization of the subwavelength and high-splitting ratio dichroic splitter and have a wide range of applications from optical communication, and manipulation to ultrafast data treatment. However, this vision has not been realized for a long time due to lacking the suitable splitting structure design, which limits its further development of integrated photonic circuits. Here, we demonstrate a plasmonic demultiplexer with subwavelength feature size (0.54 µm) and broadband spectral (620-870 nm) range, and high-splitting ratio (17 dB in experiments and 20 dB in calculations). It consists of two adjacent Fabry-Perot cavities (covered by PMMA polymer) and coupling gratings, which are integrated with the Au waveguide. The relatively simple double cavities design of our device has a simple theoretical analysis and fabrication process. Our work has relevance for various optical applications, such as multiple wavelength photodetectors and optical multichannel interconnects.
Collapse
|
14
|
Cho C, Shin W, Kim M, Bang J, Won P, Hong S, Ko SH. Monolithically Programmed Stretchable Conductor by Laser-Induced Entanglement of Liquid Metal and Metallic Nanowire Backbone. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202841. [PMID: 35901286 DOI: 10.1002/smll.202202841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Owing to its low mechanical compliance, liquid metal is intrinsically suitable for stretchable electronics and future wearable devices. However, its invariable strain-resistance behavior according to the strain-induced geometrical deformation and the difficulty of circuit patterning limit the extensive use of liquid metal, especially for strain-insensitive wiring purposes. To overcome these limitations, herein, novel liquid-metal-based electrodes of fragmented eutectic gallium-indium alloy (EGaIn) and Ag nanowire (NW) backbone of which their entanglement is controlled by the laser-induced photothermal reaction to enable immediate and direct patterning of the stretchable electrode with spatially programmed strain-resistance characteristics are developed. The coexistence of fragmented EGaIn and AgNW backbone, that is, a biphasic metallic composite (BMC), primarily supports the uniform and durable formation of target layers on stretchable substrates. The laser-induced photothermal reaction not only promotes the adhesion between the BMC layer and substrates but also alters the structure of laser-irradiated BMC. By controlling the degree of entanglement between fragmented EGaIn and AgNW, the initial conductivity and local gauge factor are regulated and the electrode becomes effectively insensitive to applied strain. As the configuration developed in this study is compatible with both regimes of electrodes, it can open new routes for the rapid creation of complex stretchable circuitry through a single process.
Collapse
Affiliation(s)
- Chulmin Cho
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Mechatronics Research, Samsung Electronics, 1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18848, South Korea
| | - Wooseop Shin
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Minwoo Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Junhyuk Bang
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Phillip Won
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Sukjoon Hong
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, South Korea
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Institute of Advanced Machines and Design/Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
15
|
Li Y, Li P, Zhang M, Wang D, Yang L, Guan Z, Li Z. Correlations between incident and emission polarization in nanowire-particle coupled junctions. OPTICS EXPRESS 2022; 30:29206-29215. [PMID: 36299100 DOI: 10.1364/oe.466207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 06/16/2023]
Abstract
Plasmonic nanostructures with subwavelength confinement are of great importance for the development of integrated nanophotonic circuits and devices. Here, we experimentally investigate how the polarization of the emitted light from nanowire-particle junction relies on the incident polarization. We demonstrate that the correlations can be effectively modulated by the particle position relative to the wire. By varying the wire-particle gap with only several nanometers, the nanowire-particle junction can be changed from polarization maintainer to rotator. Then, by moving the particle along the wire within half of the surface plasmon polariton (SPP) beat, the polarization behaviors can be tuned from positive to negative correlation. The mechanism can be well understood by the hybridization of wire-particle coupled mode and propagating SPP modes, which is verified by finite-difference time-domain simulations. These findings would provide a new degree of freedom for manipulating light polarization at the nanometer scale and additional flexibility for constructing nanophotonic devices.
Collapse
|
16
|
Lyu PT, Li QY, Wu P, Sun C, Kang B, Chen HY, Xu JJ. Decrypting Material Performance by Wide-field Femtosecond Interferometric Imaging of Energy Carrier Evolution. J Am Chem Soc 2022; 144:13928-13937. [PMID: 35866699 DOI: 10.1021/jacs.2c05735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Energy carrier evolution is crucial for material performance. Ultrafast microscopy has been widely applied to visualize the spatiotemporal evolution of energy carriers. However, direct imaging of a small amount of energy carriers on the nanoscale remains difficult due to extremely weak transient signals. Here, we present a method for ultrasensitive and high-throughput imaging of energy carrier evolution in space and time. This method combines femtosecond pump-probe techniques with interferometric scattering microscopy (iSCAT), named Femto-iSCAT. The interferometric principle and unique spatially modulated contrast enhancement enable the exploration of new science. We address three important and challenging problems: transport of different energy carriers at various interfaces, heterogeneous hot-electron distribution and relaxation in single plasmonic resonators, and distinct structure-dependent edge-state dynamics of carriers and excitons in optoelectronic semiconductors. Femto-iSCAT holds great potential as a universal tool for ultrasensitive imaging of energy carrier evolution in space and time.
Collapse
Affiliation(s)
- Pin-Tian Lyu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing-Yue Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pei Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Santoro S, Avci AH, Politano A, Curcio E. The advent of thermoplasmonic membrane distillation. Chem Soc Rev 2022; 51:6087-6125. [PMID: 35789347 DOI: 10.1039/d0cs00097c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Freshwater scarcity is a vital societal challenge related to climate change, population pressure, and agricultural and industrial demands. Therefore, sustainable desalination/purification of salty/contaminated water for human uses is particularly relevant. Membrane distillation is an emerging hybrid thermal-membrane technology with the potential to overcome the drawbacks of conventional desalination by a synergic exploitation of the water-energy nexus. Although membrane distillation is considered a green technology, efficient heat management remains a critical concern affecting the cost of the process and hindering its viability at large scale. A multidisciplinary approach that involves materials chemistry, physical chemistry, chemical engineering, and materials and polymer science is required to solve this problem. The combination of solar energy with membrane distillation is considered a potentially feasible low-cost approach for providing high-quality freshwater with a low carbon footprint. In particular, recent discoveries about efficient light-to-heat conversion in nanomaterials have opened unprecedented perspectives for the implementation of sunlight-based renewable energy in membrane distillation. The integration of nanofillers enabling photothermal effects into membranes has been demonstrated to be able to significantly enhance the energy efficiency without impacting on economic costs. Here, we provide a comprehensive overview on the state of the art, the opportunities, open challenges and pitfalls of the emerging field of solar-driven membrane distillation. We also assess the peculiar physicochemical properties and synthesis scalability of photothermal materials, as well as the strategies for their integration into polymeric nanocomposite membranes enabling efficient light-to-heat conversion and freshwater.
Collapse
Affiliation(s)
- Sergio Santoro
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Ahmet H Avci
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy.
| | - Efrem Curcio
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| |
Collapse
|
18
|
Huang K, Zhang J, Wang W, Zhao C, Huang R, Zhen L, Luo H, Liu J, Zhang Y, Duan J. Elliptical gold nanowires: controlled fabrication and plasmonic Fabry-Pérot resonances. OPTICS LETTERS 2022; 47:3616-3619. [PMID: 35838744 DOI: 10.1364/ol.464600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Nanowires (NWs) are essential building blocks of photonic devices for guiding light waves. However, the controlled synthesis of non-circular NWs remains challenging. Herein, we develop a bottom-up approach for the fabrication of high-quality elliptical gold NWs with finely tuned geometry engineering by using an advanced ion-track template technology. Compared to ordinary NWs, the rotational symmetry breaking leads to highly polarization-dependent plasmonic responses. Modal analysis shows that the lowest dipolar HE1 mode splits into two branches where the attenuation of the long-range branch decreases by 40%, while the short-range branch has a stronger enhanced near-field. Novel, to the best of our knowledge, plasmonic Fabry-Pérot resonances on finite NWs are measured. Our method can be extended to fabricate non-circular NWs with other materials, holding potential for novel applications from quantum to collective scales.
Collapse
|
19
|
Niu Y, Xu H, Wei H. Unified Scattering and Photoluminescence Spectra for Strong Plasmon-Exciton Coupling. PHYSICAL REVIEW LETTERS 2022; 128:167402. [PMID: 35522488 DOI: 10.1103/physrevlett.128.167402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The strong coupling between excitons and single plasmonic nanocavities enables plexcitonic states in nanoscale systems at room temperature. Here we demonstrate the strong coupling of surface plasmon modes of metal nanowires and excitons in monolayer semiconductors, with Rabi splitting manifested in both scattering and photoluminescence (PL) spectra. By utilizing the propagation properties of surface plasmons on the nanowires, the PL emitted through the scattering of plasmon-exciton hybrid modes is extracted. The analytically calculated scattering and PL spectra well reproduce the experimental results. These findings unify the scattering and PL spectra in the plexcitonic system and eliminate the ambiguities of PL emission, shedding new light on understanding the rich spectral phenomena in the plasmon-exciton strong coupling regime.
Collapse
Affiliation(s)
- Yijie Niu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hong Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
20
|
Lv B, Liu Y, Wu W, Xie Y, Zhu JL, Cao Y, Ma W, Yang N, Chu W, Jia Y, Wei J, Sun JL. Local large temperature difference and ultra-wideband photothermoelectric response of the silver nanostructure film/carbon nanotube film heterostructure. Nat Commun 2022; 13:1835. [PMID: 35383187 PMCID: PMC8983732 DOI: 10.1038/s41467-022-29455-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Photothermoelectric materials have important applications in many fields. Here, we joined a silver nanostructure film and a carbon nanotube film by van der Waals force to form a heterojunction, which shows excellent photothermal and photoelectric conversion properties. The local temperature difference and the output photovoltage increase rapidly when the heterojunction is irradiated by lasers with wavelengths ranging from ultraviolet to terahertz. The maximum temperature difference reaches 215.9 K, which is significantly higher than that of other photothermoelectric materials reported in the literature. The photothermal and photoelectric responsivity depend on the wavelength of lasers, which are 175~601 K W-1 and 9.35~40.4 mV W-1, respectively. We demonstrate that light absorption of the carbon nanotube is enhanced by local surface plasmons, and the output photovoltage is dominated by Seebeck effect. The proposed heterostructure can be used as high-efficiency sensitive photothermal materials or as ultra-wideband fast-response photoelectric materials. Finding efficient photothermoelectric materials remains critical to the development of clean and renewable energy conversion technologies. Here, authors prepare a silver nanostructure film/carbon nanotube film heterojunction with excellent photothermal and photoelectric conversion performance.
Collapse
Affiliation(s)
- Bocheng Lv
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Yu Liu
- College of Mechanical Engineering and Automation, Fuzhou University, 350108, Fuzhou, China
| | - Weidong Wu
- Department of Engineering Physics, Tsinghua University, 100084, Beijing, China
| | - Yan Xie
- Department of Engineering Physics, Tsinghua University, 100084, Beijing, China
| | - Jia-Lin Zhu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Yang Cao
- School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science & Technology University, 100192, Beijing, China
| | - Wanyun Ma
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Ning Yang
- Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - Weidong Chu
- Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - Yi Jia
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, 100094, Beijing, China
| | - Jinquan Wei
- Key Lab for Advanced Materials Processing Technology of Education Ministry, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
| | - Jia-Lin Sun
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
21
|
Razeghi M, Üstünçelik M, Shabani F, Demir HV, Kasırga TS. Plasmon-enhanced photoresponse of single silver nanowires and their network devices. NANOSCALE HORIZONS 2022; 7:396-402. [PMID: 35196367 DOI: 10.1039/d1nh00629k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The photo-bolometric effect is critically important in optoelectronic structures and devices employing metallic electrodes with nanoscale features due to heating caused by the plasmonic field enhancement. One peculiar case is individual silver nanowires (Ag NWs) and their networks. Ag NW-networks exhibit excellent thermal, electrical, and mechanical properties, providing a simple yet reliable alternative to common flexible transparent electrode materials used in optoelectronic devices. To date, there have been no reports on the photoresponse of Ag NWs. In this study, we show that single Ag NWs and networks of such Ag NWs possess a significant, intrinsic photoresponse, thanks to the photo-bolometric effect, as directly observed and measured using scanning photocurrent microscopy. Surface plasmon polaritons (SPPs) created at the contact metals or plasmons created at the nanowire-metal structures cause heating at the junctions where a plasmonic field enhancement is possible. The local heating of the Ag NWs results in negative photoconductance due to the bolometric effect. Here an open-circuit response due to the plasmon-enhanced Seebeck effect was recorded at the NW-metal contact junctions. The SPP-assisted bolometric effect is found to be further enhanced by decorating the Ag NWs with Ag nanoparticles. These observations are relevant to the use of metallic nanowires in plasmonic applications in particular and in optoelectronics in general. Our findings may pave the path for plasmonics-enabled sensing without spectroscopic detection.
Collapse
Affiliation(s)
- Mohammadali Razeghi
- Institute of Materials Science and Nanotechnology - UNAM, Bilkent University, Ankara 06800, Turkey.
| | - Merve Üstünçelik
- Institute of Materials Science and Nanotechnology - UNAM, Bilkent University, Ankara 06800, Turkey.
| | - Farzan Shabani
- Institute of Materials Science and Nanotechnology - UNAM, Bilkent University, Ankara 06800, Turkey.
| | - Hilmi Volkan Demir
- Institute of Materials Science and Nanotechnology - UNAM, Bilkent University, Ankara 06800, Turkey.
- Department of Physics, Bilkent University, Ankara 06800, Turkey
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering Nanyang Technological University, Singapore 639798, Singapore
| | - T Serkan Kasırga
- Institute of Materials Science and Nanotechnology - UNAM, Bilkent University, Ankara 06800, Turkey.
- Department of Physics, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
22
|
Liu L, Krasavin AV, Zheng J, Tong Y, Wang P, Wu X, Hecht B, Pan C, Li J, Li L, Guo X, Zayats AV, Tong L. Atomically Smooth Single-Crystalline Platform for Low-Loss Plasmonic Nanocavities. NANO LETTERS 2022; 22:1786-1794. [PMID: 35129980 DOI: 10.1021/acs.nanolett.2c00095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticle-on-mirror plasmonic nanocavities, capable of extreme optical confinement and enhancement, have triggered state-of-the-art progress in nanophotonics and development of applications in enhanced spectroscopies. However, the optical quality factor and thus performance of these nanoconstructs are undermined by the granular polycrystalline metal films (especially when they are optically thin) used as a mirror. Here, we report an atomically smooth single-crystalline platform for low-loss nanocavities using chemically synthesized gold microflakes as a mirror. Nanocavities constructed using gold nanorods on such microflakes exhibit a rich structure of plasmonic modes, which are highly sensitive to the thickness of optically thin (down to ∼15 nm) microflakes. The microflakes endow nanocavities with significantly improved quality factor (∼2 times) and scattering intensity (∼3 times) compared with their counterparts based on deposited films. The developed low-loss nanocavities further allow for the integration with a mature platform of fiber optics, opening opportunities for realizing nanocavity-based miniaturized photonic devices for practical applications.
Collapse
Affiliation(s)
- Lufang Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Alexey V Krasavin
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, U.K
| | - Junsheng Zheng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanbiao Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pan Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaofei Wu
- NanoOptics & Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bert Hecht
- NanoOptics & Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Chenxinyu Pan
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jialin Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linjun Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Guo
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, U.K
| | - Limin Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Wu X, Wang Y. A physics-based machine learning approach for modeling the complex reflection coefficients of metal nanowires. NANOTECHNOLOGY 2022; 33:205701. [PMID: 35108696 DOI: 10.1088/1361-6528/ac512e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Metal nanowires are attractive building blocks for next-generation plasmonic devices with high performance and compact footprint. The complex reflection coefficients of the plasmonic waveguides are crucial for estimation of the resonating, lasing, or sensing performance. By incorporating physics-guided objective functions and constraints, we propose a simple approach to convert the specific reflection problem of nanowires to a universal regression problem. Our approach is able to efficiently and reliably determine both the reflectivity and reflection phase of the metal nanowires with arbitrary geometry parameters, working environments, and terminal shapes, merging the merits of the physics-based modeling and the data-driven modeling. The results may provide valuable reference for building comprehensive datasets of plasmonic architectures, facilitating theoretical investigations and large-scale designs of nanophotonic components and devices.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yipei Wang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
24
|
Shi J, He X, Chen W, Li Y, Kang M, Cai Y, Xu H. Remote Dual-Cavity Enhanced Second Harmonic Generation in a Hybrid Plasmonic Waveguide. NANO LETTERS 2022; 22:688-694. [PMID: 35025516 DOI: 10.1021/acs.nanolett.1c03824] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
On-chip nanoscale optical platforms capable of efficient second harmonic generation (SHG) are highly desired for optical sensing, subwavelength coherent sources, and quantum photonic devices. Here, we develop a remotely excited dual cavity resonance scheme to achieve significantly enhanced SHG in a CdSe nanobelt on Au film hybrid waveguide system. The SHG emission with superior efficiency originates from counter-propagating plasmonic modes interference in a horizontal Fabry-Pérot (FP) cavity enabled by remote excitation of propagating surface plasmons, which is further enhanced through a vertical FP cavity. With this effective cooperation of hybrid plasmon modes and FP cavity modes, 2 orders of magnitude enhancement of the conversion efficiency (3.5 × 10-4 W-1) is achieved compared to the off-resonance case. Our design provides new insight into the development of a multifunctional hybrid plasmonic device toward on-chip nonlinear nanophotonic applications.
Collapse
Affiliation(s)
- Junjun Shi
- Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xiaobo He
- Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Wen Chen
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Lausanne, Switzerland
| | - Yang Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Meng Kang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yangjian Cai
- Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Hongxing Xu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
25
|
Wang F, Liu Y, Hoang TX, Chu HS, Chua SJ, Nijhuis CA. CMOS-Compatible Electronic-Plasmonic Transducers Based on Plasmonic Tunnel Junctions and Schottky Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105684. [PMID: 34741404 DOI: 10.1002/smll.202105684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 06/13/2023]
Abstract
To develop methods to generate, manipulate, and detect plasmonic signals by electrical means with complementary metal-oxide-semiconductor (CMOS)-compatible materials is essential to realize on-chip electronic-plasmonic transduction. Here, electrically driven, CMOS-compatible electronic-plasmonic transducers with Al-AlOX -Cu tunnel junctions as the excitation source of surface plasmon polaritons (SPPs) and Si-Cu Schottky diodes as the detector of SPPs, connected via plasmonic strip waveguides of Cu, are demonstrated. Remarkably, the electronic-plasmonic transducers exhibit overall transduction efficiency of 1.85 ± 0.03%, five times higher than previously reported transducers with two tunnel junctions (metal-insulator-metal (MIM)-MIM transducers) where SPPs are detected based on optical rectification. The result establishes a new platform to convert electronic signals to plasmonic signals via electrical means, paving the way toward CMOS-compatible plasmonic components.
Collapse
Affiliation(s)
- Fangwei Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yan Liu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Thanh Xuan Hoang
- Department of Electronics and Photonics, Institute of High Performance Computing, A*STAR (Agency for Science Technology and Research), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Hong-Son Chu
- Department of Electronics and Photonics, Institute of High Performance Computing, A*STAR (Agency for Science Technology and Research), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Soo-Jin Chua
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- LEES Program, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, 138602, Singapore
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore, 117564, Singapore
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
26
|
Liu G, Sohn S, Liu N, Raj A, Schwarz UD, Schroers J. Single-Crystal Nanostructure Arrays Forming Epitaxially through Thermomechanical Nanomolding. NANO LETTERS 2021; 21:10054-10061. [PMID: 34809433 DOI: 10.1021/acs.nanolett.1c03744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For nanostructures in advanced electronic and plasmonic systems, a single-crystal structure with controlled orientation is essential. However, the fabrication of such devices has remained challenging, as current nanofabrication methods often suffer from either polycrystalline growth or the difficulty of integrating single crystals with substrates in desired orientations and locations to create functional devices. Here we report a thermomechanical method for the controlled growth of single-crystal nanowire arrays, which enables the simultaneous synthesis, alignment, and patterning of nanowires. Within such diffusion-based thermomechanical nanomolding (TMNM), the substrate material diffuses into nanosized cavities under an applied pressure gradient at a molding temperature of ∼0.4 times the material's melting temperature. Vertically grown face-centered cubic (fcc) nanowires with the [110] direction in an epitaxial relationship with the (110) substrate are demonstrated. The ability to control the crystal structure through the substrate takes TMNM a major step further, potentially allowing all fcc and body-centered cubic (bcc) materials to be integrated as single crystals into devices.
Collapse
Affiliation(s)
- Guannan Liu
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Sungwoo Sohn
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Naijia Liu
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Arindam Raj
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Udo D Schwarz
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jan Schroers
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
27
|
Wang Y, Hu H, Tang J, Meng S, Xu H, Ding T. Plasmon-Directed On-Wire Growth of Branched Silver Nanowires with Chiroptic Activity. ACS NANO 2021; 15:16404-16410. [PMID: 34558905 DOI: 10.1021/acsnano.1c05796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silver nanowires (Ag NWs) present prominent waveguiding properties of subwavelength light due to their nanoconfinement with propagating surface plasmons, which is of great importance for on-chip integration of nanophotonic devices and optical computation. Such propagating plasmons also exert plasmonic forces, which can be utilized to manipulate nanoparticles (NPs) beyond the diffraction limit. However, such controllability is spatially limited to the near fields, whereas a large portion of uncontrolled particles are randomly deposited on the chips, which could be detrimental to the integrated optical devices. Herein we shine continuous wave laser at one end of the Ag NW immersed in AgNO3 solution to launch the propagating surface plasmons. The laser irradiation also induces the photoreduction of Ag+ ions to locally generate tiny Ag NPs, which evolve into large Ag flake branches closer to the other end of the Ag NW. Such a peculiar growth is due to the synergistic effect of plasmonic forces and the thermophoretic/thermo-osmosis forces induced by temperature gradient. These branched Ag NWs with sharp angles are intrinsically chiral, which can be partially controlled by changing the irradiation location, forming plasmonic chiral enantiomers. The circular differential scattering (CDS) response of these branched Ag NWs can be as large as 40%, which can be used for chiral enantiomer sensing with spectral dissymmetric factor up to 4 nm induced by phenylalanine. This plasmon-directed on-wire growth not only offers a facile approach for generating plasmonic chiral nanostructures with remote controllability, but also provides significant insights on the synergistic effect of plasmonic forces and thermal-induced forces, which has great implications for self-assembly and integration of on-chip optics.
Collapse
Affiliation(s)
- Yunxia Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Huatian Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jibo Tang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Shuang Meng
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hongxing Xu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
28
|
Hsueh YH, Ranjan A, Lyu LM, Hsiao KY, Lu MY. In situ TEM observations of void movement in Ag nanowires affecting the electrical properties under biasing. Chem Commun (Camb) 2021; 57:11221-11224. [PMID: 34632468 DOI: 10.1039/d1cc03300j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study we investigated the electromigration (EM) of metal electrodes and the effect of stacking faults on the EM in Ag nanowires (NWs). We used the galvanic replacement method to synthesize these NWs by controlling the concentration of silver nitrate. In situ transmission electron microscopy (TEM) revealed the presence of both intrinsic and extrinsic stacking faults in the Ag NWs. We found that planar defects increased the lifetime of the devices with an intrinsic change in the material properties. Our EM measurements involved examinations of the change in electrical resistance (arising from void formation in the NW as a result of electromigration) as well as direct visual observation of the shape (using in situ TEM).
Collapse
Affiliation(s)
- Yu-Hsiang Hsueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Ashok Ranjan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Lian-Ming Lyu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Kai-Yuan Hsiao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan. .,High Entropy Materials Center, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
29
|
Liaw JW, Mao SY, Luo JY, Ku YC, Kuo MK. Surface plasmon polaritons of higher-order mode and standing waves in metallic nanowires. OPTICS EXPRESS 2021; 29:18876-18888. [PMID: 34154134 DOI: 10.1364/oe.425958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The surface plasmon polaritons (SPPs) of higher-order mode propagating along a plasmonic nanowire (NW) or an elongated nanorod (NR) are studied theoretically. The dispersion relations of SPPs in NWs of different radii, obtained from a transcendental equation, show that the propagation lengths of SPPs of mode 1 and 2 at a specific frequency are longer than that of mode 0. For the higher-order mode, the spatial phase of the longitudinal component of electric field at a cross section of a NW exhibits the topological singularity, which indicates the optical vortex. Of importance, the streamlines of Poynting vector of these SPPs exhibit a helical winding along NW, and the azimuthal component of orbital momentum density exists in the nearfield of NW to produce a longitudinal orbital angular momentum (OAM). Two types of standing wave of counter-propagating SPPs of mode 1 and 2 are also studied; they perform as a string of beads or twisted donut depending on whether the handedness of two opposite-direction propagating SPPs is same or opposite. In addition, a SPP of mode 1 propagating along an elongated NR can be generated by means of an end-fire excitation of crossed electric bi-dipole with 90° phase difference. If the criterion of a resonator for a mode-1 standing wave (string of beads) is met, the configuration of a plasmonic NR associated with a pair of bi-dipoles with a phase delay (0° or 180°) at the two ends can be applied as a high-efficiency nanoantenna of transmission. Our results may pave a way to the further study of SPPs of higher-order mode carrying OAM along plasmonic waveguides.
Collapse
|
30
|
Agreda A, Sharma DK, Colas des Francs G, Kumar GVP, Bouhelier A. Modal and wavelength conversions in plasmonic nanowires. OPTICS EXPRESS 2021; 29:15366-15381. [PMID: 33985237 DOI: 10.1364/oe.421183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
We show that plasmonic nanowire-nanoparticle systems can perform nonlinear wavelength and modal conversions and potentially serve as building blocks for signal multiplexing and novel trafficking modalities. When a surface plasmon excited by a pulsed laser beam propagates in a nanowire, it generates a localized broadband nonlinear continuum at the nanowire surface as well as at active locations defined by sites where nanoparticles are absorbed (enhancement sites). The local response may couple to new sets of propagating modes enabling a complex routing of optical signals through modal and spectral conversions. Different aspects influencing the optical signal conversions are presented, including the parameters defining the local formation of the continuum and the subsequent modal routing in the nanowire.
Collapse
|
31
|
Ćwik M, Sulowska K, Buczyńska D, Roźniecka E, Domagalska M, Maćkowski S, Niedziółka-Jönsson J. Controlling plasmon propagation and enhancement via reducing agent in wet chemistry synthesized silver nanowires. OPTICS EXPRESS 2021; 29:8834-8845. [PMID: 33820325 DOI: 10.1364/oe.412903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Silver nanowires with varying diameters and submillimeter lengths were obtained by changing a reducing agent used during hydrothermal synthesis. The control over the nanowire diameter turns out to play a critical role in determining their plasmonic properties, including fluorescence enhancement and surface plasmon polariton propagation. Advanced fluorescence imaging of hybrid nanostructures assembled of silver nanowires and photoactive proteins indicates longer propagation lengths for nanowires featuring larger diameters. At the same time, with increasing diameter of the nanowires, we measure a substantial reduction of fluorescence enhancement. The results point at possible ways to control the influence of plasmon excitations in silver nanowires by tuning their morphology.
Collapse
|
32
|
Rothe M, Zhao Y, Müller J, Kewes G, Koch CT, Lu Y, Benson O. Self-Assembly of Plasmonic Nanoantenna-Waveguide Structures for Subdiffractional Chiral Sensing. ACS NANO 2021; 15:351-361. [PMID: 33233888 DOI: 10.1021/acsnano.0c05240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spin-momentum locking is a peculiar effect in the near-field of guided optical or plasmonic modes. It can be utilized to map the spinning or handedness of electromagnetic fields onto the propagation direction. This motivates a method to probe the circular dichroism of an illuminated chiral object. In this work, we demonstrate local, subdiffraction limited chiral coupling of light and propagating surface plasmon polaritons in a self-assembled system of a gold nanoantenna and a silver nanowire. A thin silica shell around the nanowire provides precise distance control and also serves as a host for fluorescent molecules, which indicate the direction of plasmon propagation. We characterize our nanoantenna-nanowire systems comprehensively through correlated electron microscopy, energy-dispersive X-ray spectroscopy, dark-field, and fluorescence imaging. Three-dimensional numerical simulations support the experimental findings. Besides our measurement of far-field polarization, we estimate sensing capabilities and derive not only a sensitivity of 1 mdeg for the ellipticity of the light field, but also find 103 deg cm2/dmol for the circular dichroism of an analyte locally introduced in the hot spot of the antenna-wire system. Thorough modeling of a prototypical design predicts on-chip sensing of chiral analytes. This introduces our system as an ultracompact sensor for chiral response far below the diffraction limit.
Collapse
Affiliation(s)
- Martin Rothe
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Yuhang Zhao
- Institute of Soft Matter and Functional Materials, Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Johannes Müller
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Günter Kewes
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Christoph T Koch
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Yan Lu
- Institute of Soft Matter and Functional Materials, Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Oliver Benson
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| |
Collapse
|
33
|
Raja SS, Cheng CW, Gwo S. Low-loss aluminum epitaxial film for scalable and sustainable plasmonics: direct comparison with silver epitaxial film. NANOSCALE 2020; 12:23809-23816. [PMID: 33237103 DOI: 10.1039/d0nr06603f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aluminum is a plasmonic material well known for its excellent stability, complementary metal-oxide-semiconductor compatibility and wide availability as compared to popular plasmonic materials such as gold and silver. Aluminum can support surface plasmon resonances in a broad spectral range, including the deep ultra-violet, a regime where no other plasmonic materials can work. However, conventional aluminum films suffer from high losses in the visible region and low fidelity and reproducibility in nanofabrication, making aluminum plasmonics non-ideal for applications. Herein, we report the experimental results of consistent surface plasmon propagation length measurements for epitaxially grown aluminum and silver films (epifilms), using three different methods (white light interferometry, laser scattering and spectroscopic ellipsometry) in the full visible spectrum. In order to avoid losses caused by inferior material quality, we used single-crystalline aluminum and silver films for direct comparison. We found that, on directly comparing with the silver epifilm, the aluminum epifilm possesses reasonably long plasmon propagation lengths in the full visible range and outperforms silver in the deep blue region. These results illustrate the great potential of epitaxial aluminum films for visible-spectrum plasmonic applications, resulting from their superior crystallinity and excellent surface and interface properties.
Collapse
Affiliation(s)
- Soniya S Raja
- Institute of NanoEngineering and MicroSystems, National Tsing-Hua University, Hsinchu 30013, Taiwan.
| | | | | |
Collapse
|
34
|
Zeng Y, Madsen SJ, Yankovich AB, Olsson E, Sinclair R. Comparative electron and photon excitation of localized surface plasmon resonance in lithographic gold arrays for enhanced Raman scattering. NANOSCALE 2020; 12:23768-23779. [PMID: 33232431 DOI: 10.1039/d0nr04081a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to tune the localized surface plasmon resonance (LSPR) of nanostructures is desirable for surface enhanced Raman spectroscopy (SERS), plasmon-assisted chemistry and other nanophotonic applications. Although historically the LSPR is mainly studied by optical techniques, with the recent advancement in electron monochromators and correctors, it has attracted considerable attention in transmission electron microscopy (TEM). Here, we use electron energy loss spectroscopy (EELS) in a scanning TEM to study individual gold nanodiscs and bowties in lithographic arrays with variable LSPRs by adjusting the size, interspacing, shape and dielectric environment during the nanofabrication process. We observe the strongest Raman signal enhancement when the LSPR frequency is close to the incident laser frequency in Raman spectroscopy. A simplified harmonic oscillator model is used to estimate SERS enhancement factor (EF) from EELS, bridging the connection between electron and photon excitation of plasmonic arrays. This work demonstrates that STEM-EELS shows promise for revealing the contributions of specific LSPR modes to SERS EF. Our results provide guidelines to fine-tune nanoparticle parameters to deliver the maximum signal enhancement in biosensing applications, such as early cancer detection.
Collapse
Affiliation(s)
- Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|
35
|
Park SM, Lee KS, Kim JH, Yeon GJ, Shin HH, Park S, Kim ZH. Direct Visualization of Gap-Plasmon Propagation on a Near-Touching Nanowire Dimer. J Phys Chem Lett 2020; 11:9313-9320. [PMID: 33089991 DOI: 10.1021/acs.jpclett.0c02494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dimers of metallic nanowires (NWs) with nanometric gaps could be an alternative to overcome the limitations of existing plasmonic waveguides. The gap-surface plasmon polaritons (gap-SPPs) of the dimers may propagate along the NW without crosstalk and greatly enhance the coupling efficiency with an emitter, enabling ultracompact optical circuits. Such a possibility has not been realized, and we experimentally show its possibility. The gap-SPPs of the AgNW-molecule-AgNW structure, with a gap of 3-5 nm defined by the molecules, are visualized using the surface-enhanced Raman scattering (SERS) of the molecules. The SERS images, representing the gap-field intensity distribution, reveal the decay and beating of the monopole-monopole and dipole-dipole gap modes. The propagation lengths of the two (l1 = 0.5-2 μm and l2 = 5-8 μm) closely follow the model prediction with a uniform gap, confirming that the scattering loss induced by the gap irregularities is surprisingly low.
Collapse
Affiliation(s)
- Sang-Min Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kang Sup Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jin-Ho Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Gyu Jin Yeon
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyun-Hang Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sangwon Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
36
|
Integration of Single-Photon Emitters in 2D Materials with Plasmonic Waveguides at Room Temperature. NANOMATERIALS 2020; 10:nano10091663. [PMID: 32854316 PMCID: PMC7559460 DOI: 10.3390/nano10091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 11/16/2022]
Abstract
Efficient integration of a single-photon emitter with an optical waveguide is essential for quantum integrated circuits. In this study, we integrated a single-photon emitter in a hexagonal boron nitride (h-BN) flake with a Ag plasmonic waveguide and measured its optical properties at room temperature. First, we performed numerical simulations to calculate the efficiency of light coupling from the emitter to the Ag plasmonic waveguide, depending on the position and polarization of the emitter. In the experiment, we placed a Ag nanowire, which acted as the plasmonic waveguide, near the defect of the h-BN, which acted as the single-photon emitter. The position and direction of the nanowire were precisely controlled using a stamping method. Our time-resolved photoluminescence measurement showed that the single-photon emission from the h-BN flake was enhanced to almost twice the intensity as a result of the coupling with the Ag nanowire. We expect these results to pave the way for the practical implementation of on-chip nanoscale quantum plasmonic integrated circuits.
Collapse
|
37
|
Characterisation and Manipulation of Polarisation Response in Plasmonic and Magneto-Plasmonic Nanostructures and Metamaterials. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Optical properties of metal nanostructures, governed by the so-called localised surface plasmon resonance (LSPR) effects, have invoked intensive investigations in recent times owing to their fundamental nature and potential applications. LSPR scattering from metal nanostructures is expected to show the symmetry of the oscillation mode and the particle shape. Therefore, information on the polarisation properties of the LSPR scattering is crucial for identifying different oscillation modes within one particle and to distinguish differently shaped particles within one sample. On the contrary, the polarisation state of light itself can be arbitrarily manipulated by the inverse designed sample, known as metamaterials. Apart from polarisation state, external stimulus, e.g., magnetic field also controls the LSPR scattering from plasmonic nanostructures, giving rise to a new field of magneto-plasmonics. In this review, we pay special attention to polarisation and its effect in three contrasting aspects. First, tailoring between LSPR scattering and symmetry of plasmonic nanostructures, secondly, manipulating polarisation state through metamaterials and lastly, polarisation modulation in magneto-plasmonics. Finally, we will review recent progress in applications of plasmonic and magneto-plasmonic nanostructures and metamaterials in various fields.
Collapse
|
38
|
Fan J, Sun M. Nanoplasmonic Nanorods/Nanowires from Single to Assembly: Syntheses, Physical Mechanisms and Applications. CHEM REC 2020; 20:1043-1073. [PMID: 32779364 DOI: 10.1002/tcr.202000051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/11/2022]
Abstract
Gold nanorods are anisotropic and exhibit different optical characteristics in both transverse and longitudinal directions, so the plasmon resonance in the near-infrared region will reflect two absorption peaks. Because of strong enhancements of electromagnetic fields of gold nanorods, gold nanorods are widely used in medical treatment, biological detection, sensors, solar cells and other fields. Since rapid developments of gold nanorods, it is necessary to sort out the recent achievements. In this review, we select three classifications of single nanorods/nanowires, dimers and assembled nanorods to introduce their syntheses methods, optical properties and applications respectively. We firstly overview the history of nanorods/nanowires syntheses and summarize the improvement of the commonly utilized seed-mediated growth synthesis method; and then, physically, nano-plasmonic and optical properties of single and assembled nanorod/nanowires are concluded in detail. Lastly, we mainly summarize the recent advances in applications and provide perspective in different fields.
Collapse
Affiliation(s)
- Jianuo Fan
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science., University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science., University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
39
|
Xiao D, Navik R, Gai Y, Tan H, Zhao Y. Maillard Reaction-Controlled Synthesis of Ultrathin Silver Nanowires and Fabrication of Transparent Conductive Electrodes with Low Haze. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ding Xiao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Rahul Navik
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanzhe Gai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Huijun Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
40
|
Collette R, Garfinkel DA, Hu Z, Masiello DJ, Rack PD. Near field excited state imaging via stimulated electron energy gain spectroscopy of localized surface plasmon resonances in plasmonic nanorod antennas. Sci Rep 2020; 10:12537. [PMID: 32719406 PMCID: PMC7385139 DOI: 10.1038/s41598-020-69066-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/06/2020] [Indexed: 11/09/2022] Open
Abstract
Continuous wave (cw) photon stimulated electron energy loss and gain spectroscopy (sEELS and sEEGS) is used to image the near field of optically stimulated localized surface plasmon resonance (LSPR) modes in nanorod antennas. An optical delivery system equipped with a nanomanipulator and a fiber-coupled laser diode is used to simultaneously irradiate plasmonic nanostructures in a (scanning) transmission electron microscope. The nanorod length is varied such that the m = 1, 2, and 3 LSPR modes are resonant with the laser energy and the optically stimulated near field spectra and images of these modes are measured. Various nanorod orientations are also investigated to explore retardation effects. Optical and electron beam simulations are used to rationalize the observed patterns. As expected, the odd modes are optically bright and result in observed sEEG responses. The m = 2 dark mode does not produce a sEEG response, however, when tilted such that retardation effects are operative, the sEEG signal emerges. Thus, we demonstrate that cw sEEGS is an effective tool in imaging the near field of the full set of nanorod plasmon modes of either parity.
Collapse
Affiliation(s)
- Robyn Collette
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - David A Garfinkel
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhongwei Hu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Philip D Rack
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
41
|
Da Browski M, Dai Y, Petek H. Ultrafast Photoemission Electron Microscopy: Imaging Plasmons in Space and Time. Chem Rev 2020; 120:6247-6287. [PMID: 32530607 DOI: 10.1021/acs.chemrev.0c00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plasmonics is a rapidly growing field spanning research and applications across chemistry, physics, optics, energy harvesting, and medicine. Ultrafast photoemission electron microscopy (PEEM) has demonstrated unprecedented power in the characterization of surface plasmons and other electronic excitations, as it uniquely combines the requisite spatial and temporal resolution, making it ideally suited for 3D space and time coherent imaging of the dynamical plasmonic phenomena on the nanofemto scale. The ability to visualize plasmonic fields evolving at the local speed of light on subwavelength scale with optical phase resolution illuminates old phenomena and opens new directions for growth of plasmonics research. In this review, we guide the reader thorough experimental description of PEEM as a characterization tool for both surface plasmon polaritons and localized plasmons and summarize the exciting progress it has opened by the ultrafast imaging of plasmonic phenomena on the nanofemto scale.
Collapse
Affiliation(s)
- Maciej Da Browski
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, Devon EX4 4QL, U.K
| | - Yanan Dai
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Hrvoje Petek
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
42
|
Visualizable detection of nanoscale objects using anti-symmetric excitation and non-resonance amplification. Nat Commun 2020; 11:2754. [PMID: 32488014 PMCID: PMC7265281 DOI: 10.1038/s41467-020-16610-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/13/2020] [Indexed: 11/25/2022] Open
Abstract
Why can we not see nanoscale objects under a light microscope? The textbook answers are that their relative signals are weak and their separation is smaller than Abbe’s resolution limit. Thus, significant effort has gone into developing ultraviolet imaging, oil and solid immersion objectives, nonlinear methods, fluorescence dyes, evanescent wave tailoring, and point-spread function engineering. In this work, we introduce a new optical sensing framework based on the concepts of electromagnetic canyons and non-resonance amplification, to directly view on a widefield microscope λ/31-scale (25-nm radius) objects in the near-field region of nanowire-based sensors across a 726-μm × 582-μm field of view. Our work provides a simple but highly efficient framework that can transform conventional diffraction-limited optical microscopes for nanoscale visualization. Given the ubiquity of microscopy and importance of visualizing viruses, molecules, nanoparticles, semiconductor defects, and other nanoscale objects, we believe our proposed framework will impact many science and engineering fields. The authors introduce the concept of electromagnetic canyons and non-resonance amplification for optical detection of nanoscale objects. They demonstrate that a pair of nanowire sensors enable detection of 25-nm radii objects with a standard widefield microscope.
Collapse
|
43
|
Gordon EB, Karabulin AB, Matyushenko VI, Stepanov ME, Khodos II. Preparation of Quasi-One-Dimensional Metal Heterostructures by Simultaneous Ablation of Two Targets over Superfluid Helium Surface. HIGH ENERGY CHEMISTRY 2020. [DOI: 10.1134/s0018143920030054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Chen T, Tong F, Enderlein J, Zheng Z. Plasmon-Driven Modulation of Reaction Pathways of Individual Pt-Modified Au Nanorods. NANO LETTERS 2020; 20:3326-3330. [PMID: 32315532 DOI: 10.1021/acs.nanolett.0c00206] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the underlying kinetic mechanism of plasmon-enhanced catalysis is important for designing optimized bimetal nanostructures. Here, we characterize product formation rate at both the single-particle and ensemble level. The single-particle measurement allows us to reveal the underlying catalytic kinetic mechanisms of a bimetal nanostructure. Combining this with ensemble observations of two different catalytic behaviors of this catalyst with and without illumination shows that energetic charge carriers induce a transition from a competitive reactant adsorption type to a noncompetitive adsorption type, which leads to the suppression of catalytic rate decay at high reactant concentration. Theoretical modeling as well as analysis of hole acceptability of scavengers on Pt and Au surfaces indicates that the Pt light absorptivity is enhanced near Au and the energetic charges may form directly from the Pt part of the Au-Pt nanostructure. The presented study deepens our understanding of plasmon-enhanced catalysis by bimetal nanostructures.
Collapse
Affiliation(s)
- Tao Chen
- III. Institute of Physics - Biophysics, Georg August Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Fengxia Tong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
45
|
Prämassing M, Liebtrau M, Schill HJ, Irsen S, Linden S. Interferometric near-field characterization of plasmonic slot waveguides in single- and poly-crystalline gold films. OPTICS EXPRESS 2020; 28:12998-13007. [PMID: 32403782 DOI: 10.1364/oe.384629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Single-crystalline gold films show superior plasmonic properties compared to their poly-crystalline counterparts. However, this advantage comes at the cost of a more complex preparation process. It is thus crucial to validate whether the impact of the material quality on the performance of the respective plasmonic device justifies this additional effort. In order to address this question for the case of plasmonic slot waveguides, we present interferometric near-field measurements at telecommunication wavelengths on slot waveguides in single- and poly-crystalline gold films. We observe significantly larger propagation lengths in the case of single-crystalline gold films for slot widths below 100 nm. In contrast for larger widths, both gold films give rise to comparable propagation lengths.
Collapse
|
46
|
Wang S, Wu F, Watanabe K, Taniguchi T, Zhou C, Wang F. Metallic Carbon Nanotube Nanocavities as Ultracompact and Low-loss Fabry-Perot Plasmonic Resonators. NANO LETTERS 2020; 20:2695-2702. [PMID: 32134275 DOI: 10.1021/acs.nanolett.0c00315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic resonators enable deep subwavelength manipulation of light matter interactions and have been intensively studied both in fundamental physics as well as for potential technological applications. While various metallic nanostructures have been proposed as plasmonic resonators, their performances are rather limited at mid- and far-infrared wavelengths. Recently, highly confined and low-loss Luttinger liquid plasmons in metallic single-walled carbon nanotubes (SWNTs) have been observed at infrared wavelengths. Here, we tailor metallic SWNTs into ultraclean nanocavities by advanced scanning probe lithography and investigate plasmon modes in these individual nanocavities by infrared nanoimaging. The dependence of mode evolutions on cavity length and excitation wavelength can be captured by a Fabry-Perot resonator model of a plasmon nanowaveguide terminated by highly reflective ends. Plasmonic resonators based on SWNT nanocavities approach the ultimate plasmon confinement limit and open the door to the strong light-matter coupling regime, which may enable various nanophotonic applications.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Fanqi Wu
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Chongwu Zhou
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Feng Wang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
47
|
Nikzad MJ, Mahdavi SM, Sadrnezhaad SK. Geometrical optimization for silver nanowire mesh as a flexible transparent conductive electrode. APPLIED OPTICS 2020; 59:3073-3080. [PMID: 32400587 DOI: 10.1364/ao.386042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
We report the effect of the geometric parameters on transparency and conductivity in a metallic nanowire mesh as a transparent electrode. Today, indium tin oxide and fluorine-doped tin oxide are used as the transparent electrode for displays and solar cells. Still, there is a definite need for their replacement due to drawbacks such as brittleness, scarcity, and adverse environmental effects. Metallic nanowire mesh is likely the best replacement option, but the main issue is how to find the optimal structure and how to get the best performance. Since the interaction of light with nanowire mesh is complicated, there is no straightforward rule with a simple analytical solution. We developed a kit based on wave optics for calculating the optical transmission of metallic nanowire mesh, which, unlike previous works, includes the interaction of light with the nanowire mesh, such as localized surface plasmon resonance (LSPR), surface plasmon polariton (SPP), and Rayleigh anomaly (RA). So, it is possible to accurately predict the effect of these phenomena and the transmission of mesh. Using the mentioned kit, we will be able to investigate the different geometrical structures of meshes to achieve optimal geometry. This kit is based on the classical Maxwell theory and empirical data and uses finite-difference time-domain for solving equations and experiential results for validation. Comparing the results by a redefined figure of merit shows that LSPR has the most significant reduction on transparency, whereas increasing the thickness (t) to width (w) ratio of the nanowire in the metallic mesh can reduce the LSPR effect and/or shifts it to the invisible region. The wire pitch (p) has no tangible impact on LSPR, but p can be chosen higher than 700 or lower than 350 nm to remove the extinction effects of the first-order RA. If p was larger than 150 nm, SPP could appear in the visible region of the spectrum. In small p, lower modes of SPP with higher intensities occur; therefore, there is an optimum value for p around 300 nm. The reduction of t and w reduces the intensity of SPP and causes it to red shift. By comparing the 900 different structures, the highest figure of merit is obtained in a p of 300 nm with a minimum w (10 nm) and maximum t (100 nm).
Collapse
|
48
|
Principle and Applications of the Coupling of Surface Plasmons and Excitons. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface plasmons have been attracting increasing attention and have been studied extensively in recent decades because of their half-light and half-material polarized properties. On the one hand, the tightly confined surface plasmonic mode may reduce the size of integrated optical devices beyond the diffraction limit; on the other hand, it provides an approach toward enhancement of the interactions between light and matter. In recent experiments, researchers have realized promising applications for surface plasmons in quantum information processing, ultra-low-power lasers, and micro-nano processing devices by using plasmonic structures, which have demonstrated their superiority over traditional optics structures. In this paper, we introduce the theoretical principle of surface plasmons and review the research work related to the interactions between plasmons and excitons. Some perspectives with regard to the future development of plasmonic coupling are also outlined.
Collapse
|
49
|
Shi Z, Tian X, Luo Z, Huang R, Wu L, Li Q. Photothermal Imaging of Individual Nano-Objects with Large Scattering Cross Sections. J Phys Chem A 2020; 124:1659-1665. [PMID: 31994889 DOI: 10.1021/acs.jpca.9b11382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photothermal (PT) microscopy enables the efficient detection of absorbing nano-objects with high sensitivity and stability. The PT signal in the current PT microscopy usually comes from the interaction of the probe laser beam with the heating laser beam-induced thermal lens, and the contribution of the scattering field from the imaged nano-object is usually not taken into account. Here, in this paper, we systematically studied the influence of the scattering field from the imaged nanoparticles on the obtained PT signal by using Ag nanowires (NWs) on a glass substrate surrounded by glycerol as an example. Under the excitation of a heating laser beam at 532 nm wavelength, the rise of local temperature around the Ag NW results in the intensity variation of the interferometric scattering probe light at 730 nm wavelength which includes the scattering light from the Ag NW and the reflection light from the glass-glycerol interface. We found that the PT signal on the NW are positive and negative for the probe beam polarized parallel and perpendicular to the NW axis, respectively. Numerical simulations confirm that the heat-induced intensity variation of the pure scattering light from the NW and the thermal lens-induced intensity increase of the reflection light both contribute to the obtained PT signal. Our work provides the basic guidance for the analysis of PT signal from nano-objects with large scattering cross sections.
Collapse
Affiliation(s)
- Zhonghong Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering , South China Normal University , Guangzhou 510006 , China
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , China
| | - Zhangzeng Luo
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering , South China Normal University , Guangzhou 510006 , China
| | - Rongchen Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering , South China Normal University , Guangzhou 510006 , China
| | - Lijun Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering , South China Normal University , Guangzhou 510006 , China
| | - Qiang Li
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering , South China Normal University , Guangzhou 510006 , China
| |
Collapse
|
50
|
Nesbitt NT, Burns MJ, Naughton MJ. Facile fabrication and formation mechanism of aluminum nanowire arrays. NANOTECHNOLOGY 2020; 31:095301. [PMID: 31703218 DOI: 10.1088/1361-6528/ab55be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anodized alumina membranes (AAMs) have proven effective at making vertically-oriented and well-ordered metal nanowire arrays, which are useful in plasmonics and electrochemistry. Here, we produced Al nanowires via directed AAM pore nucleation: a patterned oxide mask on a flat Al surface directed where pores did and did not form, the pores acting to oxidize Al around the sites without pores. This left Al nanowires embedded in the AAM, and produced freestanding Al nanowires after etching the AAM. The nanowire tops had two distinct contours, smooth bowls and flat rough surfaces-suggesting that nanowires with bowl tops result from slow pore development relative to pattern-nucleated pores, not pore blockage as prior literature suggests. The observed low porosity of ∼2%, as opposed to the more typical 10%, suggests pore nucleation in the electrolyte employed may need greater local variations in electric field or pH, possibly explaining the electrolyte's peculiar ability to make Al nanowires. Finally, a soft nano-imprint lithography process was developed here to pattern the mask without damaging the stamp, avoiding a stamp degradation problem in previous work that utilized hard nano-imprint lithography.
Collapse
|