1
|
Liao TY, Boden A, King PC, Thissen H, Crawford RJ, Ivanova EP, Kingshott P. Cold-Spray Deposition of Antibacterial Molybdenum Coatings on Poly(dimethylsiloxane). ACS APPLIED BIO MATERIALS 2025; 8:1167-1185. [PMID: 39849900 DOI: 10.1021/acsabm.4c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness. Specifically, relatively low nozzle scanning speeds were used to develop high-density Mo-embedded PDMS surfaces. A comprehensive analysis was conducted to investigate how cold-spray processing parameters affect the surface topography, wettability, and chemical properties. The ability of the Mo-embedded PDMS to inhibit the colonization of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa bacterial species was demonstrated by both live/dead staining and disk diffusion methods. Surfaces with higher Mo loading densities significantly reduced the level of bacterial attachment and enhanced the bactericidal activity upon contact. Also, the level of Mo ion release over a 14-day period was measured and correlated to the properties of the substrate surface. Furthermore, attachment, viability, and proliferation of osteoblast-like MG63 cells were assessed to investigate the effect of Mo ion release on the biocompatibility of fabricated coatings. A notable decrease in cell viability and delayed growth of MG63 cells became evident after 7 days of incubation with the highly Mo-loaded samples. While this study enhanced our understanding regarding the engineering of composite materials for combatting microbial infections, the findings also suggest that the release of Mo ions may detrimentally affect osteoblast survival, potentially compromising the long-term functionality of orthopedic implants produced using this technique.
Collapse
Affiliation(s)
- Tzu-Ying Liao
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Andrew Boden
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter C King
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Russell J Crawford
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Elena P Ivanova
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
2
|
Zhao Y, Hu F, Tenhaeff WE. Control of Fluoropolymer Crystallinity for Flexible, Transparent Optical Thin Films with Low Refractive Indexes. Macromolecules 2025; 58:1265-1278. [PMID: 39958484 PMCID: PMC11823608 DOI: 10.1021/acs.macromol.4c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025]
Abstract
Fluoropolymers possess among the lowest indexes of refraction for dense, continuous materials, but their crystallinity typically leads to light scattering and haze. In this work, we studied poly(1H,1H,2H,2H-perfluorodecyl acrylate) (pPFDA) as a low-index fluoropolymer and successfully suppressed its crystallization while preserving its desirable low index of refraction (1.36 at 633 nm wavelength) and hydrophobicity (water contact angle of 122°). This was achieved through copolymerization between the hydrophobic 1H,1H,2H,2H-perfluorodecyl acrylate (PFDA) and N-vinylpyrrolidone (NVP) using initiated chemical vapor deposition (iCVD). The resulting copolymer p(PFDA-co-VP) film was smooth (roughness <2 nm), highly transparent, thermally robust, and mechanically flexible. This contrasted with pPFDA homopolymer films, which were rough (roughness >30 nm), hazy, and disintegrated at 70 °C due to melting. Moreover, the copolymerization resulted in a 16-fold improvement in the deposition kinetics. To demonstrate its excellent performance in practical applications, the low-index copolymer was paired with a high-index poly(divinylbenzene) (pDVB) (n 633 = 1.59) to build a six-layer interference coating. A six-layer fully polymeric interference coating with precise, independent control of each individual layer's thickness was prepared for the first time by iCVD. Optimized for broadband antireflection, it reduced the surface reflectance to 1% over the entire visible spectrum, while withstanding large mechanical strain.
Collapse
Affiliation(s)
- Yineng Zhao
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Fei Hu
- Department
of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Wyatt E. Tenhaeff
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
- Department
of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
3
|
Sherin P A T, Bandaru S, Motapothula MR, Dalapati GK, Sangaraju S, Krishnamurthy S, Ball WB, Chakrabortty S, Ghosh S. Facile Fabrication of Multifunctional Superhydrophobic Surfaces Synthesized by the Additive Manufacturing Technique Modified with ZnO Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2312-2322. [PMID: 39840904 DOI: 10.1021/acs.langmuir.4c03907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
This article reports facile fabrication of a multifunctional smart surface having superhydrophobic self-cleaning property, superoleophilicity, and antimicrobial property. These smart surfaces have been synthesized using the stereolithography (SLA) method of the additive manufacturing technique. SLA is a fast additive manufacturing technique used to create complex parts with intricate geometries. A wide variety of materials and high-resolution techniques can be utilized to create functional parts such as superhydrophobic surfaces. Various materials have been studied to improve the functionality of 3D printing. However, the fabrication of such materials is not easy, as it is quite expensive. In this work, we used a commercially available SLA printer and its photopolymer resin to create various micropatterned surfaces. Additionally, we applied a low surface energy coating with ZnO nanoparticles and tetraethyl orthosilicate to create hierarchical roughness. The wettability studies of created superhydrophobic surfaces were evaluated by means of static contact angle using the sessile drop method and rolling angle measurements. The effects of various factors, including different concentrations of coating mixture, drying temperatures, patterns (pyramids, pillars, and eggbeater structures), and pillar spacing, were studied in relation to contact angles. Subsequently, all the functional properties (i.e., self-cleaning, oleophilicity, and antibacterial properties) of the as-obtained surfaces were demonstrated using data, images, and supporting videos. This inexpensive and scalable process can be easily replicated with an SLA 3D printer and photopolymer resin for many applications such as self-cleaning, oil-water separation, channel-less microfluidics, antibacterial coating, etc.
Collapse
Affiliation(s)
- Thanseeha Sherin P A
- Department of Physics, SRM University AP Andhra Pradesh, Mangalagiri, Andhra Pradesh 522502, India
| | - Shamili Bandaru
- Department of Chemistry, SRM University AP Andhra Pradesh, Mangalagiri, Andhra Pradesh 522502, India
| | | | - Goutam Kumar Dalapati
- Center for Nanofiber and Nanotechnology, Mechanical Engineering Department, National University of Singapore, Singapore 117576, Singapore
| | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, UAE
| | - Satheesh Krishnamurthy
- Surrey Ion Bean Centre, University of Surrey, Stag Hill, University Campus, Guildford GU2 7XH, U.K
| | - Writoban Basu Ball
- Department of Biological Sciences, SRM University AP Andhra Pradesh, Mangalagiri, Andhra Pradesh 522502, India
| | - Sabyasachi Chakrabortty
- Department of Chemistry, SRM University AP Andhra Pradesh, Mangalagiri, Andhra Pradesh 522502, India
| | - Siddhartha Ghosh
- Department of Physics, SRM University AP Andhra Pradesh, Mangalagiri, Andhra Pradesh 522502, India
| |
Collapse
|
4
|
Song Z, Yang C, Kiatwisarnkij N, Lu A, Tunghathaithip N, Lolupiman K, Bovornratanaraks T, Zhang X, He G, Qin J. Polyethylene Glycol-Protected Zinc Microwall Arrays for Stable Zinc Anodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64834-64845. [PMID: 39535397 PMCID: PMC11615841 DOI: 10.1021/acsami.4c15130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Aqueous zinc-ion batteries promise good commercial application prospects due to their environmental benignity and easy assembly under atmospheric conditions, positioning them as a viable alternative to lithium-ion batteries. However, some inherent issues, such as chaotic zinc dendrite growth and inevitable side reactions, challenge the commercialization progress. In this work, we imprint highly ordered zinc microwall arrays to regulate the electric field toward uniform Zn deposition. Afterward, coating a polyethylene glycol protection layer on the zinc microwalls aims to passivate the surface defects that rise unintentionally by mechanical imprinting. Polyethylene glycol can also boost oriented Zn deposition along the (002) plane and inhibit hydrogen gas production, further enhancing the stability of such three-dimensional (3D) hybrid anodes. Compared to the messy electric field near the polyethylene glycol-protected Zn foil, the uniform electric field provided by these 3D hybrid anodes can regulate the Zn deposition behaviors, enabling a longer lifespan and thus certifying the necessity of adding 3D microstructures. Additionally, 3D microstructures can offer a larger surface area than that of the planar Zn foil, providing more reaction sites and higher specific capacity. In this case, the 3D hybrid electrode exhibits a good initial capacity of approximately 120 mA h/g at a current density of 5 A/g and a nice retention of more than 80% after 800 cycles. The proposed scheme paves the way for a long-term stable 3D zinc anode solution with promising application prospects.
Collapse
Affiliation(s)
- Zehao Song
- Metallurgy
and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chengwu Yang
- Metallurgy
and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Napat Kiatwisarnkij
- Metallurgy
and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anqi Lu
- Metallurgy
and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Naraphorn Tunghathaithip
- Extreme
Conditions Physics Research Laboratory and Center of Excellence in
Physics of Energy Materials(CE:PEM), Department of Physics, Faculty
of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittima Lolupiman
- Metallurgy
and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thiti Bovornratanaraks
- Extreme
Conditions Physics Research Laboratory and Center of Excellence in
Physics of Energy Materials(CE:PEM), Department of Physics, Faculty
of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Xinyu Zhang
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Guanjie He
- Christopher
Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Jiaqian Qin
- Center
of Excellence on Advanced Materials for Energy Storage, Department
of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of
Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Guan J, Yu X, He M, Han W, Li Y, Liu Z, Zhang P, Tang H. Synthesis of Ultrahigh Molecular Weight Poly (Trifluoroethyl Methacrylate) Initiated by the Combination of Palladium Nanoparticles with Organic Halides. Polymers (Basel) 2024; 16:2764. [PMID: 39408474 PMCID: PMC11479292 DOI: 10.3390/polym16192764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Ultrahigh molecular weight polymers display outstanding properties and have great application potential. However, the traditional polymerization methods have inevitable disadvantages that challenge the green synthesis of ultrahigh molecular weight polymers. The paper achieved an ultrahigh molecular weight poly (trifluoroethyl methacrylate) via a novel polymerization and discussed the mechanistic, kinetic, and experimental aspects. The combination of palladium nanoparticles with ethyl 2-bromopropionate has been identified as an exceedingly efficient system for initiating the polymerization of trifluoroethyl methacrylate. An ultrahigh molecular weight poly (trifluoroethyl methacrylate) with a number-average molecular weight up to 3.03 × 106 Da has been synthesized at a feeding molar ratio of [poly (trifluoroethyl methacrylate)]/[ethyl 2-bromopropionate]/[palladium nanoparticles] = 3.95 × 104:756:1 at 70 °C. The reaction orders concerning palladium nanoparticles, ethyl 2-bromopropionate, and poly (trifluoroethyl methacrylate) were determined to be 0.59, 0.34, and 1.38, respectively. By analyzing a series of characterizations, we verified that the polymerization of poly (trifluoroethyl methacrylate) was initiated by the ethyl 2-bromopropionate residue radicals, which were generated from the interaction between palladium nanoparticles and ethyl 2-bromopropionate. The comparatively large size of the palladium nanoparticles provided a barrier to chain-growing radicals, promoting the synthesis of ultrahigh molecular weight polymers.
Collapse
Affiliation(s)
- Jian Guan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (J.G.); (X.Y.); (M.H.); (W.H.); (Y.L.); (Z.L.); (H.T.)
| | - Xiaodi Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (J.G.); (X.Y.); (M.H.); (W.H.); (Y.L.); (Z.L.); (H.T.)
| | - Minghui He
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (J.G.); (X.Y.); (M.H.); (W.H.); (Y.L.); (Z.L.); (H.T.)
| | - Wenfeng Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (J.G.); (X.Y.); (M.H.); (W.H.); (Y.L.); (Z.L.); (H.T.)
| | - Ying Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (J.G.); (X.Y.); (M.H.); (W.H.); (Y.L.); (Z.L.); (H.T.)
| | - Zongjian Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (J.G.); (X.Y.); (M.H.); (W.H.); (Y.L.); (Z.L.); (H.T.)
| | - Panpan Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (J.G.); (X.Y.); (M.H.); (W.H.); (Y.L.); (Z.L.); (H.T.)
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of AgriculturalBiological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haodong Tang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (J.G.); (X.Y.); (M.H.); (W.H.); (Y.L.); (Z.L.); (H.T.)
| |
Collapse
|
6
|
Saleem J, Moghal ZKB, McKay G. Prolonged Lifespan of Superhydrophobic Thin Films and Coatings Using Recycled Polyethylene. Polymers (Basel) 2024; 16:1791. [PMID: 39000647 PMCID: PMC11244483 DOI: 10.3390/polym16131791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
High-density polyethylene (HDPE) waste poses a significant environmental challenge due to its non-biodegradable nature and the vast quantities generated annually. However, conventional recycling methods are energy-intensive and often yield low-quality products. Herein, HDPE waste is upcycled into anti-aging, superhydrophobic thin films suitable for outdoor applications. A two-layer spin-casting method combined with heating-induced crosslinking is utilized to produce an exceptionally rough superhydrophobic surface, featuring a root mean square (RMS) roughness of 50 nm, an average crest height of 222 nm, an average trough depth of -264 nm, and a contact angle (CA) of 148°. To assess durability, weathering tests were conducted, revealing the films' susceptibility to degradation under harsh conditions. The films' resistance to environmental factors is improved by incorporating a UV absorber, maintaining their hydrophobic properties and mechanical strength. Our research demonstrates a sustainable method for upcycling waste into high-performance, weather-resistant, superhydrophobic films.
Collapse
Affiliation(s)
- Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 5825, Qatar
| | | | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 5825, Qatar
| |
Collapse
|
7
|
Motta G, Sergis A. A Meta-Analysis Review: Nanoparticles as a Gateway to Optimized Boiling Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1012. [PMID: 38921888 PMCID: PMC11206318 DOI: 10.3390/nano14121012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
Pool boiling is essential in many industrial manufacturing applications. In addition, it can become critical in the journey towards improving energy generation efficiency and accomplishing the goal of net-zero carbon emissions by 2050 via new or traditional power generation applications. The effectiveness of boiling is governed by the bubble cycle. The chemistry and topographical features of the surface being heated have been found to highly impact the boiling performance, such as in the case of pool boiling enhancement when employing hydrophilic and hydrophobic surfaces via nano/micro heater surface modification. Nevertheless, it is questionable how feasible it is to create these surfaces for large-scale applications due to their manufacturing and maintenance cost and complexity. The current work assesses whether the use of nanoparticles in traditional coolants could potentially unlock the mass production of optimised heating surface modification through a metadata literature review analysis. It was discovered that self-assembled layers created as a result of the deposition of nanoparticles in coolants undergoing pool boiling seem to behave most similarly to manufactured hydrophilic surfaces. The creation of enhanced patterned-heat transfer surfaces is shown to be possible via the use of a combination of different nanoparticle suspensions in coolants.
Collapse
Affiliation(s)
- Giulia Motta
- The Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Antonis Sergis
- The Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
8
|
Volta TT, Walters SN, Martin CR. Effect of Organic Cation Adsorption on Ion-Transport Selectivity in a Cation-Permselective Nanopore Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10825-10833. [PMID: 38700247 DOI: 10.1021/acs.langmuir.4c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A key knowledge gap in the emerging field of nanofluidics concerns how the ionic composition and ion-transport properties of a nanoconfined solution differ from those of a contacting bulk solution. We and others have been using potentiometric concentration cells, where a nanopore or nanotube membrane separates salt solutions of differing concentrations to explore this issue. The membranes studied contained a fixed pore/tube wall anionic charge, which ideally would prohibit anions and salt from entering the pore/tube-confined solution. We have been investigating experimental conditions that allow for this ideally permselective cation state to be achieved. Results of potentiometric investigations of a polymeric nanopore membrane (10 ± 2 nm-diameter pores) with anionic charge due to carbonate are presented here. While studies of this type have been reported using alkaline metal and alkaline earth cations, there have been no analogous studies using organic cations. This paper uses a homologous series of tetraalkylammonium ions to address this knowledge gap. The key result is that, in contrast to the inorganic cations, the ideal cation-permselective state could not be obtained under any experimental conditions for the organic cations. We propose that this is because these hydrophobic cations adsorb onto the polymeric pore walls. This makes ideality impossible because each adsorbed alkylammonium must bring a charge-balancing anion, Cl-, with it into the nanopore solution. The alkylammonium adsorption that occurred was confirmed and quantified by using surface contact angle measurements.
Collapse
Affiliation(s)
- Thomas T Volta
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Stevie N Walters
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Charles R Martin
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
9
|
Wang F, Nestler B. Wetting and Contact-Angle Hysteresis: Density Asymmetry and van der Waals Force. PHYSICAL REVIEW LETTERS 2024; 132:126202. [PMID: 38579226 DOI: 10.1103/physrevlett.132.126202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 04/07/2024]
Abstract
A droplet depositing on a solid substrate leads to the wetting phenomenon, such as dew on plant leaves. On an ideally smooth substrate, the classic Young's law has been employed to describe the wetting effect. However, no real substrate is ideally smooth at the microscale. Given this fact, we introduce a surface composition concept to scrutinize the wetting mechanism via considering the liquid-gas density asymmetry and the fluid-solid van der Waals interaction. The current concept enables one to comprehend counterintuitive phenomenon of contact-angle hysteresis on a smooth substrate and increase of contact angle with temperature as well as gas bubble wetting.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Applied Materials-Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Britta Nestler
- Institute for Applied Materials-Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133 Karlsruhe, Germany
| |
Collapse
|
10
|
Cheng B, Zheng Z, Yin X. Recent Progress on the Air-Stable Battery Materials for Solid-State Lithium Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307726. [PMID: 38072644 PMCID: PMC10853717 DOI: 10.1002/advs.202307726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/02/2023] [Indexed: 02/10/2024]
Abstract
Solid-state lithium metal batteries (SSLMBs) offer numerous advantages in terms of safety and theoretical specific energy density. However, their main components namely lithium metal anode, solid-state electrolyte, and cathode, show chemical instability when exposed to humid air, which results in low capacities and poor cycling stability. Recent studies have shown that bioinspired hydrophobic materials with low specific surface energies can protect battery components from corrosion caused by humid air. Air-stable inorganic materials that densely cover the surface of battery components can also provide protection, which improves the storage stability of the battery components, broadens their processing conditions, and ultimately decreases their processing costs while enhancing their safety. In this review, the mechanism behind the surface structural degradation of battery components and the resulting consequences are discussed. Subsequently, recent strategies are reviewed to address this issue from the perspectives of lithium metal anodes, solid-state electrolytes, and cathodes. Finally, a brief conclusion is provided on the current strategies and fabrication suggestions for future safe air-stable SSLMBs.
Collapse
Affiliation(s)
- Bingbing Cheng
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing TechnologyWuhan Textile UniversityWuhan430073China
| | - Zi‐Jian Zheng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer MaterialsHubei UniversityWuhan430062China
| | - Xianze Yin
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing TechnologyWuhan Textile UniversityWuhan430073China
| |
Collapse
|
11
|
Weiand E, Rodriguez-Ropero F, Roiter Y, Koenig PH, Angioletti-Uberti S, Dini D, Ewen JP. Effects of surfactant adsorption on the wettability and friction of biomimetic surfaces. Phys Chem Chem Phys 2023; 25:21916-21934. [PMID: 37581271 DOI: 10.1039/d3cp02546b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The properties of solid-liquid interfaces can be markedly altered by surfactant adsorption. Here, we use molecular dynamics (MD) simulations to study the adsorption of ionic surfactants at the interface between water and heterogeneous solid surfaces with randomly arranged hydrophilic and hydrophobic regions, which mimic the surface properties of human hair. We use the coarse-grained MARTINI model to describe both the hair surfaces and surfactant solutions. We consider negatively-charged virgin and bleached hair surface models with different grafting densities of neutral octadecyl and anionic sulfonate groups. The adsorption of cationic cetrimonium bromide (CTAB) and anionic sodium dodecyl sulfate (SDS) surfactants from water are studied above the critical micelle concentration. The simulated adsorption isotherms suggest that cationic surfactants adsorb to the surfaces via a two-stage process, initially forming monolayers and then bilayers at high concentrations, which is consistent with previous experiments. Anionic surfactants weakly adsorb via hydrophobic interactions, forming only monolayers on both virgin and medium bleached hair surfaces. We also conduct non-equilibrium molecular dynamics simulations, which show that applying cationic surfactant solutions to bleached hair successfully restores the low friction seen with virgin hair. Friction is controlled by the combined surface coverage of the grafted lipids and the adsorbed CTAB molecules. Treated surfaces containing monolayers and bilayers both show similar friction, since the latter are easily removed by compression and shear. Further wetting MD simulations show that bleached hair treated with CTAB increases the hydrophobicity to similar levels seen for virgin hair. Treated surfaces containing CTAB monolayers with the tailgroups pointing predominantly away from the surface are more hydrophobic than bilayers due to the electrostatic interactions between water molecules and the exposed cationic headgroups.
Collapse
Affiliation(s)
- Erik Weiand
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK.
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Thomas Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Francisco Rodriguez-Ropero
- Corporate Functions Analytical and Data & Modeling Sciences, Mason Business Center, The Procter and Gamble Company, Mason, 45040 Ohio, USA
| | - Yuri Roiter
- Corporate Functions Analytical and Data & Modeling Sciences, Mason Business Center, The Procter and Gamble Company, Mason, 45040 Ohio, USA
| | - Peter H Koenig
- Corporate Functions Analytical and Data & Modeling Sciences, Mason Business Center, The Procter and Gamble Company, Mason, 45040 Ohio, USA
| | - Stefano Angioletti-Uberti
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Thomas Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Department of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK.
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Thomas Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - James P Ewen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK.
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
- Thomas Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| |
Collapse
|
12
|
Ahmad N, Rasheed S, Nabeel MI, Ahmad W, Mohyuddin A, Musharraf SG, Najam-Ul-Haq M, Ghouri ZK, Hussain D. Stearic Acid and CeO 2 Nanoparticles Co-functionalized Cotton Fabric with Enhanced UV-Block, Self-Cleaning, Water-Repellent, and Antibacterial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11571-11581. [PMID: 37549018 DOI: 10.1021/acs.langmuir.3c01002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Superhydrophobic cotton fabrics with multifunctional features are highly desired in domestic and outdoor applications. However, the short coating longevity and hazardous reagents significantly reduce their commercial-scale applications. Herein, we introduce CeO2 nanoparticles and stearic acid (SA) to develop a fluorine-free, durable superhydrophobic cotton fabric that mimics the lotus effect. The pristine cotton fabric is treated with APTES-functionalized CeO2 nanoparticles by immersion followed by a dip and drying treatment with a 2% myristic acid solution. This sequential process creates a stable superhydrophobic cotton fabric (SA/CeO2-cotton fabric) with a water contact angle of 158° and a water sliding angle of 5°. The results are attributed to the combined effect of CeO2 nanoparticles and stearic acid that enhances surface roughness and reduces surface sorption energy. APTES facilitates the durable attachment of CeO2 nanoparticles and stearic acid to the cotton fabric. The modified cotton fabric is characterized by advanced analytical tools, demonstrating enhanced superhydrophobicity, self-cleaning, and antiwater absorption properties. Additionally, it exhibits remarkable UV-blocking (UPF 542) and antibacterial properties. The designed superhydrophobic cotton fabric unveils good mechanical, thermal, and chemical durability. The proposed strategy is simple, green, and economical and can be used commercially for functional fabric preparation.
Collapse
Affiliation(s)
- Naseer Ahmad
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sufian Rasheed
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Ikram Nabeel
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Waqas Ahmad
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University, Multan 60000, Pakistan
| | - Syed Ghulam Musharraf
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zafar Khan Ghouri
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
13
|
Qiu Y, Xu K, Pahlavan AA, Juanes R. Wetting transition and fluid trapping in a microfluidic fracture. Proc Natl Acad Sci U S A 2023; 120:e2303515120. [PMID: 37216501 PMCID: PMC10235991 DOI: 10.1073/pnas.2303515120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/16/2023] [Indexed: 05/24/2023] Open
Abstract
Immiscible fluid-fluid displacement in confined geometries is a fundamental process occurring in many natural phenomena and technological applications, from geological CO2 sequestration to microfluidics. Due to the interactions between the fluids and the solid walls, fluid invasion undergoes a wetting transition from complete displacement at low displacement rates to leaving a film of the defending fluid on the confining surfaces at high displacement rates. While most real surfaces are rough, fundamental questions remain about the type of fluid-fluid displacement that can emerge in a confined, rough geometry. Here, we study immiscible displacement in a microfluidic device with a precisely controlled structured surface as an analogue for a rough fracture. We analyze the influence of the degree of surface roughness on the wetting transition and the formation of thin films of the defending liquid. We show experimentally, and rationalize theoretically, that roughness affects both the stability and dewetting dynamics of thin films, leading to distinct late-time morphologies of the undisplaced (trapped) fluid. Finally, we discuss the implications of our observations for geologic and technological applications.
Collapse
Affiliation(s)
- Yu Qiu
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ke Xu
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Energy and Resources Engineering, Peking University, Beijing100871, China
| | - Amir A. Pahlavan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT06511
| | - Ruben Juanes
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
14
|
Patrícia da Silva Ramos I, Gavazzoni C, Lazzari D, Brito C. Hierarchical structured surfaces enhance the contact angle of the hydrophobic (meta-stable) state. J Chem Phys 2023; 158:2882244. [PMID: 37093992 DOI: 10.1063/5.0146948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
The relation between wetting properties and geometric parameters of fractal surfaces are widely discussed on the literature and, however, there are still divergences on this topic. Here we propose a simple theoretical model to describe the wetting properties of a droplet of water placed on a hierarchical structured surface and test the predictions of the model and the dependence of the droplet wetting state on the initial conditions using simulation of the 3-spin Potts model. We show that increasing the auto-similarity level of the hierarchy - called n - does not affect considerably the stable wetting state of the droplet but increases its contact angle. Simulations also explicit the existence of metastable states on this type of surfaces and shows that, when n increases, the metastability becomes more pronounced. Finally we show that the fractal dimension of the surface is not a good predictor of the contact angle of the droplet.
Collapse
Affiliation(s)
- Iara Patrícia da Silva Ramos
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristina Gavazzoni
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Davi Lazzari
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Zhang H, Wang X, Chen M, Dong X, Tu W. Multistage Modulation Formation of Hydrophilic-Hydrophobic Boron Carbon Nitride Nanomaterials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5230-5237. [PMID: 37000560 DOI: 10.1021/acs.langmuir.3c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Boron carbon nitride (BCN) ternary compounds are attractive due to their wide applications in adsorption, catalysis, protective coatings, etc. A simple way is provided to synthesize BCN materials with multistage modulation of hydrophilic-hydrophobic properties. Hydrophilic BCN nanoparticles with a contact angle of 31° and nearly superhydrophobic BCN sheets with a contact angle of 145° are obtained. The participation of a CuO additive in the synthesis process has the role of tuning morphologies, components, and properties of BCN materials. The addition of CuO would improve the hydrophobicity of BCN due to its microstructure with enhanced surface roughness. The interaction between melamine and boric acid on the surface of CuO(111) is investigated by first-principles calculations based on density functional theory (DFT). The tuned BCN materials have different photoelectric properties also, and their performance as photocatalysts has been verified in photocatalytic reactions for hydrogen from water. The achieved uniform hydrophilic BCN nanoparticles and hydrophobic BCN sheets have the potential for further practical applications.
Collapse
Affiliation(s)
- Haotian Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaobing Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfeng Chen
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianfeng Dong
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weixia Tu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Marmo AC, Grunlan MA. Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility. ACS Macro Lett 2023; 12:172-182. [PMID: 36669481 PMCID: PMC10848296 DOI: 10.1021/acsmacrolett.2c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Silicones have a long history of use in biomedical devices, with unique properties stemming from the siloxane (Si-O-Si) backbone that feature a high degree of flexibility and chemical stability. However, surface, rheological, mechanical, and electrical properties of silicones can limit their utility. Successful modification of silicones to address these limitations could lead to superior and new biomedical devices. Toward improving such properties, recent additive strategies have been leveraged to modify biomedical silicones and are highlighted herein.
Collapse
Affiliation(s)
- Alec C. Marmo
- Department
of Materials Science and Engineering Texas
A&M University, College
Station, Texas 77843-3003, United States
| | - Melissa A. Grunlan
- Department
of Biomedical Engineering, Department of Materials Science and Engineering,
Department of Chemistry Texas A&M University, College Station, Texas 77843-3003, United
States
| |
Collapse
|
17
|
Vráblová M, Smutná K, Koutník I, Marková D, Vrábl D, Górecki KM, Žebrák R. A novel approach for measuring membrane permeability for organic compounds via surface plasmon resonance detection. CHEMOSPHERE 2023; 312:137165. [PMID: 36356810 DOI: 10.1016/j.chemosphere.2022.137165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Well-known methods for measuring permeability of membranes include static or flow diffusion chambers. When studying the effects of organic compounds on plants, the use of such model systems allows to investigate xenobiotic behavior at the cuticular barrier level and obtain an understanding of the initial penetration processes of these substances into plant leaves. However, the use of diffusion chambers has disadvantages, including being time-consuming, requiring sampling, or a sufficiently large membrane area, which cannot be obtained from all types of plants. Therefore, we propose a new method based on surface plasmon resonance imaging (SPRi) to enable rapid membrane permeability evaluation. This study presents the methodology for measuring permeability of isolated cuticles for organic compounds via surface plasmon resonance detection, where the selected model analyte was the widely used pesticide metazachlor. Experiments were performed on the cuticles of Ficus elastica, Citrus pyriformis, and an artificial PES membrane, which is used in passive samplers for the detection of xenobiotics in water and soils. The average permeability for metazachlor was 5.23 × 10-14 m2 s-1 for C. pyriformis, 1.34 × 10-13 m2 s-1 for F. elastica, and 7.74 × 10-12 m2 s-1 for the PES membrane. We confirmed that the combination of a flow-through diffusion cell and real-time optical detection of transposed molecules represents a promising method for determining the permeability of membranes to xenobiotics occurring in the environment. This is necessary for determining a pesticide dosage in agriculture, selecting suitable membranes for passive samplers in analytics, testing membranes for water treatment, or studying material use of impregnated membranes.
Collapse
Affiliation(s)
- Martina Vráblová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Kateřina Smutná
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Ivan Koutník
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic; VSB-Technical University of Ostrava, Faculty of Materials Science and Technology, 17. listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Dominika Marková
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic; VSB-Technical University of Ostrava, Faculty of Materials Science and Technology, 17. listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Daniel Vrábl
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic; University of Ostrava, Faculty of Science, Chittussiho 10, 710 00, Ostrava, Czech Republic.
| | - Kamil Maciej Górecki
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Radim Žebrák
- Dekonta Inc., Dřetovice 109, 273 42, Stehelčeves, Czech Republic.
| |
Collapse
|
18
|
Hu G, Wang S, Yu J, Zhang J, Sun Y, Kong D. A facile and scalable patterning approach for ultrastretchable liquid metal features. LAB ON A CHIP 2022; 22:4933-4940. [PMID: 36408775 DOI: 10.1039/d2lc00872f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid metals represent an attractive class of compliant conductors featuring metallic conductivity and inherent deformability. The widespread implementation of liquid metal conductors in stretchable electronics is currently hindered by the lack of a facile patterning approach. In this study, we introduce a facile and scalable patterning approach to create liquid metal features on an elastomer substrate. A screen-printed Ag nanoflake pattern is employed as a template for the subsequent selective coating of a liquid metal layer. The as-prepared liquid metal conductors show a bulk-level conductivity of ∼2.7 × 104 S cm-1, an ultrahigh stretchability of up to 700% tensile strain, and excellent electromechanical durability. The practical suitability is demonstrated by the successful fabrication of an ultradeformable ribbon cable and a smart sensing glove. The efficient and economical access to ultrastretchable liquid metal features may open up a broad range of emerging applications in soft electronic devices and systems.
Collapse
Affiliation(s)
- Gaohua Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China.
| | - Shaolei Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China.
| | - Jiyuan Yu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China.
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China.
| | - Yuping Sun
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China.
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China.
- National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
19
|
Increasing in the heat resistance efficiency of filters using hydrophobic PVA/PEO/PTFE/SA nanofiber and PTFE nanoparticle composite. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Ho WF, Wong KK, Lee MH, Thomas JL, Chang YC, Wu SC, Hsu HC, Lin HY. Biocompatibility of a Ti-Rich Medium-Entropy Alloy with Glioblastoma Astrocytoma Cells. Int J Mol Sci 2022; 23:ijms232314552. [PMID: 36498880 PMCID: PMC9741175 DOI: 10.3390/ijms232314552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Titanium and titanium alloys are widely used in medical devices and implants; thus, the biocompatibility of these metals is of great importance. In this study, glioblastoma astrocytoma cellular responses to Ti65-Zr18-Nb16-Mo1 (Ti65M, metastable medium-entropy alloy), Ti-13Nb-7Sn-4Mo (TNSM, titanium alloy), and commercially pure titanium (CP-Ti) were studied. Several physical parameters (crystal phase structure, surface roughness and hardness) of the titanium alloys were measured, and the correlation with the cellular viability was investigated. Finally, the relative protein expression in cellular proliferation pathways was measured and compared with mRNA expression assessed with quantitative real-time reverse transcription polymerase chain reaction assay (qRT-PCR).
Collapse
Affiliation(s)
- Wen-Fu Ho
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
- Correspondence: (W.-F.H.); (H.-Y.L.)
| | - Ka-Kin Wong
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - James L. Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ya-Chun Chang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Shih-Ching Wu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Hsueh-Chuan Hsu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
- Correspondence: (W.-F.H.); (H.-Y.L.)
| |
Collapse
|
21
|
Tian Y, Kim W, Kiziltas A, Mielewski D, Argento A. Effects of interfacial dynamics on the damping of biocomposites. Sci Rep 2022; 12:20042. [PMID: 36414651 PMCID: PMC9681862 DOI: 10.1038/s41598-022-23355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
A damping model is developed based on the mechanism of interfacial interaction in nanoscale particle reinforced composites. The model includes the elasticity of the materials and the effects of interfacial adhesion hysteresis. Specific results are given for the case of bio-based PA610 polyamide reinforced by nanocrystalline cellulose (CNC), based on a previous study that showed this composite possesses very high damping. The presence of hydrogen bonding at the interface between the particle and matrix and the large interfacial area due to the filler's nano size are shown to be the main causes of the high damping enhancement. The influence of other parameters, such as interfacial distance and stiffness of the matrix materials are also discussed. The modeling work can be used as a guide in designing composites with good damping properties.
Collapse
Affiliation(s)
- Yufeng Tian
- grid.266717.30000 0001 2154 7652Department of Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 USA
| | - Wonsuk Kim
- grid.266717.30000 0001 2154 7652Department of Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 USA
| | - Alper Kiziltas
- grid.417922.b0000 0001 0720 9454Ford Motor Company, Sustainability and Emerging Materials, Dearborn, MI 48128 USA
| | - Deborah Mielewski
- grid.417922.b0000 0001 0720 9454Ford Motor Company, Sustainability and Emerging Materials, Dearborn, MI 48128 USA
| | - Alan Argento
- grid.266717.30000 0001 2154 7652Department of Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 USA
| |
Collapse
|
22
|
Muslimov AE, Gadzhiev MK, Kanevsky VM. Synthesis of Superhydrophobic Barium Hexaferrite Coatings with Low Magnetic Hardness. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7865. [PMID: 36363455 PMCID: PMC9655212 DOI: 10.3390/ma15217865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Using the multifunctional material barium hexaferrite as an example, the prospects for treatment at a quasi-equilibrium low temperature in an open atmosphere to form superhydrophobic magnetic coatings with pronounced crystalline and magnetic anisotropy have been demonstrated for the first time. The relationship between plasma treatment conditions, structural-phase composition, morphology, and superhydrophobic properties of (0001) films of barium hexaferrite BaFe12O19 on C-sapphire is studied. X-ray photoelectron spectroscopy (XPS), X-ray diffractometry (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), as well as magnetometry and moisture resistance analysis, were used as research methods. During plasma treatment with a mass-average temperature of 8-10 kK, intense evaporation and surface melting were observed, and texturing of the deposit along (0001) is found. When the treatment temperature was reduced to 4-5 kK, the evaporation of the material was minimized and magnetic and crystal anisotropy increased. However, the increase in the size of crystallites was accompanied by the transition of oxygen atoms from lattice nodes to interstitial positions. All samples exhibited low coercive fields below 500 Oe, associated with the frustration of the magnetic subsystem. Features of growth of materials with a wurtzite structure were used to form a superhydrophobic coating of barium hexaferrite. Plasma treatment regimes for obtaining self-cleaning coatings are proposed. The use of magnetically hard barium hexaferrite to radically change the properties of a coating is demonstrated herein as an example.
Collapse
Affiliation(s)
- Arsen E. Muslimov
- Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Shubnikov Institute of Crystallography, 119333 Moscow, Russia
| | - Makhach Kh Gadzhiev
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Vladimir M. Kanevsky
- Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Shubnikov Institute of Crystallography, 119333 Moscow, Russia
| |
Collapse
|
23
|
Sulania I, Kumar P, Priya P, Bhasker H, Singh U, Karn RK, Tyagi C, Yadav R. Formation of self-organized nano-dimensional structures on InP surfaces using ion irradiation and their wettability: A study based on experimental and theoretical concepts of surface. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Dhanabalan SS, Arun T, Periyasamy G, N D, N C, Avaninathan SR, Carrasco MF. Surface engineering of high-temperature PDMS substrate for flexible optoelectronic applications. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Yang S, Zhang S, Qu Z, Xiu T, Hu Y, Chen C, Lv N. Reducing cherry rain-cracking: Development and characterization of cold-water fish gelatin films reinforced by dual rod-spherical nanoscale structures formed under magnetic fields. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Pham DQ, Gangadoo S, Berndt CC, Chapman J, Zhai J, Vasilev K, Truong VK, Ang ASM. Antibacterial Longevity of a Novel Gallium Liquid Metal/Hydroxyapatite Composite Coating Fabricated by Plasma Spray. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18974-18988. [PMID: 35416647 DOI: 10.1021/acsami.2c03695] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydroxyapatite (HAp)-coated metallic implants are known for their excellent bioactivity and osteoconductivity. However, infections associated with the microstructure of the HAp coatings may lead to implant failures as well as increased morbidity and mortality. This work addresses the concerns about infections by developing novel composite coatings of HAp and gallium liquid metal (GaLM) using atmospheric plasma spray (APS) as the coating technique. Five weight percent Ga was mixed into a commercially supplied HAp powder using an orbital shaker; then, the HAp-Ga particle feedstock was coated onto Ti6Al4V substrates using the APS technique. The X-ray diffraction results indicated that Ga did not form any Ga-related phases in either the HAp-Ga powder or the respective coating. The GaLM filled the pores of the HAp coating presented both on the top surface and within the coating, especially at voids and cracks, to prevent failures of the coating at these locations. The wettability of the surface was changed from hydrophobic for the HAp coating to hydrophilic for the HAp-Ga composite coating. Finally, the HAp-Ga coating presented excellent antibacterial efficacies against both initial attachments and established biofilms generated from methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa after 18 h and 7 days of incubation in comparison to the control HAp coating. This study shows that GaLM improves the antibacterial properties of HAp-based coatings without sacrificing the beneficial properties of conventional HAp coatings. Thus, the HAp-Ga APS coating is a viable candidate for antibacterial coatings.
Collapse
Affiliation(s)
- Duy Quang Pham
- ARC Training Centre for Surface Engineering for Advanced Materials (SEAM), Department of Mechanical Engineering & Product Design Engineering, School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sheeana Gangadoo
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Christopher C Berndt
- ARC Training Centre for Surface Engineering for Advanced Materials (SEAM), Department of Mechanical Engineering & Product Design Engineering, School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - James Chapman
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Andrew S M Ang
- ARC Training Centre for Surface Engineering for Advanced Materials (SEAM), Department of Mechanical Engineering & Product Design Engineering, School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
27
|
Zhao M, Chen M, Zong Y, Li Z. Modification of fabric via co-grafted with fluorine-free carbene polymer and its hydrophobicity. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Zhang B, Fu E, Shi H, Zhang X, Xiao Z. Improvement in High Temperature‐Resistant Performance and Waterproof Property of Combustible Cartridge Case with BEMS Resin Based Composite Coating. PROPELLANTS EXPLOSIVES PYROTECHNICS 2022. [DOI: 10.1002/prep.202100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bin Zhang
- Key Laboratory of Special Energy Materials Ministry of Education School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Enfa Fu
- Key Laboratory of Special Energy Materials Ministry of Education School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Haiyue Shi
- Key Laboratory of Special Energy Materials Ministry of Education School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Xiang Zhang
- Key Laboratory of Special Energy Materials Ministry of Education School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Zhenggang Xiao
- Key Laboratory of Special Energy Materials Ministry of Education School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| |
Collapse
|
29
|
Liu Y, Liu S, Liu J, Zheng X, Tang K. Effect of gelatin type on the structure and properties of microfibrillated cellulose reinforced gelatin edible films. J Appl Polym Sci 2022. [DOI: 10.1002/app.52119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yanchun Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou Henan China
| | - Shujie Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou Henan China
| | - Jie Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou Henan China
| | - Xuejing Zheng
- School of Materials Science and Engineering Zhengzhou University Zhengzhou Henan China
| | - Keyong Tang
- School of Materials Science and Engineering Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
30
|
Chauhan D, Singh N, Afreen S, Talreja N, Ashfaq M, Sankararamakrishnan N, Chaudhary GR. A thermoresponsive CA-PNIPAM-based electrospun nanofibrous membrane for oil/water separation. NEW J CHEM 2022. [DOI: 10.1039/d2nj04331a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The prepared electrospun CA-P fibrous membrane/mat has the potential ability for high-efficiency oil/water separation.
Collapse
Affiliation(s)
- Divya Chauhan
- Department of Chemistry, Punjab University, Chandigarh, India
| | - Neha Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
- Department of Chemistry, Banasthali University, Banasthali, India
| | - Shagufta Afreen
- CAS Key Laboratory of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Neetu Talreja
- Department of Science, Faculty of Science and Technology, Alliance University, Anekal, Bengaluru, Karnataka 562 106, India
| | - Mohammad Ashfaq
- University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India
- Department of Biotechnology, Chandigarh University, Gharaun, Mohali, Punjab, 140413, India
| | | | | |
Collapse
|
31
|
Vacher R, de Wijn AS. Molecular-Dynamics Simulations of the Emergence of Surface Roughness in a Polymer under Compression. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7327. [PMID: 34885480 PMCID: PMC8658709 DOI: 10.3390/ma14237327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Roughness of surfaces is both surprisingly ubiquitous on all length scales and extremely relevant practically. The appearance of multi-scale roughness has been linked to avalanches and plastic deformation in metals. However, other, more-complex materials have mechanisms of plasticity that are significantly different from those of metals. We investigated the emergence of roughness in a polymer under compression. We performed molecular-dynamics simulations of a slab of solid polyvinyl alcohol that was compressed bi-axially, and we characterised the evolution of the surface roughness. We found significantly different behaviour than what was previously observed in similar simulations of metals. We investigated the differences and argue that the visco-elasticity of the material plays a crucial role.
Collapse
Affiliation(s)
- Robin Vacher
- SINTEF, SINTEF Industry Materials and Nanotechnology, 7034 Trondheim, Norway
- Porelab and Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Astrid S. de Wijn
- Porelab and Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
32
|
Poddighe M, Innocenzi P. Hydrophobic Thin Films from Sol-Gel Processing: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6799. [PMID: 34832200 PMCID: PMC8620172 DOI: 10.3390/ma14226799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022]
Abstract
Fabrication of hydrophobic thin films from a liquid phase is a hot topic with critical technological issues. Interest in the production of hydrophobic surfaces is growing steadily due to their wide applications in several industrial fields. Thin films from liquid phases can be deposited on different types of surfaces using a wide variety of techniques, while the design of the precursor solution offers the possibility of fine-tuning the properties of the hydrophobic coating layers. A general trend is the design of multifunctional films, which have different properties besides being hydrophobic. In the present review, we have described the synthesis through sol-gel processing of hydrophobic films enlightening the main achievements obtained in the field.
Collapse
Affiliation(s)
| | - Plinio Innocenzi
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Biomedical Sciences, University of Sassari, CR-INSTM, Viale San Pietro, 07100 Sassari, Italy;
| |
Collapse
|
33
|
He M, Wang J, Chen M. Recent progresses on thermal–hydraulics evaluations of accident tolerant fuel cladding materials. ANN NUCL ENERGY 2021. [DOI: 10.1016/j.anucene.2021.108391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Xu L, Jin H, Wu D, Liu B, Zhang M. Superhydrophobic polystyrene coating based on phase separation of raspberry structure particle. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Kwon TW, Jang J, Sim GH, Park SH, Ha MY. Wetting Behavior of a Surface with Dual-Scale Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7995-8006. [PMID: 34165317 DOI: 10.1021/acs.langmuir.1c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Theoretical and numerical studies were conducted to investigate the transitional interpillar spacing for dual-scale structures, where wetting transition between the Wenzel and Cassie-Baxter states occurs in the primary and secondary pillars. A theoretical formula was derived for the transitional interpillar spacing based on the continuum picture of water. Molecular dynamics (MD) simulations were carried out by varying the interpillar spacing for the primary pillars for single- and dual-scale structures with various pillar heights. The results obtained from the theoretical formula agreed reasonably well with the results obtained from MD simulations, especially when the primary pillar height was relatively high. The transitional interpillar spacing increases as the pillar height and the number of secondary pillars increase. The effect of the secondary pillars on the transitional interpillar spacing was also evaluated using the difference in the grand potentials between the Wenzel and Cassie-Baxter states. These results show that the dual-scale structures increase the transitional interpillar spacing with an increase in the surface hydrophobicity.
Collapse
Affiliation(s)
- Tae Woo Kwon
- Rolls-Royce and Pusan National University Technology Centre in Thermal Management, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Joonkyung Jang
- Department of Nanoenergy Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Gyu Hyoung Sim
- EcoEnergy Research Institute, Cheyukgongwon-ro 6beon-gil, Gangseo-gu, Busan 46703, Republic of Korea
| | - Seong Hyun Park
- Rolls-Royce and Pusan National University Technology Centre in Thermal Management, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Man Yeong Ha
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
36
|
Zhang K, Zhang J, Wang F, Kong D. Stretchable and Superwettable Colorimetric Sensing Patch for Epidermal Collection and Analysis of Sweat. ACS Sens 2021; 6:2261-2269. [PMID: 34048231 DOI: 10.1021/acssensors.1c00316] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretchable and wearable sensors allow intimate integration with the human body for health and fitness monitoring. In addition to the acquisition of various physical parameters, quantitative analysis of chemical biomarkers present in sweat may provide vital insights into the physiological state of an individual. A widely investigated system utilizes electrochemical techniques for continuous monitoring of these biomarkers. The required supporting electronics and batteries are often challenging to form a deformable system. In this study, an intrinsically stretchable sensing patch is developed with compliant mechanical properties for conformal attachment to the skin and reliable collection of sweat. In these patches, superhydrophilic colorimetric assays consisting of thermoplastic polyurethane nanofiber textiles decorated with silica nanoparticles are assembled over a styrene-ethylene-butylene-styrene-based superhydrophobic substrate, thereby generating a large wettability contrast to efficiently concentrate the sweat. The system supports multiplexed colorimetric analysis of sweat to quantify pH and ion concentrations with images acquired using smartphones, in which the influence of ambient lighting conditions is largely compensated with a set of reference color markers. Successful demonstrations of in situ analysis of sweat after physical exercises effectively illustrate the practical suitability of the sensing patch, which is attractive for advanced health monitoring, clinical diagnostics, and competitive sports.
Collapse
Affiliation(s)
- Kuikui Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Fenfang Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
37
|
Employment of Micro- and Nano-WS2 Structures to Enhance the Tribological Properties of Copper Matrix Composites. LUBRICANTS 2021. [DOI: 10.3390/lubricants9050053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Friction and wear are responsible for around 23% of the energy consumption in transportation, manufacturing, power generation, and residential sectors. Employed components are exposed to a wide range of operational conditions, therefore a suitable material design is fundamental to decreasing tribological issues, energy consumption, costs, and environmental impact. This study aims to analyze the effect of different solid lubricants on the suitability of copper matrix composites (CuMCs) as a potential solution to reduce the depletion of sliding electrical contacts working under extreme conditions. CuMCs samples are produced by cold-pressing and sintering to merge a high electrical conductivity with the lubricant effect supplied by different species, namely tungsten disulfide micro-powder (WS2), inorganic fullerene-like (IF) tungsten disulfide nanoparticles, and graphene nanoplatelets (GNP). The crystalline structure of the pristine and composite materials is characterized via XRD. The electrical tests show a small decrease of conductivity compared to pure copper, due to the insulating effect of WS2; however, the measured values are still adequate for conduction purposes. Micro-scratch and wear tests highlight the positive effect of the combination of WS2 structures and GNP. The friction coefficient reduction leads to the possibility of extending the lifetime of the components.
Collapse
|
38
|
Eftekhari BS, Eskandari M, Janmey PA, Samadikuchaksaraei A, Gholipourmalekabadi M. Conductive chitosan/polyaniline hydrogel with cell-imprinted topography as a potential substrate for neural priming of adipose derived stem cells. RSC Adv 2021; 11:15795-15807. [PMID: 35481217 PMCID: PMC9029165 DOI: 10.1039/d1ra00413a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Biophysical characteristics of engineered scaffolds such as topography and electroconductivity have shown potentially beneficial effects on stem cell morphology, proliferation, and differentiation toward neural cells. In this study, we fabricated a conductive hydrogel made from chitosan (CS) and polyaniline (PANI) with induced PC12 cell surface topography using a cell imprinting technique to provide both topographical properties and conductivity in a platform. The engineered hydrogel's potential for neural priming of rat adipose-derived stem cells (rADSCs) was determined in vitro. The biomechanical analysis revealed that the electrical conductivity, stiffness, and hydrophobicity of flat (F) and cell-imprinted (CI) substrates increased with increased PANI content in the CS/PANI scaffold. The conductive substrates exhibited a lower degradation rate compared to non-conductive substrates. According to data obtained from F-actin staining and AFM micrographs, both CI(CS) and CI(CS-PANI) substrates induced the morphology of rADSCs from their irregular shape (on flat substrates) into the elongated and bipolar shape of the neuronal-like PC12 cells. Immunostaining analysis revealed that both CI(CS) and CI (CS-PANI) significantly upregulated the expression of GFAP and MAP2, two neural precursor-specific genes, in rADSCs compared with flat substrates. Although the results reveal that both cell-imprinted topography and electrical conductivity affect the neural lineage differentiation, some data demonstrate that the topography effects of the cell-imprinted surface have a more critical role than electrical conductivity on neural priming of ADSCs. The current study provides new insight into the engineering of scaffolds for nerve tissue engineering.
Collapse
Affiliation(s)
- Behnaz Sadat Eftekhari
- Department of Biomedical Engineering, Amirkabir University of Technology 424 Hafez Ave Tehran 15875-4413 Iran +98 21 6454 23 62
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania 1010 Vagelos Research Laboratories, 3340 Smith Walk Philadelphia PA 19104-6383 USA +1 215 573 6815 +1 215 573 7380
| | - Mahnaz Eskandari
- Department of Biomedical Engineering, Amirkabir University of Technology 424 Hafez Ave Tehran 15875-4413 Iran +98 21 6454 23 62
| | - Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania 1010 Vagelos Research Laboratories, 3340 Smith Walk Philadelphia PA 19104-6383 USA +1 215 573 6815 +1 215 573 7380
| | | | - Mazaher Gholipourmalekabadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
39
|
Moon W, Park JH, Lee HA, Lim BS, Chung SH. Influence of Additive Firing on the Surface Characteristics, Streptococcus mutans Viability and Optical Properties of Zirconia. MATERIALS 2021; 14:ma14051286. [PMID: 33800321 PMCID: PMC7962646 DOI: 10.3390/ma14051286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to observe whether the repetitive firing of dental zirconia caused changes in surface characteristics, S. mutans viability, and optical properties of zirconia. Dental zirconia blocks were sintered and randomly distributed into seven experimental groups: F0–F6. Except for F0, which only went through sintering, the additive firing was performed in order for F1–F6. Surface roughness, contact angle, S. mutans viability by fluorescence, and translucency parameter were measured. They were all highest after sintering (F0) and decreased after additive firings (F1–F6). The additive firing of zirconia after sintering decreased surface roughness, contact angle, S. mutans viability, and translucency. The number of firings after the first firing was not found to be critical in surface characteristics, S. mutans viability, and optical property. Changes in surface characteristics might have led to a decrease in S. mutans viability, while the change of translucency was not clinically significant. This implies that additive firing may prevent secondary caries under zirconia restorations, not compromising esthetic appearance.
Collapse
Affiliation(s)
| | | | | | - Bum-Soon Lim
- Correspondence: (B.-S.L.); (S.H.C.); Tel.: +82-2-740-8692 (B.-S.L.); +82-2-740-8694 (S.H.C.)
| | - Shin Hye Chung
- Correspondence: (B.-S.L.); (S.H.C.); Tel.: +82-2-740-8692 (B.-S.L.); +82-2-740-8694 (S.H.C.)
| |
Collapse
|
40
|
Oh JH, Park CH. The Effect of Fiber Type and Yarn Diameter on Superhydrophobicity, Self-Cleaning Property, and Water Spray Resistance. Polymers (Basel) 2021; 13:817. [PMID: 33800087 PMCID: PMC7962189 DOI: 10.3390/polym13050817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we proved that micro/micro hierarchical structures are enough to achieve a superhydrophobic surface using polydimethylsiloxane (PDMS) dip-coating. Furthermore, the effect of fiber type and yarn diameter on superhydrophobicity and water spray resistance was investigated. Polyester fabrics with two types of fibers (staple fabric and filament) and three types of yarn diameters (177D, 314D, and 475D) were used. The changes in the surface properties and chemical composition were investigated. Static contact angles and shedding angles were measured for superhydrophobicity, and the self-cleaning test was conducted. Water spray repellency was also tested, as well as the water vapor transmission rate and air permeability. The PDMS-coated staple fabric showed better superhydrophobicity and oleophobicity than the PDMS-coated filament fabric, while the filament fabric showed good self-cleaning property and higher water spray repellency level. When the yarn diameter increased, the fabrics needed higher PDMS concentrations and longer coating durations for uniform coating. The water vapor transmission rate and air permeability did not change significantly after coating. Therefore, the superhydrophobic micro/micro hierarchical fabrics produced using the simple method of this study are more practical and have great potential for mass production than other superhydrophobic textiles prepared using the chemical methods.
Collapse
Affiliation(s)
- Ji Hyun Oh
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea;
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chung Hee Park
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea;
| |
Collapse
|
41
|
Khandoker MAR, Golovin K. Statistical Heuristic Wettability Analysis of Randomly Textured Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14361-14371. [PMID: 33205972 DOI: 10.1021/acs.langmuir.0c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The liquid repellency enabled by air bubbles trapped within surface roughness features has drawn the attention of many researchers over the past century. The effects of surface roughness on superhydrophobicity have been extensively studied, mainly using regularly textured, idealized geometries. In comparison, fewer works have investigated the wettability of randomly textured surfaces, although they are much more similar to scalable and bioinspired surfaces. In this work, we investigated whether prior theories developed for understanding the wettability of regularly structured surfaces may be extended to randomly rough surfaces. Sandpapers of varying grit size, when hydrophobized, served as model randomly rough surfaces. Two analyses were conducted. In the first, termed the nonstatistical approach, direct imaging of the surfaces was used to extract an effective texture size and spacing, based on particle analysis and Delaunay triangulation. In the second, termed the statistical approach, two metrology parameters, sample autocorrelation length and mean periodicity, served as the effective texture size and spacing. Overall, the statistical method predicted water contact angles better than the nonstatistical approach, especially for surfaces in the fully wetted Wenzel state or fully nonwetted Cassie state. For surfaces exhibiting a mixed Cassie state of wetting, neither approach was able to predict the apparent contact angles precisely, likely due to the propagation of wetting in three dimensions, as two-dimensional analysis was used to derive the theories of wetting investigated. Estimates on the pressure stability of the nonwetted states were underpredicted when using the statistical parameters. In summation, when randomly rough surfaces exhibit a distribution of texture sizes and spacings, current theories of wettability cannot be directly implemented by a simple mapping using statistical metrology parameters.
Collapse
Affiliation(s)
- Md Arifur Rahman Khandoker
- Okanagan Polymer Engineering Research & Applications Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Kevin Golovin
- Okanagan Polymer Engineering Research & Applications Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
42
|
Tian Z, Lei Z, Chen Y, Chen C, Zhang R, Chen X, Bi J, Sun H. Inhibition Effectiveness of Laser-Cleaned Nanostructured Aluminum Alloys to Sulfate-reducing Bacteria Based on Superwetting and Ultraslippery Surfaces. ACS APPLIED BIO MATERIALS 2020; 3:6131-6144. [PMID: 35021746 DOI: 10.1021/acsabm.0c00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper is a continued study on laser cleaning removal of marine microbiofouling from Al alloy surfaces. According to our previous study, it is noted that the antifouling functions of the generated laser-cleaned metallic surfaces must be highlighted. In this work, the inhibition effectiveness of the laser-cleaned Al alloy surfaces was evaluated using a type of vital marine microorganism, sulfate-reducing bacteria (SRB) Desulfovibrio desulfuricans subsp. desulfuricans, in a dynamic bacterial solution. Before the immersion tests, the laser-cleaned surfaces with nanostructures were chemically processed into superhydrophilic, superhydrophobic, and ultraslippery surfaces. SRB attachment behaviors as well as inhibition mechanisms of the three surfaces to the SRB settlement were characterized and revealed. The SRB adhering to the above surfaces presented three different morphologies, i.e., broken, dented, and plump cells. Superhydrophilic surfaces unexpectedly showed a not inferior antibacterial ability. A piercing effect of the nanostructures caused nontoxic mechanical damage to the cell membranes. The antiadhesion property of superhydrophobic solid-air hybrid surfaces was unreliable due to the loss of air bubbles. The morphology of the last surviving SRB cells left on the ultraslippery surfaces was basically plump. The stable repellent function of the surfaces was responsible for the vigorous prevention of the adhesion of the SRB. The research results offer an insight into the antibacterial/antiadhesion properties of the laser-cleaned surfaces and a practical value for the periodic service of marine high-end equipment.
Collapse
Affiliation(s)
- Ze Tian
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenglong Lei
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Yanbin Chen
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Ruochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Xi Chen
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Jiang Bi
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Haoran Sun
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
43
|
Effect of magnetic field alignment of cellulose nanocrystals in starch nanocomposites: Physicochemical and mechanical properties. Carbohydr Polym 2020; 247:116688. [PMID: 32829816 DOI: 10.1016/j.carbpol.2020.116688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022]
Abstract
The magnetic field (MF) induced alignment of cellulose nanocrystals (CNC) within a starch matrix is investigated and its effect on the physicochemical and mechanical properties of the nanocomposites are discussed in the paper. Two different kinds of CNC i.e. plant-CNC and tunicate-CNC and its hybrid combination are studied to understand the effect of aspect ratio of CNC on the properties of nanocomposite. Nanocomposites with tunicate sourced CNC showed higher tensile strength and modulus, and lower water vapor permeability as compared to plant sourced CNC. These properties are higher for nanocomposites prepared under MF. The modulus of starch nanocomposites increased from 0.26 GPa and 0.32 GPa to 0.38 GPa and 0.44 GPa, respectively for plant-CNC and tunicate-CNC when exposed to MF. The improved orientation and alignment of CNC in presence of MF is further supported by Raman and scanning electron micrographs studies.
Collapse
|
44
|
Behera SK, Suri S, Salowitz NP, Nosonovsky M, Rohatgi PK. The Effect of Surface Roughness and Composition on Wetting and Corrosion of Al−Si Alloys. Isr J Chem 2020. [DOI: 10.1002/ijch.201900149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Swaroop K Behera
- Department of Materials Science and EngineeringUniversity of Wisconsin-Milwaukee Milwaukee WI 53211 USA
| | - Shvetashva Suri
- Department of Materials Science and EngineeringUniversity of Wisconsin-Milwaukee Milwaukee WI 53211 USA
| | - Nathan P. Salowitz
- Department of Mechanical EngineeringUniversity of Wisconsin-Milwaukee Milwaukee WI 53211 USA
| | - Michael Nosonovsky
- Department of Mechanical EngineeringUniversity of Wisconsin-Milwaukee Milwaukee WI 53211 USA
| | - Pradeep K. Rohatgi
- Department of Materials Science and EngineeringUniversity of Wisconsin-Milwaukee Milwaukee WI 53211 USA
| |
Collapse
|
45
|
Abstract
Traditional anti-icing/de-icing systems, i.e., thermal and pneumatic, in most cases require a power consumption not always allowable in small aircraft. Therefore, the use of passive systems, able to delay the ice formation, or reduce the ice adhesion strength once formed, with no additional energy consumption, can be considered as the most promising solution to solve the problem of the ice formation, most of all, for small aircraft. In some cases, the combination of a traditional icing protection system (electrical, pneumatic, and thermal) and the passive coatings can be considered as a strategic instrument to reduce the energy consumption. The effort of the present work was to develop a superhydrophobic coating, able to reduce the surface free energy (SFE) and the work of adhesion (WA) of substrates, by a simplified and non-expensive method. The developed coating, applied as a common paint with an aerograph, is able to reduce the SFE of substrates by 99% and the WA by 94%. The effects of both chemistry and surface morphology on the wettability of surfaces were also studied. In the reference samples, the higher the roughness, the lower the SFE and the WA. In coated samples with roughness ranging from 0.4 and 3 µm no relevant variations in water contact angle, nor in SFE and WA were observed.
Collapse
|
46
|
Saleh TA, Baig N, Alghunaimi FI, Aljuryyed NW. A flexible biomimetic superhydrophobic and superoleophilic 3D macroporous polymer-based robust network for the efficient separation of oil-contaminated water. RSC Adv 2020; 10:5088-5097. [PMID: 35498331 PMCID: PMC9049064 DOI: 10.1039/c9ra06579b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/18/2019] [Indexed: 11/21/2022] Open
Abstract
The development of stable 3D surfaces for oil/water separation has been of great interest to researchers. Inspired by the lotus leaf, in this study, a superhydrophobic stable and robust surface was generated by the combination of n-octadecyltrichlorosilane, silica, polypyrrole and polyurethane (ODTCS–SiO2–PP–PU). The constructed 3D network displayed superhydrophobic and superoleophilic behavior with a high water contact angle of 154.7° ± 0.8°. The superhydrophobic behavior of the porous material was found to be stable for months. Apart from the hydrophobicity analysis of the material, the various forms of the materials were investigated via scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDX). Under the force of gravity, hexane displayed an exceptionally high flux of 102 068 Lm−2 h−1 through ODTCS–SiO2–PP–PU. The macroporous network of ODTCS–SiO2–PP–PU displayed fewer chances of fouling, which is a common issue with membranes. Moreover, its porous network displayed good absorption capacity for various non-polar organic solvents. The maximum absorption capacity observed for toluene was 34 times its own weight. The separation efficiency of various non-polar organic solvents from water was observed in the range of 99.5 to 99.8%. ODTCS–SiO2–PP–PU, due to its superhydrophobicity, 3D porous network, extraordinarily high flux, good absorption capacity, and excellent separation capability, has been established as a good candidate for the separation of organic and oil contaminants from water. Superhydrophobic polyurethane for oil and water separation.![]()
Collapse
Affiliation(s)
- Tawfik A. Saleh
- Chemistry Department
- King Fahd University of Petroleum & Minerals
- Dhahran 31261
- Saudi Arabia
| | - Nadeem Baig
- Chemistry Department
- King Fahd University of Petroleum & Minerals
- Dhahran 31261
- Saudi Arabia
| | - Fahd I. Alghunaimi
- Saudi Aramco
- Research & Development Center
- Oil & Gas Treatment R&D Division
- Dhahran 31311
- Saudi Arabia
| | - Norah W. Aljuryyed
- Saudi Aramco
- EXPEC Advanced Research Center
- Production Technology Division
- Dhahran 31311
- Saudi Arabia
| |
Collapse
|
47
|
Tas M, Xu F, Ahmed I, Hou X. One‐step fabrication of superhydrophobic P(VDF‐co‐HFP) nanofibre membranes using electrospinning technique. J Appl Polym Sci 2019. [DOI: 10.1002/app.48817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mahmut Tas
- Advanced Materials Research Group, Faculty of EngineeringThe University of Nottingham Nottingham NG7 2RD UK
| | - Fang Xu
- Advanced Materials Research Group, Faculty of EngineeringThe University of Nottingham Nottingham NG7 2RD UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of EngineeringThe University of Nottingham Nottingham NG7 2RD UK
| | - Xianghui Hou
- Advanced Materials Research Group, Faculty of EngineeringThe University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
48
|
Wei H, Feng J, Ma C, Li Z, He M, Wang J, You X, Li L. Effect of iron doping on the hydrophobicity of titanium dioxide film: experiment and simulation. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1696477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hengbin Wei
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jiaheng Feng
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Jiaxing Microelectronic Equipment Research Center, Chinese Academy of Sciences, Jiaxing, People’s Republic of China
| | - Chuandong Ma
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
| | - Zhihao Li
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
| | - Meng He
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
| | - Junxiang Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
| | - Xiaofang You
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
| | - Lin Li
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
| |
Collapse
|
49
|
Zhai Z, Leng B, Yang N, Yang B, Liu L, Huang N, Jiang X. Rational Construction of 3D-Networked Carbon Nanowalls/Diamond Supporting CuO Architecture for High-Performance Electrochemical Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901527. [PMID: 31074930 DOI: 10.1002/smll.201901527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/24/2019] [Indexed: 05/27/2023]
Abstract
Tremendous demands for highly sensitive and selective nonenzymatic electrochemical biosensors have motivated intensive research on advanced electrode materials with high electrocatalytic activity. Herein, the 3D-networked CuO@carbon nanowalls/diamond (C/D) architecture is rationally designed, and it demonstrates wide linear range (0.5 × 10-6 -4 × 10-3 m), high sensitivity (1650 µA cm-2 mm-1 ), and low detection limit (0.5 × 10-6 m), together with high selectivity, great long-term stability, and good reproducibility in glucose determination. The outstanding performance of the CuO@C/D electrode can be ascribed to the synergistic effect coming from high-electrocatalytic-activity CuO nanoparticles and 3D-networked conductive C/D film. The C/D film is composed of carbon nanowalls and diamond nanoplatelets; and owing to the large surface area, accessible open surfaces, and high electrical conduction, it works as an excellent transducer, greatly accelerating the mass- and charge-transport kinetics of electrocatalytic reaction on the CuO biorecognition element. Besides, the vertical aligned diamond nanoplatelet scaffolds could improve structural and mechanical stability of the designed electrode in long-term performance. The excellent CuO@C/D electrode promises potential application in practical glucose detection, and the strategy proposed here can also be extended to construct other biorecognition elements on the 3D-networked conductive C/D transducer for various high-performance nonenzymatic electrochemical biosensors.
Collapse
Affiliation(s)
- Zhaofeng Zhai
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, No.72 Wenhua Road, Shenyang, 110016, China
| | - Bing Leng
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, No.9-11 Paul-Bonatz-Str., Siegen, 57076, Germany
| | - Bing Yang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
| | - Lusheng Liu
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
| | - Nan Huang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
| | - Xin Jiang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
- Institute of Materials Engineering, University of Siegen, No.9-11 Paul-Bonatz-Str., Siegen, 57076, Germany
| |
Collapse
|
50
|
A novel method for rapid estimation of lactic acid bacterial concentration in fermented milk based on superhydrophobic surface wettability. Int J Food Microbiol 2019; 304:39-48. [PMID: 31154110 DOI: 10.1016/j.ijfoodmicro.2019.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 11/21/2022]
Abstract
A novel and facile method is developed for rapid estimation of lactic acid bacterial concentration in fermented milk. Growth of bacteria in a liquid changes physicochemical property of the medium and its behavior at solid-liquid interface. Wettability determines characteristic of solid-liquid interface. Nano-rod, helical tetragonal and L-shaped morphologies were designed and fabricated. Hydrophobicity and zeta potential were measured for dried surfaces of 5 dairy bacterial strains. Relationship between microbial population and changes in solid-liquid interface was studied by wettability and surface free energy measurements. Due to hydrophobic surface property of conventional dairy strains, they strongly affect solid-liquid and liquid-vapor surface tensions when dispersed in a liquid, which are dependent on the bacterial concentration. Response surface methodology results showed that type and concentration of bacteria, droplet volume and solid-surface morphology affect wettability significantly. Higher hydrophobicity resulted in higher ∆θ (absolute value of the difference between the pure physiological saline and the bacterial suspension contact angles) dependence on the bacterial concentration. Probiotic bacteria concentration in fermented milk was estimated using the proposed method. A direct relationship was obtained between milk contact angle and bacterial concentration. Results show that this physical method can be applied for rapid estimation of bacterial concentration.
Collapse
|