1
|
Wu Y, Liu X, Radulescu A, Porcar L, Krause-Heuer A, Jiang H, Yang H, Ke Y, Darwish T, Luo Z. Small-angle neutron scattering differentiates molecular-level structural models of nanoparticle interfaces. NANOSCALE 2025. [PMID: 39781673 DOI: 10.1039/d4nr04365k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The highly anisotropic and nonadditive nature of nanoparticle surfaces restricts their characterization by limited types of techniques that can reach atomic or molecular resolution. While small-angle neutron scattering (SANS) is a unique tool for analyzing complex systems, it has been traditionally considered a low-resolution method due to its limited scattering vector range and wide wavelength spread. In this article, we present a novel perspective on SANS by showcasing its exceptional capability to provide molecular-level insights into nanoparticle interfaces. We report a series of experiments on multicomponent nanoparticles, where we demonstrate the ability of SANS to differentiate between competing structural models with molecular- and Å-scale differences. The results provide accurate quantification of organic ligand chain lengths, nanoparticles' heterogeneity, and detailed structures of surrounding counter-ion layers in solution. Furthermore, we show that SANS can probe subtle variations in self-assembled monolayer structures in different thermodynamic states. Our findings challenge the conventional view of SANS as a low-resolution technique for nanoparticle characterization and demonstrate its unique potential for providing molecular-level insights into complex nanoparticle surface structures.
Collapse
Affiliation(s)
- Yujie Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xindi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Aurel Radulescu
- Jülich Center for Neutron Science, JCNS at Heinz Maier-Leibnitz Zentrum, Forschungs-zentrum Jülich GmbH, Garching 85747, Germany
| | - Lionel Porcar
- Institut Laue-Langevin, BP 156, F38042 Grenoble CEDEX 9, France
| | - Anwen Krause-Heuer
- The National Deuteration Facility, Australian Nuclear Science and Technology Organisation, NSW 2232, Australia
| | - Hanqiu Jiang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Hua Yang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Tamim Darwish
- Jülich Center for Neutron Science, JCNS at Heinz Maier-Leibnitz Zentrum, Forschungs-zentrum Jülich GmbH, Garching 85747, Germany
| | - Zhi Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Mitkovskiy DA, Lazutin AA, Talis AL, Vasilevskaya VV. Self-assembly of amphiphilic homopolymers grafted onto spherical nanoparticles: complete embedded minimal surfaces and a machine learning algorithm for their recognition. SOFT MATTER 2024; 20:8385-8394. [PMID: 39387800 DOI: 10.1039/d4sm00616j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
By means of computer modelling, the self-assembly of amphiphilic A-graft-B macromolecules, grafted onto a spherical nanoparticle, is studied. In a solvent, that is poor for side pendants, the macromolecules self-assemble into thin membrane-like ABBA bilayers deviated from spherical nanoparticles. The bilayers form morphological structures that depend on the grafting density and macromolecular polymerization degree and can be referred to as the classical family of complete embedded minimal surfaces. The plane disk, catenoid, helicoid, Costa and Enneper surfaces as well as "double" helicoid and "complex minimal surface" were identified, and the fields of their stability were defined. The surfaces can be grouped according to the sequences of conformal transformations that transform them into each other. These surfaces arise in different experiments situationally. Results are summarized in a pie diagram constructed using a machine learning algorithm based on matching grafting points with a specially created planar graphic image.
Collapse
Affiliation(s)
- D A Mitkovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova ul. 28, bld. 1, Moscow, 119334, Russia.
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A A Lazutin
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova ul. 28, bld. 1, Moscow, 119334, Russia.
| | - A L Talis
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova ul. 28, bld. 1, Moscow, 119334, Russia.
| | - V V Vasilevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova ul. 28, bld. 1, Moscow, 119334, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Knapp TV, Hasan MR, Niebuur BJ, Widmer-Cooper A, Kraus T. Stabilization of Apolar Nanoparticle Dispersions by Molecular Additives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13527-13537. [PMID: 38889250 DOI: 10.1021/acs.langmuir.4c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We study the effect of additives on the colloidal stability of alkanethiol-coated gold nanoparticles. Cyclic amines and sulfides of different sizes were added to dispersions in decane at additive concentrations below 128 mM. Small-angle X-ray scattering (SAXS) indicated that tetrahydrothiophene reduced the agglomeration temperature, Tagglo, by up to 29 °C, a considerable increase in colloidal stability. Amines had a much weaker stabilizing effect of up to 2.5 °C. We found an unexpected maximum of stabilization for low additive concentrations, where Tagglo increased at concentrations above 64 mM. Molecular dynamics simulations were used to correlate these observations with the ligand shell structure. They excluded the physisorption of additives as a stabilization mechanism and suggested that sulfides replace hexadecanethiol on the AuNP surfaces by chemisorption. This hinders ligand ordering, thereby reducing Tagglo, which explains the stabilizing effect. Clustering of chemisorbed additive molecules at high concentration restabilized the ligand ordered state, explaining the detrimental effect of higher additive concentrations. The predictions of the simulations were confirmed by using thermogravimetric analyses and SAXS measurements of washed samples that indicated that the structure of the ligand shell itself, not the presence of physisorbed additives, changes Tagglo. Finally, we calculated potentials of mean force, which show that larger sulfide-based additives have a weaker affinity for the gold surface than smaller ones due to stronger steric hindrance. This explains why smaller cyclic sulfides were the most efficient stabilizers.
Collapse
Affiliation(s)
| | - Mohammad Rashedul Hasan
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Bart-Jan Niebuur
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, Campus D2 2, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Zhou J, Song D, Mergelsberg ST, Wang Y, Adhikari NM, Lahiri N, Zhao Y, Chen P, Wang Z, Zhang X, Rosso KM. Facet-dependent dispersion and aggregation of aqueous hematite nanoparticles. SCIENCE ADVANCES 2024; 10:eadi7494. [PMID: 38354235 PMCID: PMC10866548 DOI: 10.1126/sciadv.adi7494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Nanoparticle aggregates in solution controls surface reactivity and function. Complete dispersion often requires additive sorbents to impart a net repulsive interaction between particles. Facet engineering of nanocrystals offers an alternative approach to produce monodisperse suspensions simply based on facet-specific interaction with solvent molecules. Here, we measure the dispersion/aggregation of three morphologies of hematite (α-Fe2O3) nanoparticles in varied aqueous solutions using ex situ electron microscopy and in situ small-angle x-ray scattering. We demonstrate a unique tendency of (104) hematite nanoparticles to maintain a monodisperse state across a wide range of solution conditions not observed with (001)- and (116)-dominated particles. Density functional theory calculations reveal an inert, densely hydrogen-bonded first water layer on the (104) facet that favors interparticle dispersion. Results validate the notion that nanoparticle dispersions can be controlled through morphology for specific solvents, which may help in the development of various nanoparticle applications that rely on their interfacial area to be highly accessible in stable suspensions.
Collapse
Affiliation(s)
| | | | | | - Yining Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Narendra M. Adhikari
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Nabajit Lahiri
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yatong Zhao
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ping Chen
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Zheming Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xin Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kevin M. Rosso
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
5
|
Chowdhury P, Jha A, Bhandary D. Influence of Temperature-Guided SAM Growth on Wetting and Its Mass Transfer Models. J Phys Chem B 2023; 127:8208-8215. [PMID: 37703434 DOI: 10.1021/acs.jpcb.3c04173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The formation and growth of self-assembled monolayers (SAMs) composed of amphiphiles have garnered significant attention due to their diverse technical applications. This article reports the findings of molecular dynamics simulations aimed at elucidating the intricate relationship between the wetting behavior of amphiphiles, specifically n-alkanols, and the growth of their SAMs on a mica surface under varying temperature conditions. The investigation quantifies the structural characteristics of the formed SAMs, including density profiles, in-plane radial distribution functions, order parameters, and end-to-end length distributions of n-alkanol molecules within the SAM. Thermodynamic properties, such as the second virial coefficient and excess entropy, are examined in relation to temperature and time. The growth of the SAM is assessed by analyzing characteristic time scales at different temperatures and in-plane diffusion of n-alkanol molecules and utilizing classical theories of mass transfer to quantify the growth rate as a function of temperature. These results are then correlated with changes in the contact angle and spreading coefficient of n-alkanol droplets on the mica surface over time, providing insights into the impact of SAM growth on the wetting behavior and the mass transfer model of such systems.
Collapse
Affiliation(s)
- Prateek Chowdhury
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, UP 221005, India
| | - Ayush Jha
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, UP 221005, India
| | - Debdip Bhandary
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, UP 221005, India
| |
Collapse
|
6
|
Elimelech O, Oded M, Harries D, Banin U. Spontaneous Patterning of Binary Ligand Mixtures on CdSe Nanocrystals: From Random to Janus Packing. ACS NANO 2023; 17:5852-5860. [PMID: 36893308 PMCID: PMC10061916 DOI: 10.1021/acsnano.2c12676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Binary compositions of surface ligands are known to improve the colloidal stability and fluorescence quantum yield of nanocrystals (NCs), due to ligand-ligand interactions and surface organization. Herein, we follow the thermodynamics of a ligand exchange reaction of CdSe NCs with alkylthiol mixtures. The effects of ligand polarity and length difference on ligand packing were investigated using isothermal titration calorimetry (ITC). The thermodynamic signature of the formation of mixed ligand shells was observed. Correlating the experimental results with thermodynamic mixing models has allowed us to calculate the interchain interactions and to infer the final ligand shell configuration. Our findings demonstrate that, in contrast to macroscopic surfaces, the small dimensions of the NCs and the subsequent increased interfacial region between dissimilar ligands allow the formation of a myriad of clustering patterns, controlled by the interligand interactions. This work provides a fundamental understanding of the parameters determining the ligand shell structure and should help guide smart surface design toward NC-based applications.
Collapse
Affiliation(s)
- Orian Elimelech
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Meirav Oded
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Daniel Harries
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Fritz Haber Center, The Hebrew University
of Jerusalem, Jerusalem 9190401, Israel
| | - Uri Banin
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
7
|
Liu M, Farrell JD, Zhang X, Dobnikar J, Angioletti-Uberti S. The role of surface topography in the self-assembly of polymeric surfactants. SOFT MATTER 2023; 19:1709-1719. [PMID: 36756932 DOI: 10.1039/d2sm01540d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We propose a classical density functional theory model to study the self-assembly of polymeric surfactants on curved surfaces. We use this model to investigate the thermodynamics of phase separation of a binary mixture of size asymmetric miscible surfactants on cylindrical and spherical surfaces, and observe that phase separation driven by size alone is thermodynamically unfavorable on both cylindrical and spherical surfaces. We use the theory, supplemented by dissipative particle dynamics (DPD) simulations, to predict pattern formation on a non-uniform surface with regions of positive and negative curvature. Our results suggest potential ways to couple surface topography and polymeric surfactants to design surfaces coated with non-uniform patterns.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - James D Farrell
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jure Dobnikar
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
8
|
Gabellini C, Şologan M, Pellizzoni E, Marson D, Daka M, Franchi P, Bignardi L, Franchi S, Posel Z, Baraldi A, Pengo P, Lucarini M, Pasquato L, Posocco P. Spotting Local Environments in Self-Assembled Monolayer-Protected Gold Nanoparticles. ACS NANO 2022; 16:20902-20914. [PMID: 36459668 PMCID: PMC9798909 DOI: 10.1021/acsnano.2c08467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Organic-inorganic (O-I) nanomaterials are versatile platforms for an incredible high number of applications, ranging from heterogeneous catalysis to molecular sensing, cell targeting, imaging, and cancer diagnosis and therapy, just to name a few. Much of their potential stems from the unique control of organic environments around inorganic sites within a single O-I nanomaterial, which allows for new properties that were inaccessible using purely organic or inorganic materials. Structural and mechanistic characterization plays a key role in understanding and rationally designing such hybrid nanoconstructs. Here, we introduce a general methodology to identify and classify local (supra)molecular environments in an archetypal class of O-I nanomaterials, i.e., self-assembled monolayer-protected gold nanoparticles (SAM-AuNPs). By using an atomistic machine-learning guided workflow based on the Smooth Overlap of Atomic Positions (SOAP) descriptor, we analyze a collection of chemically different SAM-AuNPs and detect and compare local environments in a way that is agnostic and automated, i.e., with no need of a priori information and minimal user intervention. In addition, the computational results coupled with experimental electron spin resonance measurements prove that is possible to have more than one local environment inside SAMs, being the thickness of the organic shell and solvation primary factors in the determining number and nature of multiple coexisting environments. These indications are extended to complex mixed hydrophilic-hydrophobic SAMs. This work demonstrates that it is possible to spot and compare local molecular environments in SAM-AuNPs exploiting atomistic machine-learning approaches, establishes ground rules to control them, and holds the potential for the rational design of O-I nanomaterials instructed from data.
Collapse
Affiliation(s)
- Cristian Gabellini
- Department
of Engineering and Architecture, University
of Trieste, 34127 Trieste, Italy
| | - Maria Şologan
- Department
of Chemical and Pharmaceutical Sciences and INSTM Trieste Research
Unit, University of Trieste, 34127 Trieste, Italy
| | - Elena Pellizzoni
- Department
of Chemical and Pharmaceutical Sciences and INSTM Trieste Research
Unit, University of Trieste, 34127 Trieste, Italy
| | - Domenico Marson
- Department
of Engineering and Architecture, University
of Trieste, 34127 Trieste, Italy
| | - Mario Daka
- Department
of Chemical and Pharmaceutical Sciences and INSTM Trieste Research
Unit, University of Trieste, 34127 Trieste, Italy
| | - Paola Franchi
- Department
of Chemistry “G. Ciamician”, University of Bologna, I-40126 Bologna, Italy
| | - Luca Bignardi
- Department
of Physics, University of Trieste, 34127 Trieste, Italy
| | - Stefano Franchi
- Elettra
Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Zbyšek Posel
- Department
of Informatics, Jan Evangelista Purkyně
University, 400 96 Ústí nad Labem, Czech Republic
| | | | - Paolo Pengo
- Department
of Chemical and Pharmaceutical Sciences and INSTM Trieste Research
Unit, University of Trieste, 34127 Trieste, Italy
| | - Marco Lucarini
- Department
of Chemistry “G. Ciamician”, University of Bologna, I-40126 Bologna, Italy
| | - Lucia Pasquato
- Department
of Chemical and Pharmaceutical Sciences and INSTM Trieste Research
Unit, University of Trieste, 34127 Trieste, Italy
| | - Paola Posocco
- Department
of Engineering and Architecture, University
of Trieste, 34127 Trieste, Italy
| |
Collapse
|
9
|
Guzman-Juarez B, Abdelaal AB, Reven L. NMR Characterization of Nanoscale Surface Patterning in Mixed Ligand Nanoparticles. ACS NANO 2022; 16:20116-20128. [PMID: 36411252 DOI: 10.1021/acsnano.2c03707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spontaneous phase separation in binary mixed ligand shells is a proposed strategy to create patchy nanoparticles. The surface anisotropy, providing directionality along with interfacial properties emerging from both ligands, is highly desirable for targeted drug delivery, catalysis, and other applications. However, characterization of phase separation on the nanoscale remains quite challenging. Here we have adapted solid-state 1H spin diffusion NMR experiments designed to detect and quantify spatial heterogeneity in polymeric materials to nanoparticles (NPs) functionalized with mixed short ligands. Janus NPs and physical mixtures of homoligand 3.5 nm diameter ZrO2 NPs, with aromatic (phenylphosphonic acid, PPA) and aliphatic (oleic acid, OA) ligands, were used to calibrate the 1H spin diffusion experiments. The Janus NPs, prepared by a facile wax/water Pickering emulsion method, and mixed ligand NPs, produced by ligand exchange, both with 1:1 PPA:OA ligand compositions, display strikingly different solvent and particle-particle interactions. 1H spin diffusion NMR experiments are most consistent with a lamellar surface pattern for the mixed ligand ZrO2 NPs. Solid-state 1H spin diffusion NMR is shown to be a valuable additional characterization tool for mixed ligand NPs, as it not only detects the presence of nanoscale phase separation but also allows measurement of the domain sizes and geometries of the surface phase separation.
Collapse
Affiliation(s)
- Brenda Guzman-Juarez
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| | - Ahmed Bahaeldin Abdelaal
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| | - Linda Reven
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| |
Collapse
|
10
|
Gao L, Xu D, Wan H, Zhang X, Dai X, Yan LT. Understanding Interfacial Nanoparticle Organization through Simulation and Theory: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11137-11148. [PMID: 36070512 DOI: 10.1021/acs.langmuir.2c01192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the behaviors of nanoparticles at interfaces is crucial not only for the design of novel nanostructured materials with superior properties but also for a better understanding of many biological systems where nanoscale objects such as drug molecules, viruses, and proteins can interact with various interfaces. Theoretical studies and tailored computer simulations offer unique approaches to investigating the evolution and formation of structures as well as to determining structure-property relationships regarding the interfacial nanostructures. In this feature article, we summarize our efforts to exploit computational approaches as well as theoretical modeling in understanding the organization of nanoscale objects at the interfaces of various systems. First, we present the latest research advances and state-of-the-art computational techniques for the simulation of nanoparticles at interfaces. Then we introduce the applications of multiscale modeling and simulation methods as well as theoretical analysis to explore the basic science and the fundamental principles in the interfacial nanoparticle organization, covering the interfaces of polymer, nanoscience, biomacromolecules, and biomembranes. Finally, we discuss future directions to signify the framework in tailoring the interfacial organization of nanoparticles based on the computational design. This feature article could promote further efforts toward fundamental research and the wide applications of theoretical approaches in designing interfacial assemblies for new types of functional nanomaterials and beyond.
Collapse
Affiliation(s)
- Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
11
|
Hoang KNL, McClain SM, Meyer SM, Jalomo CA, Forney NB, Murphy CJ. Site-selective modification of metallic nanoparticles. Chem Commun (Camb) 2022; 58:9728-9741. [PMID: 35975479 DOI: 10.1039/d2cc03603g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Surface patterning of inorganic nanoparticles through site-selective functionalization with mixed-ligand shells or additional inorganic material is an intriguing approach to developing tailored nanomaterials with potentially novel and/or multifunctional properties. The unique physicochemical properties of such nanoparticles are likely to impact their behavior and functionality in biological environments, catalytic systems, and electronics applications, making it vital to understand how we can achieve and characterize such regioselective surface functionalization. This Feature Article will review methods by which chemists have selectively modified the surface of colloidal nanoparticles to obtain both two-sided Janus particles and nanoparticles with patchy or stripey mixed-ligand shells, as well as to achieve directed growth of mesoporous oxide materials and metals onto existing nanoparticle templates in a spatially and compositionally controlled manner. The advantages and drawbacks of various techniques used to characterize the regiospecificity of anisotropic surface coatings are discussed, as well as areas for improvement, and future directions for this field.
Collapse
Affiliation(s)
- Khoi Nguyen L Hoang
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Sophia M McClain
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Sean M Meyer
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Catherine A Jalomo
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Nathan B Forney
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, USA.
| |
Collapse
|
12
|
Kovalev DM, Kravchenko VS, Potemkin II. Nanofoam-like structure of surfactants in oil-water mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Hoff SE, Di Silvio D, Ziolo RF, Moya SE, Heinz H. Patterning of Self-Assembled Monolayers of Amphiphilic Multisegment Ligands on Nanoparticles and Design Parameters for Protein Interactions. ACS NANO 2022; 16:8766-8783. [PMID: 35603431 DOI: 10.1021/acsnano.1c08695] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functionalization of nanoparticles with specific ligands is helpful to control specific diagnostic and therapeutic responses such as protein adsorption, cell targeting, and circulation. Precision delivery critically depends on a fundamental understanding of the interplay between surface chemistry, ligand dynamics, and interaction with the biochemical environment. Due to limited atomic-scale insights into the structure and dynamics of nanoparticle-bound ligands from experiments, relationships of grafting density and ligand chemistry to observable properties such as hydrophilicity and protein interactions remain largely unknown. In this work, we uncover how self-assembled monolayers (SAMs) composed of multisegment ligands such as thioalkyl-PEG-(N-alkyl)amides on gold nanoparticles can mimic mixed hydrophobic and hydrophilic ligand coatings, including control of patterns, hydrophilicity, and specific recognition properties. Our results are derived from molecular dynamics simulations with the INTERFACE-CHARMM36 force field at picometer resolution and comparisons to experiments. Small changes in ligand hydrophobicity, via adjusting the length of the N-terminal alkyl groups, tune water penetration by multiples and control superficial ordering of alkyl chains from 0 to 70% regularity. Further parameters include the grafting density of the ligands, curvature of the nanoparticle surfaces, type of solvent, and overall ligand length, which were examined in detail. We explain the thermodynamic origin of the formation of heterogeneous patterns of multisegment ligand SAMs and illustrate how different degrees of ligand order on the nanoparticle surface affect interactions with bovine serum albumin. The resulting design principles can be applied to a variety of ligand chemistries to customize the behavior of functionalized nanoparticles in biological media and enhance therapeutic efficiency.
Collapse
Affiliation(s)
- Samuel E Hoff
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303-0596, United States
| | - Desiré Di Silvio
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramon, 182, 20009 San Sebastian, Spain
| | - Ronald F Ziolo
- Centro de Investigación en Química Aplicada, Boulevard Enrique Reyna 140, 25294 Saltillo, Coahuila, México
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramon, 182, 20009 San Sebastian, Spain
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303-0596, United States
| |
Collapse
|
14
|
Lapresta-Fernández A, Nefeli Athanasopoulou E, Jacob Silva P, Pelin Güven Z, Stellacci F. Site-selective surface enhanced Raman scattering study of ligand exchange reactions on aggregated Ag nanocubes. J Colloid Interface Sci 2022; 616:110-120. [DOI: 10.1016/j.jcis.2022.02.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/19/2022] [Accepted: 02/12/2022] [Indexed: 01/07/2023]
|
15
|
Gao H, Shi R, Zhu Y, Qian H, Lu Z. Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Xue Y, Gao HM, Yu L, Zhang NN, Kang J, Wang CY, Lu ZY, Whittaker AK, Liu K. Physisorption of Poly(ethylene glycol) on Inorganic Nanoparticles. ACS NANO 2022; 16:6634-6645. [PMID: 35352548 DOI: 10.1021/acsnano.2c01051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Poly(ethylene glycol) (PEG) is the most widely used polymer to decorate inorganic nanoparticles (NPs) by the "grafting-to" method for antifouling properties. PEG also shows diverse supramolecular interactions with nanoparticle surfaces and polar molecules, suggesting that the physisorption between PEG chains and NPs cannot be ignored in the "grafting-to" process. However, the effect of physisorption of PEG to NPs on the process of chemisorption has been rarely studied. Herein, we report that unfunctionalized PEG is physically adsorbed on various NPs by polyvalent supramolecular interactions, adopting "loop-and-train-tail" conformations. We investigated the effect of molecular weight of PEG and ligands of the NPs on the conformation of PEG chains by experimental methods and simulation. It is demonstrated that the physisorption of PEG on NPs can facilitate the chemisorption in the initial stages but delays it in the later stages during the "grafting-to" process. This work provides a deeper understanding of the conformation of physisorbed PEG on NPs and the relationship between physisorption and chemisorption.
Collapse
Affiliation(s)
- Yao Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hui-Min Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Linxiuzi Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jing Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Research Center for Future Materials, International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
17
|
Prasad S, Gupta M. Solvation of gold nanoparticles passivated with functionalized alkylthiols: A molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Engineering surface amphiphilicity of polymer nanostructures. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Hu B, Liu R, Liu Q, Lin Z, Shi Y, Li J, Wang L, Li L, Xiao X, Wu Y. Engineering surface patterns on nanoparticles: New insights on nano-bio interactions. J Mater Chem B 2022; 10:2357-2383. [DOI: 10.1039/d1tb02549j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface properties of nanoparticles affect their fates in biological systems. Based on nanotechnology and methodology, pioneering works have explored the effects of chemical surface patterns on the behavior of...
Collapse
|
20
|
Andrikopoulos N, Song Z, Wan X, Douek AM, Javed I, Fu C, Xing Y, Xin F, Li Y, Kakinen A, Koppel K, Qiao R, Whittaker AK, Kaslin J, Davis TP, Song Y, Ding F, Ke PC. Inhibition of Amyloid Aggregation and Toxicity with Janus Iron Oxide Nanoparticles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:6484-6500. [PMID: 34887621 PMCID: PMC8651233 DOI: 10.1021/acs.chemmater.1c01947] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid aggregation is a ubiquitous form of protein misfolding underlying the pathologies of Alzheimer's disease (AD), Parkinson's disease (PD) and type 2 diabetes (T2D), three primary forms of human amyloid diseases. While much has been learned about the origin, diagnosis and management of these neurological and metabolic disorders, no cure is currently available due in part to the dynamic and heterogeneous nature of the toxic oligomers induced by amyloid aggregation. Here we synthesized beta casein-coated iron oxide nanoparticles (βCas IONPs) via a BPA-P(OEGA-b-DBM) block copolymer linker. Using a thioflavin T kinetic assay, transmission electron microscopy, Fourier transform infrared spectroscopy, discrete molecular dynamics simulations and cell viability assays, we examined the Janus characteristics and the inhibition potential of βCas IONPs against the aggregation of amyloid beta (Aβ), alpha synuclein (αS) and human islet amyloid polypeptide (IAPP) which are implicated in the pathologies of AD, PD and T2D. Incubation of zebrafish embryos with the amyloid proteins largely inhibited hatching and elicited reactive oxygen species, which were effectively rescued by the inhibitor. Furthermore, Aβ-induced damage to mouse brain was mitigated in vivo with the inhibitor. This study revealed the potential of Janus nanoparticles as a new nanomedicine against a diverse range of amyloid diseases.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Xulin Wan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Alon M. Douek
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Fangyun Xin
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Yuhuan Li
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Kairi Koppel
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Thomas P. Davis
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| | - Pu Chun Ke
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
- The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| |
Collapse
|
21
|
Duan H, Luo Q, Wei Z, Lin Y, He J. Symmetry-Broken Patches on Gold Nanoparticles through Deficient Ligand Exchange. ACS Macro Lett 2021; 10:786-790. [PMID: 35549198 DOI: 10.1021/acsmacrolett.1c00252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Symmetry-broken nanoparticles (NPs) are important building blocks with directional interparticle interaction as a key to access the precise organization of NPs macroscopically. We report a facile, one-pot synthetic approach to prepare high-quality symmetry-broken plasmonic gold NPs (AuNPs). Symmetry-broken patterning is achieved through deficient ligand exchange of isotropic AuNPs with thiol-terminated polystyrene (PS-SH) in the presence of an amphiphilic polymer surfactant. The concentration of PS-SH plays a dominant role in tuning surface patterning and coverage of AuNPs. The formation of asymmetric surface patches arises from the interplay between the conformational entropy of polymer ligands and the interfacial energy between polymer-grafted AuNPs and the solvent. Our method illustrates new paradises to design asymmetric NPs with directional interparticle interactions to access the precise organization of NPs.
Collapse
|
22
|
Liu M, Fang X, Yang Y, Wang C. Peptide-Enabled Targeted Delivery Systems for Therapeutic Applications. Front Bioeng Biotechnol 2021; 9:701504. [PMID: 34277592 PMCID: PMC8281044 DOI: 10.3389/fbioe.2021.701504] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Receptor-targeting peptides have been extensively pursued for improving binding specificity and effective accumulation of drugs at the site of interest, and have remained challenging for extensive research efforts relating to chemotherapy in cancer treatments. By chemically linking a ligand of interest to drug-loaded nanocarriers, active targeting systems could be constructed. Peptide-functionalized nanostructures have been extensively pursued for biomedical applications, including drug delivery, biological imaging, liquid biopsy, and targeted therapies, and widely recognized as candidates of novel therapeutics due to their high specificity, well biocompatibility, and easy availability. We will endeavor to review a variety of strategies that have been demonstrated for improving receptor-specificity of the drug-loaded nanoscale structures using peptide ligands targeting tumor-related receptors. The effort could illustrate that the synergism of nano-sized structures with receptor-targeting peptides could lead to enrichment of biofunctions of nanostructures.
Collapse
Affiliation(s)
- Mingpeng Liu
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Department of Chemistry, Tsinghua University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
24
|
Koski JP, Frischknecht AL. Self-Assembled Vesicles from Mixed Brush Nanoparticles in Solution. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jason P. Koski
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Amalie L. Frischknecht
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
25
|
Astorga-Gamaza A, Vitali M, Borrajo ML, Suárez-López R, Jaime C, Bastus N, Serra-Peinado C, Luque-Ballesteros L, Blanch-Lombarte O, Prado JG, Lorente J, Pumarola F, Pellicer M, Falcó V, Genescà M, Puntes V, Buzon MJ. Antibody cooperative adsorption onto AuNPs and its exploitation to force natural killer cells to kill HIV-infected T cells. NANO TODAY 2021; 36:101056. [PMID: 34394703 PMCID: PMC8360327 DOI: 10.1016/j.nantod.2020.101056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
HIV represents a persistent infection which negatively alters the immune system. New tools to reinvigorate different immune cell populations to impact HIV are needed. Herein, a novel nanotool for the specific enhancement of the natural killer (NK) immune response towards HIV-infected T-cells has been developed. Bispecific Au nanoparticles (BiAb-AuNPs), dually conjugated with IgG anti-HIVgp120 and IgG anti-human CD16 antibodies, were generated by a new controlled, linker-free and cooperative conjugation method promoting the ordered distribution and segregation of antibodies in domains. The cooperatively-adsorbed antibodies fully retained the capabilities to recognize their cognate antigen and were able to significantly enhance cell-to-cell contact between HIV-expressing cells and NK cells. As a consequence, the BiAb-AuNPs triggered a potent cytotoxic response against HIV-infected cells in blood and human tonsil explants. Remarkably, the BiAb-AuNPs were able to significantly reduce latent HIV infection after viral reactivation in a primary cell model of HIV latency. This novel molecularly-targeted strategy using a bispecific nanotool to enhance the immune system represents a new approximation with potential applications beyond HIV.
Collapse
Affiliation(s)
- Antonio Astorga-Gamaza
- Infectious Disease Department, Hospital Universitario Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michele Vitali
- Infectious Disease Department, Hospital Universitario Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireya L. Borrajo
- Infectious Disease Department, Hospital Universitario Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Suárez-López
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Carlos Jaime
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Neus Bastus
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Carla Serra-Peinado
- Infectious Disease Department, Hospital Universitario Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Luque-Ballesteros
- Infectious Disease Department, Hospital Universitario Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Julia G. Prado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Juan Lorente
- Otorhinolaryngology Department, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Felix Pumarola
- Otorhinolaryngology Department, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Marc Pellicer
- Otorhinolaryngology Department, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Vicenç Falcó
- Infectious Disease Department, Hospital Universitario Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Disease Department, Hospital Universitario Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Víctor Puntes
- Infectious Disease Department, Hospital Universitario Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Corresponding author at: Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Maria J. Buzon
- Infectious Disease Department, Hospital Universitario Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Corresponding author. (V. Puntes), (M.J. Buzon)
| |
Collapse
|
26
|
Craven NC, Gilmer JB, Spindel CJ, Summers AZ, Iacovella CR, McCabe C. Examining the self-assembly of patchy alkane-grafted silica nanoparticles using molecular simulation. J Chem Phys 2021; 154:034903. [PMID: 33499609 DOI: 10.1063/5.0032658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this work, molecular dynamics simulations are used to examine the self-assembly of anisotropically coated "patchy" nanoparticles. Specifically, we use a coarse-grained model to examine silica nanoparticles coated with alkane chains, where the poles of the grafted nanoparticle are bare, resulting in strongly attractive patches. Through a systematic screening process, the patchy nanoparticles are found to form dispersed, string-like, and aggregated phases, dependent on the combination of alkane chain length, coating chain density, and the fractional coated surface area. Correlation analysis is used to identify the ability of various particle descriptors to predict bulk phase behavior from more computationally efficient single grafted nanoparticle simulations and demonstrates that the solvent-accessible surface area of the nanoparticle core is a key predictor of bulk phase behavior. The results of this work enhance our knowledge of the phase space of patchy nanoparticles and provide a powerful approach for future screening of these materials.
Collapse
Affiliation(s)
- Nicholas C Craven
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Justin B Gilmer
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Caroline J Spindel
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Andrew Z Summers
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Christopher R Iacovella
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Clare McCabe
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
27
|
Abstract
The last two decades have seen great advancements in fundamental understanding and applications of metallic nanoparticles stabilized by mixed-ligand monolayers. Identifying and controlling the organization of multiple ligands in the nanoparticle monolayer has been studied, and its effect on particle properties has been examined. Mixed-ligand protected particles have shown advantages over monoligand protected particles in fields such as catalysis, self-assembly, imaging, and drug delivery. In this Review, the use of mixed-ligand monolayer protected nanoparticles for sensing applications will be examined. This is the first time this subject is examined as a whole. Mixed-ligand nanoparticle-based sensors are revealed to be divided into four groups, each of which will be discussed. The first group consists of ligands that work cooperatively to improve the sensors' properties. In the second group, multiple ligands are utilized for sensing multiple analytes. The third group combines ligands used for analyte recognition and signal production. In the final group, a sensitive, but unstable, functional ligand is combined with a stabilizing ligand. The Review will conclude by discussing future challenges and potential research directions for this promising subject.
Collapse
Affiliation(s)
- Offer Zeiri
- Department of Analytical Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel
| |
Collapse
|
28
|
Su J, Huang X, Yang M. Self‐Limiting Assembly of Au Nanoparticles Induced by Localized Dynamic Metal‐Phenolic Interactions. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiaojiao Su
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology 150001 Harbin P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology 150001 Harbin P. R. China
| | - Ming Yang
- Key Laboratory of Microsystems and Micronanostructrues Manufacturing Harbin Institute of Technology 2 Yikuang Street 150080 Harbin P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University 130012 Changchun P. R. China
| |
Collapse
|
29
|
|
30
|
Gao H, Liu H, Zhang R, Lu Z. Structure Evolution of Binary Ligands on Nanoparticles Triggered by Competition between Adsorption Reaction and Phase Separation. J Phys Chem B 2019; 123:10311-10321. [PMID: 31710227 DOI: 10.1021/acs.jpcb.9b09338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ligand shell of a nanoparticle (NP) determines most of the interfacial properties through its composition and structure. Despite widespread study over the years, the factors impacting the ligand shell structures, especially the effects of ligand-adsorption kinetics in solution, are still not clear and even conflict with each other. We have developed an adsorption-migration reaction model to study the dynamic evolution processes of binary ligands on NP surfaces during adsorption reaction. Apparent dependence of the structure of ligand shells on ligand-adsorption and phase-separation rates has been found, which induces the formation of different shell patterns, including Janus, patchy, stripe, and island patterns. The formation process of these patterns accords with different reaction kinetic pathways, depending on the nature of ligands. Further screening the role of the NPs' curvature reveals that it can indirectly influence the ligand-adsorption and phase-separation kinetics. As the NPs' curvature increases, an accelerated ligand-adsorption and phase-separation process on NPs will happen, resulting in the preferential formation of more ordered Janus or stripe patterns. These results suggest that controlling the reaction kinetics is key to effectively regulating the composition and morphology of binary ligands on NPs. They also provide principles for guiding the experimental studies to fabricate novel NPs with a functional surface for use in broad nanoscience fields.
Collapse
|
31
|
Determination and evaluation of the nonadditivity in wetting of molecularly heterogeneous surfaces. Proc Natl Acad Sci U S A 2019; 116:25516-25523. [PMID: 31792179 PMCID: PMC6926055 DOI: 10.1073/pnas.1916180116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Every folded protein presents an interface with water that is composed of domains of varying hydrophilicity/-phobicity. Many simulation studies have highlighted the nonadditivity in the wetting of such nanostructured surfaces in contrast with the accepted theoretical formula that is additive. We present here an experimental study on surfaces of identical composition but different organization of hydrophobic and hydrophilic domains. We prove that the interfacial energy of such surfaces differs by ∼20% and that a significant difference in the interfacial water H-bonding structure can be measured. As a result, in combination with molecular-dynamics simulations, we propose a model that captures the wetting of molecularly heterogeneous surfaces, showing the importance of local structure (first-nearest neighbors) in determining the wetting properties. The interface between water and folded proteins is very complex. Proteins have “patchy” solvent-accessible areas composed of domains of varying hydrophobicity. The textbook understanding is that these domains contribute additively to interfacial properties (Cassie’s equation, CE). An ever-growing number of modeling papers question the validity of CE at molecular length scales, but there is no conclusive experiment to support this and no proposed new theoretical framework. Here, we study the wetting of model compounds with patchy surfaces differing solely in patchiness but not in composition. Were CE to be correct, these materials would have had the same solid–liquid work of adhesion (WSL) and time-averaged structure of interfacial water. We find considerable differences in WSL, and sum-frequency generation measurements of the interfacial water structure show distinctively different spectral features. Molecular-dynamics simulations of water on patchy surfaces capture the observed behaviors and point toward significant nonadditivity in water density and average orientation. They show that a description of the molecular arrangement on the surface is needed to predict its wetting properties. We propose a predictive model that considers, for every molecule, the contributions of its first-nearest neighbors as a descriptor to determine the wetting properties of the surface. The model is validated by measurements of WSL in multiple solvents, where large differences are observed for solvents whose effective diameter is smaller than ∼6 Å. The experiments and theoretical model proposed here provide a starting point to develop a comprehensive understanding of complex biological interfaces as well as for the engineering of synthetic ones.
Collapse
|
32
|
Examination of Adsorption Orientation of Amyloidogenic Peptides Over Nano-Gold Colloidal Particle Surfaces. Int J Mol Sci 2019; 20:ijms20215354. [PMID: 31661810 PMCID: PMC6862242 DOI: 10.3390/ijms20215354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 01/12/2023] Open
Abstract
The adsorption of amyloidogenic peptides, amyloid beta 1–40 (Aβ1–40), alpha-synuclein (α-syn), and beta 2 microglobulin (β2m), was attempted over the surface of nano-gold colloidal particles, ranging from d = 10 to 100 nm in diameter (d). The spectroscopic inspection between pH 2 and pH 12 successfully extracted the critical pH point (pHo) at which the color change of the amyloidogenic peptide-coated nano-gold colloids occurred due to aggregation of the nano-gold colloids. The change in surface property caused by the degree of peptide coverage was hypothesized to reflect the ΔpHo, which is the difference in pHo between bare gold colloids and peptide coated gold colloids. The coverage ratio (Θ) for all amyloidogenic peptides over gold colloid of different sizes was extracted by assuming Θ = 0 at ΔpHo = 0. Remarkably, Θ was found to have a nano-gold colloidal size dependence, however, this nano-size dependence was not simply correlated with d. The geometric analysis and simulation of reproducing Θ was conducted by assuming a prolate shape of all amyloidogenic peptides. The simulation concluded that a spiking-out orientation of a prolate was required in order to reproduce the extracted Θ. The involvement of a secondary layer was suggested; this secondary layer was considered to be due to the networking of the peptides. An extracted average distance of networking between adjacent gold colloids supports the binding of peptides as if they are “entangled” and enclosed in an interfacial distance that was found to be approximately 2 nm. The complex nano-size dependence of Θ was explained by available spacing between adjacent prolates. When the secondary layer was formed, Aβ1–40 and α-syn possessed a higher affinity to a partially negative nano-gold colloidal surface. However, β2m peptides tend to interact with each other. This difference was explained by the difference in partial charge distribution over a monomer. Both Aβ1–40 and α-syn are considered to have a partial charge (especially δ+) distribution centering around the prolate axis. The β2m, however, possesses a distorted charge distribution. For a lower Θ (i.e., Θ <0.5), a prolate was assumed to conduct a gyration motion, maintaining the spiking-out orientation to fill in the unoccupied space with a tilting angle ranging between 5° and 58° depending on the nano-scale and peptide coated to the gold colloid.
Collapse
|
33
|
Merz SN, Hoover E, Egorov SA, DuBay KH, Green DL. Predicting the effect of chain-length mismatch on phase separation in noble metal nanoparticle monolayers with chemically mismatched ligands. SOFT MATTER 2019; 15:4498-4507. [PMID: 31094390 DOI: 10.1039/c9sm00264b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) protected with a ligand monolayer hold promise for a wide variety of applications, from photonics and catalysis to drug delivery and biosensing. Monolayers that include a mixture of ligand types can have multiple chemical functionalities and may also self-assemble into advantageous patterns. Previous work has shown that both chemical and length mismatches among these surface ligands influence phase separation. In this work, we examine the interplay between these driving forces, first by using our previously-developed configurationally-biased Monte Carlo (CBMC) algorithm to predict, then by using our matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) technique to experimentally probe, the surface morphologies of a series of two-ligand mixtures on the surfaces of ultrasmall silver NPs. Specifically, we examine three such mixtures, each of which has the same chemical mismatch (consisting of a hydrophobic alkanethiol and a hydrophilic mercapto-alcohol), but varying degrees of chain-length mismatch. This delicate balance between chemical and length mismatches provides a challenging test for our CBMC prediction algorithm. Even so, the simulations are able to quantitatively predict the MALDI-MS results for all three ligand mixtures, while also providing atomic-scale details from the equilibrated ligand structures, such as patch sizes and co-crystallization patterns. The resulting monolayer morphologies range from randomly-mixed to Janus-like, demonstrating that chain-length modifications are an effective way to tune monolayer morphology without needing to alter chemical functionalities.
Collapse
Affiliation(s)
- Steven N Merz
- Department of Chemical Engineering, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904, USA.
| | | | | | | | | |
Collapse
|
34
|
Rossner C, Zhulina EB, Kumacheva E. Staged Surface Patterning and Self‐Assembly of Nanoparticles Functionalized with End‐Grafted Block Copolymer Ligands. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Christian Rossner
- Department of ChemistryUniversity of Toronto Toronto ON M5S 3H6 Canada
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg 199004 Russia
| | - Eugenia Kumacheva
- Department of ChemistryUniversity of Toronto Toronto ON M5S 3H6 Canada
- Institute of Biomaterials and Biomedical Engineering Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto Toronto ON M5S 3E5 Canada
| |
Collapse
|
35
|
Rossner C, Zhulina EB, Kumacheva E. Staged Surface Patterning and Self‐Assembly of Nanoparticles Functionalized with End‐Grafted Block Copolymer Ligands. Angew Chem Int Ed Engl 2019; 58:9269-9274. [DOI: 10.1002/anie.201904430] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Christian Rossner
- Department of ChemistryUniversity of Toronto Toronto ON M5S 3H6 Canada
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg 199004 Russia
| | - Eugenia Kumacheva
- Department of ChemistryUniversity of Toronto Toronto ON M5S 3H6 Canada
- Institute of Biomaterials and Biomedical Engineering Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto Toronto ON M5S 3E5 Canada
| |
Collapse
|
36
|
Wang S, Guo H, Li Y, Li X. Penetration of nanoparticles across a lipid bilayer: effects of particle stiffness and surface hydrophobicity. NANOSCALE 2019; 11:4025-4034. [PMID: 30768108 DOI: 10.1039/c8nr09381d] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The cellular uptake of nanoparticles (NPs) has drawn significant attention due to their great importance and potential in drug delivery, bioimaging, and specific targeting. Here, we conduct a computational study on the translocation process of soft nanoparticles with different elasticities and surface hydrophobicities through a lipid bilayer membrane. It is shown that the translocation abilities of hydrophilic NPs can be enhanced by increasing their stiffness, while the penetrability of hydrophobic NPs is weakened by increasing the particle stiffness. The free energy analysis indicates that rigid hydrophilic NPs and soft hydrophobic NPs encounter lower energy barriers during penetration. In direct translocation, different deformation modes are observed for NPs with different surface hydrophobicities during cellular internalization. Further, deformation analysis demonstrates that hydrophilic NPs are flattened in the membrane plane, while hydrophobic NPs are elongated along the membrane norm during penetration. We conclude that the elasticity of NPs has an obvious impact on their ability to penetrate across the lipid bilayer membrane through different morphological responses of hydrophilic and hydrophobic NPs. These results shed light on the coupled effects of particle elasticity and surface hydrophobicity on the cellular uptake of elastic NPs, which may provide useful guidelines for designing effective nanocarrier systems for drug delivery.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering (State Key Laboratory of Ocean Engineering, MOE Key Laboratory of Hydrodynamics), Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Hui Guo
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yinfeng Li
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering (State Key Laboratory of Ocean Engineering, MOE Key Laboratory of Hydrodynamics), Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xuejin Li
- Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
37
|
Galati E, Tao H, Tebbe M, Ansari R, Rubinstein M, Zhulina EB, Kumacheva E. Helicoidal Patterning of Nanorods with Polymer Ligands. Angew Chem Int Ed Engl 2019; 58:3123-3127. [PMID: 30604462 PMCID: PMC6400493 DOI: 10.1002/anie.201812887] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 12/11/2022]
Abstract
Chiral packing of ligands on the surface of nanoparticles (NPs) is of fundamental and practical importance, as it determines how NPs interact with each other and with the molecular world. Herein, for gold nanorods (NRs) capped with end-grafted nonchiral polymer ligands, we show a new mechanism of chiral surface patterning. Under poor solvency conditions, a smooth polymer layer segregates into helicoidally organized surface-pinned micelles (patches). The helicoidal morphology is dictated by the polymer grafting density and the ratio of the polymer ligand length to nanorod radius. Outside this specific parameter space, a range of polymer surface structures was observed, including random, shish-kebab, and hybrid patches, as well as a smooth polymer layer. We characterize polymer surface morphology by theoretical and experimental state diagrams. The helicoidally organized polymer patches on the NR surface can be used as a template for the helicoidal organization of other NPs, masked synthesis on the NR surface, as well as the exploration of new NP self-assembly modes.
Collapse
Affiliation(s)
- Elizabeth Galati
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Huachen Tao
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Moritz Tebbe
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Rija Ansari
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics and Chemistry, Duke University, Durham, North Carolina, 27708, USA
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, 199004, Russia,
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
38
|
Bačová P, Glynos E, Anastasiadis SH, Harmandaris V. Nanostructuring Single-Molecule Polymeric Nanoparticles via Macromolecular Architecture. ACS NANO 2019; 13:2439-2449. [PMID: 30742409 DOI: 10.1021/acsnano.8b09374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Heterogeneous polymer-based nanoparticles comprise a very promising family of materials for a broad range of applications. Here, we present a detailed study of structural heterogeneities in nanostructured single-molecule nanoparticles in various environments by means of atomistic molecular dynamics simulations. The nanoparticles consist of mikto-arm star copolymers with two types of chemically incompatible arms, namely poly(ethylene oxide) (PEO) and polystyrene (PS), (PS) n,(PEO) n, where n is the number of arms. The immiscibility between the two components gives rise to intramolecularly nanostructured particles. The nanostructured objects resemble either "Janus-like" or "patchy-like" particles, depending on the number or the length of the arms (or both) as well as the interaction with the surrounding medium. The degree of intramolecular heterogeneity increases with increasing number of arms and with decreasing affinity of star components to the polymer host. We provide a detailed analysis of the internal structure of the star-shaped particles, focusing on the intramolecular packing and the spatial arrangement of the arms. The results of our study can be used to design heterogeneous, internally nanostructured particles with two phases of distinct static properties for challenging specific applications of next-generation materials.
Collapse
|
39
|
Galati E, Tao H, Tebbe M, Ansari R, Rubinstein M, Zhulina EB, Kumacheva E. Helicoidal Patterning of Nanorods with Polymer Ligands. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elizabeth Galati
- Department of Chemistry University of Toronto Toronto ON M5S 3H6 Canada
| | - Huachen Tao
- Department of Chemistry University of Toronto Toronto ON M5S 3H6 Canada
| | - Moritz Tebbe
- Department of Chemistry University of Toronto Toronto ON M5S 3H6 Canada
| | - Rija Ansari
- Department of Chemistry University of Toronto Toronto ON M5S 3H6 Canada
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science Biomedical Engineering, Physics and Chemistry Duke University Durham NC 27708 USA
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg 199004 Russia
| | - Eugenia Kumacheva
- Department of Chemistry University of Toronto Toronto ON M5S 3H6 Canada
- Institute of Biomaterials and Biomedical Engineering Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto ON M5S 3E5 Canada
| |
Collapse
|
40
|
Li S, Zhang Z, Hou G, Liu J, Gao Y, Coates P, Zhang L. Self-assembly and structural manipulation of diblock-copolymer grafted nanoparticles in a homopolymer matrix. Phys Chem Chem Phys 2019; 21:11785-11796. [DOI: 10.1039/c9cp00872a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detailed coarse-grained molecular dynamics simulations are performed to investigate the structural and mechanical properties of nanoparticles (NPs) grafted with an amphiphilic AB diblock copolymer, with the A-block being compatible with NPs and the B-block being miscible with a homopolymer matrix.
Collapse
Affiliation(s)
- Sai Li
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Zhiyu Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Guanyi Hou
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- Beijing University of Chemical Technology
| | - Yangyang Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- Beijing University of Chemical Technology
| | - Phil Coates
- Joint-International Laboratory for Soft Matter Technologies Bradford-BUCT
- 100029 Beijing
- People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- Beijing University of Chemical Technology
| |
Collapse
|
41
|
Athanasopoulou EN, Nianias N, Ong QK, Stellacci F. Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers. NANOSCALE 2018; 10:23027-23036. [PMID: 30507983 DOI: 10.1039/c8nr07657j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface coatings are becoming an integral part of materials. In recent years, molecular coatings have found larger acceptance and uses. Among them, self-assembled monolayers (SAMs) are attractive due to their inherent versatility, manufacturability, and scale up ease. Understanding their structure-properties relationships in realistic conditions remains a major challenge. Here we present a methodology based on simultaneous topographical and nanomechanical characterization of SAMs using a commercially available setup for bimodal atomic force microscopy (AFM). It allows for accurate and quantitative measurement of surface elasticity, which is correlated to molecular ordering through topographical imaging. Our results indicate that effective surface elasticity (E*) scales with monolayer formation-time and ligand-length, parameters known to affect ligand ordering. The method developed, is extended to provide localization of the chemical species present in thiolated binary SAMs. Within the systems tested phase separation down to ∼10 nm domains could be observed both in the topography and in the elasticity channel.
Collapse
|
42
|
Guzman-Juarez B, Abdelaal A, Kim K, Toader V, Reven L. Fabrication of Amphiphilic Nanoparticles via Mixed Homopolymer Brushes and NMR Characterization of Surface Phase Separation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01959] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brenda Guzman-Juarez
- Quebec Center for Advanced Materials (QCAM), Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H3A 0B8, Canada
| | - Ahmed Abdelaal
- Quebec Center for Advanced Materials (QCAM), Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H3A 0B8, Canada
| | - Kuenhee Kim
- Quebec Center for Advanced Materials (QCAM), Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H3A 0B8, Canada
| | - Violeta Toader
- Quebec Center for Advanced Materials (QCAM), Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H3A 0B8, Canada
| | - Linda Reven
- Quebec Center for Advanced Materials (QCAM), Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H3A 0B8, Canada
| |
Collapse
|
43
|
Merz SN, Farrell ZJ, Pearring J, Hoover E, Kester M, Egorov SA, Green DL, DuBay KH. Computational and Experimental Investigation of Janus-like Monolayers on Ultrasmall Noble Metal Nanoparticles. ACS NANO 2018; 12:11031-11040. [PMID: 30347139 DOI: 10.1021/acsnano.8b05188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Detection of monolayer morphology on nanoparticles smaller than 10 nm has proven difficult with traditional visualization techniques. Here matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is used in conjunction with atomistic simulations to detect the formation of Janus-like monolayers on noble metal nanoparticles. Silver metal nanoparticles were synthesized with a monolayer consisting of dodecanethiol (DDT) and mercaptoethanol (ME) at varying ratios. The nanoparticles were then analyzed using MALDI-MS, which gives information on the local ordering of ligands on the surface. The MALDI-MS analysis showed large deviations from random ordering, suggesting phase separation of the DDT/ME monolayers. Atomistic Monte Carlo (MC) calculations were then used to simulate the nanoscale morphology of the DDT/ME monolayers. In order to quantitatively compare the computational and experimental results, we developed a method for determining an expected MALDI-MS spectrum from the atomistic simulation. Experiments and simulations show quantitative agreement, and both indicate that the DDT/ME ligands undergo phase separation, resulting in Janus-like nanoparticle monolayers with large, patchy domains.
Collapse
Affiliation(s)
- Steven N Merz
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Zachary J Farrell
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Joseph Pearring
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Elise Hoover
- Department of Biomedical Engineering , University of Virginia , Thornton Hall , P.O. Box 400259, Charlottesville , Virginia 22904 , United States
| | - Mark Kester
- School of Medicine , University of Virginia , 1215 Lee Street , Charlottesville , Virginia 22908 , United States
| | - Sergei A Egorov
- Department of Chemistry , University of Virginia , McCormick Road , PO Box 400319, Charlottesville , Virginia 22904 , United States
- Leibniz Institute for Polymer Research Dresden , Hohe Strasse 6 , D-01069 Dresden , Germany
| | - David L Green
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Kateri H DuBay
- Department of Chemistry , University of Virginia , McCormick Road , PO Box 400319, Charlottesville , Virginia 22904 , United States
| |
Collapse
|
44
|
Rodríguez-Arco L, Poma A, Ruiz-Pérez L, Scarpa E, Ngamkham K, Battaglia G. Molecular bionics - engineering biomaterials at the molecular level using biological principles. Biomaterials 2018; 192:26-50. [PMID: 30419394 DOI: 10.1016/j.biomaterials.2018.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/06/2018] [Accepted: 10/28/2018] [Indexed: 12/18/2022]
Abstract
Life and biological units are the result of the supramolecular arrangement of many different types of molecules, all of them combined with exquisite precision to achieve specific functions. Taking inspiration from the design principles of nature allows engineering more efficient and compatible biomaterials. Indeed, bionic (from bion-, unit of life and -ic, like) materials have gained increasing attention in the last decades due to their ability to mimic some of the characteristics of nature systems, such as dynamism, selectivity, or signalling. However, there are still many challenges when it comes to their interaction with the human body, which hinder their further clinical development. Here we review some of the recent progress in the field of molecular bionics with the final aim of providing with design rules to ensure their stability in biological media as well as to engineer novel functionalities which enable navigating the human body.
Collapse
Affiliation(s)
- Laura Rodríguez-Arco
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK.
| | - Alessandro Poma
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Kamolchanok Ngamkham
- Faculty of Engineering, King Mongkut's University of Technology Thonbury, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Giuseppe Battaglia
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK.
| |
Collapse
|
45
|
Mass spectrometry and Monte Carlo method mapping of nanoparticle ligand shell morphology. Nat Commun 2018; 9:4478. [PMID: 30367040 PMCID: PMC6203843 DOI: 10.1038/s41467-018-06939-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/02/2018] [Indexed: 01/26/2023] Open
Abstract
Janus, patchy, stripe-like, or random arrangements of molecules within the ligand shell of nanoparticles affect many properties. Among all existing ligand shell morphology characterization methods, the one based on mass spectroscopy is arguably the simplest. Its greatest limitation is that the results are qualitative. Here, we use a tailor-made Monte Carlo type program that fits the whole MALDI spectrum and generates a 3D model of the ligand shell. Quantitative description of the ligand shell in terms of nearest neighbor distribution and characteristic length scale can be readily extracted by the model, and are compared with the results of other characterization methods. A parameter related to the intermolecular interaction is extracted when this method is combined with NMR. This approach could become the routine method to characterize the ligand shell morphology of many nanoparticles and we provide an open access program to facilitate its use. Determining the arrangement of ligands on a nanoparticle is challenging, given the limitations of existing characterization tools. Here, the authors describe an accessible method for resolving ligand shell morphology that uses simple MALDI-TOF mass spectrometry measurements in conjunction with an open-access Monte Carlo fitting program.
Collapse
|
46
|
Marsh ZM, Lantz KA, Stefik M. QCM detection of molecule-nanoparticle interactions for ligand shells of varying morphology. NANOSCALE 2018; 10:19107-19116. [PMID: 30298160 DOI: 10.1039/c8nr05605f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticles (NP) have widespread applications from sensing to drug delivery where much behavior is determined by the nature of the surface and the resulting intermolecular interactions with the local environment. Ligand mixtures enable continuously tunable behavior where both the composition and morphology influence molecular interactions. Mixed ligand shells form multiple morphologies ranging from Janus to patchy and stripe-like with varying domain dimensions. Solvent-NP interactions are generally measured by solubility measures alone. Here we develop a quartz crystal microbalance (QCM) approach to more broadly quantify molecule-NP interactions via vapor phase uptake into solid NP-films independent from solvation constraints. The composition and morphology of mixed ligand shells were found to exhibit pronounced non-monotonic behavior that deviated from continuum thermodynamics, highlighting the influence of ligand morphology upon absorption/adsorption. Alkyl and perfluorinated thiols were used as a model case with constant core-size distribution. The ligand morphology was determined by 19F NMR. Molecule uptake into NPs was measured with five benzene derivatives with varied degree of fluorination. For the cases examined, QCM measurements revealed enhanced uptake for patchy morphologies and suppressed uptake for stripe-like morphologies. These results contrast with insights from solubility measures alone where QCM sometimes identified significant molecular uptake of poor solvents. This QCM method thus provides new insights to molecule-NP interactions independent of the solvation shell.
Collapse
Affiliation(s)
- Zachary M Marsh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
47
|
Lázaro GR, Dragnea B, Hagan MF. Self-assembly of convex particles on spherocylindrical surfaces. SOFT MATTER 2018; 14:5728-5740. [PMID: 29796568 PMCID: PMC6051892 DOI: 10.1039/c8sm00129d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The precise control of assembly and packing of proteins and colloids on curved surfaces has fundamental implications in nanotechnology. In this paper, we describe dynamical simulations of the self-assembly of conical subunits around a spherocylindrical template, and a continuum theory for the bending energy of a triangular lattice with spontaneous curvature on a surface with arbitrary curvature. We find that assembly depends sensitively on mismatches between subunit spontaneous curvature and the mean curvature of the template, as well as anisotropic curvature of the template (mismatch between the two principal curvatures). Our simulations predict assembly morphologies that closely resemble those observed in experiments in which virus capsid proteins self-assemble around metal nanorods. Below a threshold curvature mismatch, our simulations identify a regime of optimal assembly leading to complete, symmetrical particles. Outside of this regime we observe defective particles, whose morphologies depend on the degree of curvature mismatch. To learn how assembly is affected by the nonuniform curvature of a spherocylinder, we also study the simpler cases of assembly around spherical and cylindrical cores. Our results show that both the intrinsic (Gaussian) and extrinsic (mean) curvatures of a template play significant roles in guiding the assembly of anisotropic subunits, providing a rich design space for the formation of nanoscale materials.
Collapse
Affiliation(s)
- Guillermo R Lázaro
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA.
| | | | | |
Collapse
|
48
|
Rossner C, Tang Q, Müller M, Kothleitner G. Phase separation in mixed polymer brushes on nanoparticle surfaces enables the generation of anisotropic nanoarchitectures. SOFT MATTER 2018; 14:4551-4557. [PMID: 29767175 DOI: 10.1039/c8sm00545a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The preparation of nanoparticles and their targeted connection with other functional units is one key challenge in developing nanoscale devices. Herein, we report an experimental strategy toward the development of anisotropic nanoparticle architectures. Our approach is based on phase separation of binary mixed polymer brushes on gold nanoparticle surfaces leading to Janus-type structures, as revealed by scanning transmission electron microscopy and electron energy-loss spectroscopy and, additionally, corroborated by computer simulation. We show that such structures can be used for the site-selective functionalization with additional nanosized entities.
Collapse
Affiliation(s)
- Christian Rossner
- Institut für Elektronenmikroskopie und Nanoanalytik, Technische Universität Graz, Steyrergasse 17, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|
49
|
Zhu G, Huang Z, Xu Z, Yan LT. Tailoring Interfacial Nanoparticle Organization through Entropy. Acc Chem Res 2018; 51:900-909. [PMID: 29589915 DOI: 10.1021/acs.accounts.8b00001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability to tailor the interfacial behaviors of nanoparticles (NPs) is crucial not only for the design of novel nanostructured materials with superior properties and of interest for many promising applications such as water purification, enhanced oil recovery, and innovative energy transduction, but also for a better insight into many biological systems where nanoscale particles such as proteins or viruses can interact and organize at certain interfaces. As a class of emerging building blocks, Janus NPs consisting of two compartments of different chemistry or polarity are ideal candidates to generate tunable and stable interfacial nanostructures because of the asymmetric nature. However, precise control over such interfacial nanostructures toward a controllable order and even responses to various external stimuli still remains a great challenge as the interfaces do not simply serve as a scaffold but rather induce complex enthalpic and entropic interactions. In this Account, we focus on our efforts on exploiting entropy strategies based on computational design to tailor the spatial distribution and ordering of NPs at the interfaces of various systems. First, we introduce the physical principle of entropic ordering, being the theoretical basis of entropy-directed interfacial self-assembly. The typical types of entropy, which have been harnessed to manipulate the interfacial NP organization, are then summarized, including conformational entropy, shape entropy, and rotational and vibrational entropy. Next, we describe the emerging pathways in the development of novel environmentally responsive systems which involve the use of entropy to access the stimuli-responsive behaviors of interfacial nanostructures. Taking one step further, how molecular architectures can be tailored to tune the entropic contributions to the interfacial self-assembly is demonstrated, through identifying the effects of various intrinsic properties of block segments, such as chain length and stiffness, on entropy-governed precise organization of Janus NPs at block copolymer interfaces. Finally, we detail some key factors for tailoring interfacial organization through entropy. In summary, entropy strategies offer a promising and abundant framework for precisely programming the structural organization of NPs at interfaces. We discuss future directions to signify the framework in tailoring the interfacial organization of NPs. We hope that this Account will promote further efforts toward fundamental research and the wide applications of designed interfacial assemblies in new types of functional nanomaterials and beyond.
Collapse
Affiliation(s)
- Guolong Zhu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zihan Huang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
50
|
Luo Z, Marson D, Ong QK, Loiudice A, Kohlbrecher J, Radulescu A, Krause-Heuer A, Darwish T, Balog S, Buonsanti R, Svergun DI, Posocco P, Stellacci F. Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering. Nat Commun 2018; 9:1343. [PMID: 29632331 PMCID: PMC5890256 DOI: 10.1038/s41467-018-03699-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/02/2018] [Indexed: 11/16/2022] Open
Abstract
The ligand shell (LS) determines a number of nanoparticles’ properties. Nanoparticles’ cores can be accurately characterized; yet the structure of the LS, when composed of mixture of molecules, can be described only qualitatively (e.g., patchy, Janus, and random). Here we show that quantitative description of the LS’ morphology of monodisperse nanoparticles can be obtained using small-angle neutron scattering (SANS), measured at multiple contrasts, achieved by either ligand or solvent deuteration. Three-dimensional models of the nanoparticles’ core and LS are generated using an ab initio reconstruction method. Characteristic length scales extracted from the models are compared with simulations. We also characterize the evolution of the LS upon thermal annealing, and investigate the LS morphology of mixed-ligand copper and silver nanoparticles as well as gold nanoparticles coated with ternary mixtures. Our results suggest that SANS combined with multiphase modeling is a versatile approach for the characterization of nanoparticles’ LS. The ligand shell of a nanoparticle remains difficult to resolve, as the available characterization methods provide only qualitative information. Here, the authors introduce an approach based on small-angle neutron scattering that can quantitatively reveal the organization of ligands in mixed-monolayer nanoparticles.
Collapse
Affiliation(s)
- Zhi Luo
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Domenico Marson
- Department of Engineering and Architecture and INSTM Trieste Unit, University of Trieste, 34127, Trieste, Italy
| | - Quy K Ong
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Anna Loiudice
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul-Scherrer Institute, 5232, Villigen, Switzerland
| | - Aurel Radulescu
- Jülich Center for Neutron Science, JCNS at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, 85747, Garching, Germany
| | - Anwen Krause-Heuer
- The National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW, 2232, Australia
| | - Tamim Darwish
- The National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW, 2232, Australia
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, 1700, Fribourg, Switzerland
| | - Raffaella Buonsanti
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, 22603, Hamburg, Germany
| | - Paola Posocco
- Department of Engineering and Architecture and INSTM Trieste Unit, University of Trieste, 34127, Trieste, Italy
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|