1
|
Fu X, Li R, Liu X, Cheng L, Ge S, Wang S, Cai Y, Zhang T, Shi CL, Meng S, Tan C, Jiang CZ, Li T, Qi M, Xu T. CPK10 regulates low light-induced tomato flower drop downstream of IDL6 in a calcium-dependent manner. PLANT PHYSIOLOGY 2024; 196:2014-2029. [PMID: 39218791 DOI: 10.1093/plphys/kiae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/13/2024] [Accepted: 06/01/2024] [Indexed: 09/04/2024]
Abstract
Flower drop is a major cause for yield loss in many crops. Previously, we found that the tomato (Solanum lycopersicum) INFLORESCENCE DEFICIENT IN ABSCISSION-Like (SlIDL6) gene contributes to flower drop induced by low light. However, the molecular mechanisms by which SlIDL6 acts as a signal to regulate low light-induced abscission remain unclear. In this study, SlIDL6 was found to elevate cytosolic Ca2+ concentrations ([Ca2+]cyt) in the abscission zone (AZ), which was required for SlIDL6-induced flower drop under low light. We further identified that 1 calcium-dependent protein kinase gene, SlCPK10, was highly expressed in the AZ and upregulated by SlIDL6-triggered [Ca2+]cyt. Overexpression and knockout of SlCPK10 in tomato resulted in accelerated and delayed abscission, respectively. Genetic evidence further indicated that knockout of SlCPK10 significantly impaired the function of SlIDL6 in accelerating abscission. Furthermore, Ser-371 phosphorylation in SlCPK10 dependent on SlIDL6 was necessary and sufficient for its function in regulating flower drop, probably by stabilizing the SlCPK10 proteins. Taken together, our findings reveal that SlCPK10, as a downstream component of the IDL6 signaling pathway, regulates flower drop in tomato under low-light stress.
Collapse
Affiliation(s)
- Xin Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | | | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Changhua Tan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
- Department of Plant Sciences, University of California at Davis, CA 95616, USA
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Ku YS, Cheng SS, Cheung MY, Law CH, Lam HM. The Re-Localization of Proteins to or Away from Membranes as an Effective Strategy for Regulating Stress Tolerance in Plants. MEMBRANES 2022; 12:membranes12121261. [PMID: 36557168 PMCID: PMC9788111 DOI: 10.3390/membranes12121261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/12/2023]
Abstract
The membranes of plant cells are dynamic structures composed of phospholipids and proteins. Proteins harboring phospholipid-binding domains or lipid ligands can localize to membranes. Stress perception can alter the subcellular localization of these proteins dynamically, causing them to either associate with or detach from membranes. The mechanisms behind the re-localization involve changes in the lipidation state of the proteins and interactions with membrane-associated biomolecules. The functional significance of such re-localization includes the regulation of molecular transport, cell integrity, protein folding, signaling, and gene expression. In this review, proteins that re-localize to or away from membranes upon abiotic and biotic stresses will be discussed in terms of the mechanisms involved and the functional significance of their re-localization. Knowledge of the re-localization mechanisms will facilitate research on increasing plant stress adaptability, while the study on re-localization of proteins upon stresses will further our understanding of stress adaptation strategies in plants.
Collapse
|
3
|
Peng R, Sun S, Li N, Kong L, Chen Z, Wang P, Xu L, Wang H, Geng X. Physiological and transcriptome profiling revealed defense networks during Cladosporium fulvum and tomato interaction at the early stage. FRONTIERS IN PLANT SCIENCE 2022; 13:1085395. [PMID: 36561446 PMCID: PMC9763619 DOI: 10.3389/fpls.2022.1085395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Tomato leaf mold caused by Cladosporium fulvum (C. fulvum) is a serious fungal disease which results in huge yield losses in tomato cultivation worldwide. In our study, we discovered that ROS (reactive oxygen species) burst was triggered by C. fulvum treatment in tomato leaves. RNA-sequencing was used to identify differentially expressed genes (DEGs) induced by C. fulvum inoculation at the early stage of invasion in susceptible tomato plants. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to annotate functions of DEGs in tomato plants. Based on our comparative analysis, DEGs related to plant-pathogen interaction pathway, plant hormone signal transduction pathway and the plant phenylpropanoid pathway were further analyzed. Our results discovered that a number of core defense genes against fungal invasion were induced and plant hormone signal transduction pathways were impacted by C. fulvum inoculation. Further, our results showed that SA (salicylic acid) and ABA (abscisic acid) contents were accumulated while JA (jasmonic acid) content decreased after C. fulvum inoculation in comparison with control, and quantitative real-time PCR to detect the relative expression of genes involved in SA, ABA and JA signaling pathway further confirmed our results. Together, results will contribute to understanding the mechanisms of C. fulvum and tomato interaction in future.
Collapse
Affiliation(s)
- Rong Peng
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Sheng Sun
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Na Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingjuan Kong
- Vegetable Department, Shanghai Agricultural Technology Extension and Service Center, Shanghai, China
| | - Zhifeng Chen
- College of Biology and Agricultural Technology, Zunyi Normal University, Zunyi, China
| | - Peng Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hehe Wang
- Clemson University, Edisto Research and Education Center, Blackville, SC, United States
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Ma L, Jiang H, Ren YY, Yang JW, Han Y, Si HJ, Prusky D, Bi Y, Wang Y. Overexpression of StCDPK23 promotes wound healing of potato tubers by regulating StRbohs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:279-289. [PMID: 35724622 DOI: 10.1016/j.plaphy.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/21/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Calcium-dependent protein kinase (CDPK) is a Ca2+ sensor that can phosphorylate and regulate respiratory burst oxidase homolog (Rboh), inducing the production of O2-. However, little is known about how StCDPK23 affects ROS production in the deposition of suberin at potato tuber wounds by regulating StRbohs. In this study, we found that StCDPK23 was induced significantly by the wound in potato tubers, which contains a typical CDPK structure, and was highly homologous to AtCDPK13 in Arabidopsis. Subcellular localization of results showed that StCDPK23 was located in the nucleus and plasma membrane of N. benthamiana epidermis cells. StCDPK23-overexpressing plants and tubers were obtained via Agrobacterium transformation. The expression of StCDPK23 was significantly upregulated in the overexpressing tubers during healing and increased 2.3-fold at 5 d. The expression levels of StRbohs (A-E) were also upregulated in the overexpressing tubers. Among them, StrbohA showed significant expression in the early stage of healing, which was 16.3-fold higher than that of the wild-type tubers at 8 h of healing. Moreover, the overexpressing tubers produced more O2- and H2O2, which are 1.1-fold and 3.5-fold higher than that of the wild-type at 8 h, respectively. More SPP deposition was observed at the wounds of the overexpressing tubers. The thickness of SPP cell layers was 53.2% higher than that of the wild-type after 3 d of the wound. It is suggested that StCDPK23 may participate in the wound healing of potato tubers by regulating Strbohs, which mainly contributes to H2O2 production during healing.
Collapse
Affiliation(s)
- Li Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hong Jiang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying-Yue Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiang-Wei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huai-Jun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China; Department of Postharvest Science, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yi Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
5
|
D'Esposito D, Manzo D, Ricciardi A, Garonna AP, De Natale A, Frusciante L, Pennacchio F, Ercolano MR. Tomato transcriptomic response to Tuta absoluta infestation. BMC PLANT BIOLOGY 2021; 21:358. [PMID: 34348650 PMCID: PMC8336066 DOI: 10.1186/s12870-021-03129-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The South America pinworm, Tuta absoluta, is a destructive pest of tomato that causes important losses worldwide. Breeding of resistant/tolerant tomato cultivars could be an effective strategy for T. absoluta management but, despite the economic importance of tomato, very limited information is available about its response to this treat. To elucidate the defense mechanisms to herbivore feeding a comparative analysis was performed between a tolerant and susceptible cultivated tomato at both morphological and transcriptome level to highlight constitutive leaf barriers, molecular and biochemical mechanisms to counter the effect of T. absoluta attack. RESULTS The tolerant genotype showed an enhanced constitutive barrier possibly as result of the higher density of trichomes and increased inducible reactions upon mild infestation thanks to the activation/repression of key transcription factors regulating genes involved in cuticle formation and cell wall strength as well as of antinutritive enzymes, and genes involved in the production of chemical toxins and bioactive secondary metabolites. CONCLUSIONS Overall, our findings suggest that tomato resilience to the South America pinworm is achieved by a combined strategy between constitutive and induced defense system. A well-orchestrated modulation of plant transcription regulation could ensure a trade-off between defense needs and fitness costs. Our finding can be further exploited for developing T. absoluta tolerant cultivars, acting as important component of integrated pest management strategy for more sustainable production.
Collapse
Affiliation(s)
- Daniela D'Esposito
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Daniele Manzo
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Alessandro Ricciardi
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Antonio Pietro Garonna
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Antonino De Natale
- Department of Biology, University of Naples "Federico II", Monte Sant' Angelo, Via Cinthia 26, 80126, Naples, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Maria Raffaella Ercolano
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy.
| |
Collapse
|
6
|
Nazir F, Fariduddin Q, Khan TA. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. CHEMOSPHERE 2020; 252:126486. [PMID: 32234629 DOI: 10.1016/j.chemosphere.2020.126486] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 05/03/2023]
Abstract
Hydrogen peroxide (H2O2) acts as a significant regulatory component interrelated with signal transduction in plants. The positive role of H2O2 in plants subjected to myriad of abiotic factors has led us to comprehend that it is not only a free radical, generated as a product of oxidative stress, but also helpful in the maintenance of cellular homeostasis in crop plants. Studies over the last two centuries has indicated that H2O2 is a key molecule which regulate photosynthesis, stomatal movement, pollen growth, fruit and flower development and leaf senescence. Exogenously-sourced H2O2 at nanomolar levels functions as a signalling molecule, facilitates seed germination, chlorophyll content, stomatal opening, and delays senescence, while at elevated levels, it triggers oxidative burst to organic molecules, which could lead to cell death. Furthermore, H2O2 is also known to interplay synergistically or antagonistically with other plant growth regulators such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid, nitric oxide and Ca2+ (as signalling molecules), and brassinosteroids (steroidal PGRs) under myriad of environmental stresses and thus, mediate plant growth and development and reactions to abiotic factors. The purpose of this review is to specify accessible knowledge on the role and dynamic mechanisms of H2O2 in mediating growth responses and plant resilience to HM stresses, and its crosstalk with other significant PGRs in controlling various processes. More recently, signal transduction by mitogen activated protein kinases and other transcription factors which attenuate HM stresses in plants have also been dissected.
Collapse
Affiliation(s)
- Faroza Nazir
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tanveer Alam Khan
- Department of Plant Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| |
Collapse
|
7
|
Optimization of recombinant maize CDKA;1 and CycD6;1 production in Escherichia coli by response surface methodology. Protein Expr Purif 2019; 165:105483. [PMID: 31479737 DOI: 10.1016/j.pep.2019.105483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022]
Abstract
The complex formed by the cyclin-dependent kinase A (CDKA) and cyclin D is responsible for the G1-S transition in the plant cell cycle. Maize (Zea mays L) CDKA; 1 and CycD6; 1 were cloned and expressed in E. coli. The present study describes the optimization of both proteins production using a statistical approach known as response surface methodology (RSM). The experimental design took into account the effects of four variables: optical density of the culture (OD600) before induction, isopropyl β-d-1-thiogalactopyranoside (IPTG) concentration, post-induction temperature, and post-induction time. For each protein, a 24 full factorial central composite rotary design for these four independent variables (at five levels each) was employed to fit a polynomial model; which indicated that 30 experiments were required for this procedure. An optimization of CDKA; 1 and CycD6; 1 production levels in the soluble fraction was achieved. Protein conformation and stability were studied by circular dichroism and fluorescence spectroscopy. Finally, in vitro Cyc-CDK complex formation and its kinase activity were confirmed.
Collapse
|
8
|
Ning M, Jiang F, Tang F, Zhang Q, Zhao X, Song W, Shan C. Induction of calcium-dependent protein kinase activity and HmCDPK1 expression in the early response of Hami melons to Penicillium infection. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1620632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ming Ning
- Research Center of Fruit and Vegetable Processing Technology, Department of Grape and Wine Engineering, Food College, Shihezi University, Xinjiang, PR China
| | - Fuyao Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, PR China
| | - Fengxian Tang
- Research Center of Fruit and Vegetable Processing Technology, Department of Grape and Wine Engineering, Food College, Shihezi University, Xinjiang, PR China
| | - Qin Zhang
- Research Center of Fruit and Vegetable Processing Technology, Department of Grape and Wine Engineering, Food College, Shihezi University, Xinjiang, PR China
| | - Xinxin Zhao
- Research Center of Fruit and Vegetable Processing Technology, Department of Grape and Wine Engineering, Food College, Shihezi University, Xinjiang, PR China
| | - Wen Song
- Research Center of Fruit and Vegetable Processing Technology, Department of Grape and Wine Engineering, Food College, Shihezi University, Xinjiang, PR China
| | - Chunhui Shan
- Research Center of Fruit and Vegetable Processing Technology, Department of Grape and Wine Engineering, Food College, Shihezi University, Xinjiang, PR China
| |
Collapse
|
9
|
Xu W, Huang W. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways. Int J Mol Sci 2017; 18:ijms18112436. [PMID: 29156607 PMCID: PMC5713403 DOI: 10.3390/ijms18112436] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023] Open
Abstract
Calcium-dependent protein kinases (CPKs/CDPKs) are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner in which CDPKs participate in phytohormone signaling pathways, regulating nearly all aspects of plant growth, has not yet been undertaken. In this article, we reviewed the structure of CDPKs and the mechanism of their subcellular localization. Some CDPKs were elucidated to influence the intracellular localization of their substrates. Since little work has been done on the interaction between CDPKs and cytokinin signaling pathways, or on newly defined phytohormones such as brassinosteroids, strigolactones and salicylic acid, this paper mainly focused on discussing the integral associations between CDPKs and five plant hormones: auxins, gibberellins, ethylene, jasmonates, and abscisic acid. A perspective on future work is provided at the end.
Collapse
Affiliation(s)
- Wuwu Xu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Caló G, Scheidegger D, Martínez-Noël GMA, Salerno GL. Ancient signal for nitrogen status sensing in the green lineage: Functional evidence of CDPK repertoire in Ostreococcus tauri. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:377-384. [PMID: 28710945 DOI: 10.1016/j.plaphy.2017.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 05/08/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) regulate plant development and many stress signalling pathways through the complex cytosolic [Ca2+] signalling. The genome of Ostreococcus tauri (Ot), a model prasinophyte organism that is on the base of the green lineage, harbours three sequences homologous to those encoding plant CDPKs with the three characteristic conserved domains (protein kinase, autoregulatory/autoinhibitory, and regulatory domain). Phylogenetic and structural analyses revealed that putative OtCDPK proteins are closely related to CDPKs from other Chlorophytes. We functionally characterised the first marine picophytoeukaryote CDPK gene (OtCDPK1) and showed that the expression of the three OtCDPK genes is up-regulated by nitrogen depletion. We conclude that CDPK signalling pathway might have originated early in the green lineage and may play a key role in prasinophytes by sensing macronutrient changes in the marine environment.
Collapse
Affiliation(s)
- Gonzalo Caló
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Dana Scheidegger
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Graciela L Salerno
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina.
| |
Collapse
|
11
|
Pawełek A, Duszyn M, Świeżawska B, Szmidt-Jaworska A, Jaworski K. Transcriptional response of a novel HpCDPK1 kinase gene from Hippeastrum x hybr. to wounding and fungal infection. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:108-117. [PMID: 28609667 DOI: 10.1016/j.jplph.2017.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 05/08/2023]
Abstract
Calcium dependent protein kinases (CDPK) are well established plant sensor and effectors for calcium ions and participate in regulation of multiple abiotic and biotic stress responses in plant cells. Here we present the identification and characterization of a new CDPK kinase gene from bulbous plant Hippeastrum x hybr. and examine the role of this kinase in stress responses leading to phytoalexin (PA) production in plant tissues. In the previous research, it was shown that Hippeastrum bulbs mechanically wounded or infected with Peyronellaea curtisii (=Phoma narcissi) are inducted to an antifungal red substance synthesis. In this research, we demonstrated Ca2+ dependence of the phytoalexin production by wounded bulbs. Furthermore, the isolated HpCDPK1 cDNA for ORF was found to be 1596bp long and encoded 531 amino acid protein with CDPK kinase activity, as was shown by recombinant GST-HpCDPK1 enzyme production and analysis. HpCDPK1 transcript was present in all vegetative and chosen generative organs of Hippeastrum plant. The dynamics of the observed HpCDPK1 mRNA changes in bulbs depended on stressor type. The mechanical injury caused one wave of transcript increase while more complex transcript changes were observed within 48h after Peyronellaea inoculation. In plant bulbs already accumulating red phytoalexin, increases in HpCDPK1 mRNA level were observed at certain intervals within 48h whereas, in the case of fungal infection, only one big increment in the transcript amount at the 10th minute after inoculation was detected. The observed transcriptional response of HpCDPK1 gene to wounding and pathogen infection stress suggests a positive correlation with phytoalexin synthesis and maintenance in bulb tissues and puts more light on CDPK kinase role in the plant stress response regulation. This also bears some potential for understanding the mechanism of a phytoalexin formation.
Collapse
Affiliation(s)
- Agnieszka Pawełek
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Maria Duszyn
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Brygida Świeżawska
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Adriana Szmidt-Jaworska
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Krzysztof Jaworski
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| |
Collapse
|
12
|
Fantino E, Segretin ME, Santin F, Mirkin FG, Ulloa RM. Analysis of the potato calcium-dependent protein kinase family and characterization of StCDPK7, a member induced upon infection with Phytophthora infestans. PLANT CELL REPORTS 2017; 36:1137-1157. [PMID: 28451820 DOI: 10.1007/s00299-017-2144-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/15/2017] [Indexed: 05/25/2023]
Abstract
We describe the potato CDPK family and place StCDPK7 as a player in potato response to Phytophthora infestans infection, identifying phenylalanine ammonia lyase as its specific phosphorylation target in vitro. Calcium-dependent protein kinases (CDPKs) decode calcium (Ca2+) signals and activate different signaling pathways involved in hormone signaling, plant growth, development, and both abiotic and biotic stress responses. In this study, we describe the potato CDPK/CRK multigene family; bioinformatic analysis allowed us to identify 20 new CDPK isoforms, three CDPK-related kinases (CRKs), and a CDPK-like kinase. Phylogenetic analysis indicated that 26 StCDPKs can be classified into four groups, whose members are predicted to undergo different acylation patterns and exhibited diverse expression levels in different tissues and in response to various stimuli. With the aim of characterizing those members that are particularly involved in plant-pathogen interaction, we focused on StCDPK7. Tissue expression profile revealed that StCDPK7 transcript levels are high in swollen stolons, roots, and mini tubers. Moreover, its expression is induced upon Phytophthora infestans infection in systemic leaves. Transient expression assays showed that StCDPK7 displays a cytosolic/nuclear localization in spite of having a predicted chloroplast transit peptide. The recombinant protein, StCDPK7:6xHis, is an active Ca2+-dependent protein kinase that can phosphorylate phenylalanine ammonia lyase, an enzyme involved in plant defense response. The analysis of the potato CDPK family provides the first step towards the identification of CDPK isoforms involved in biotic stress. StCDPK7 emerges as a relevant player that could be manipulated to deploy disease resistance in potato crops.
Collapse
Affiliation(s)
- Elisa Fantino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Eugenia Segretin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Franco Santin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Gabriel Mirkin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rita M Ulloa
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
13
|
Su Y, Zhang Y, Huang N, Liu F, Su W, Xu L, Ahmad W, Wu Q, Guo J, Que Y. Small RNA sequencing reveals a role for sugarcane miRNAs and their targets in response to Sporisorium scitamineum infection. BMC Genomics 2017; 18:325. [PMID: 28438123 PMCID: PMC5404671 DOI: 10.1186/s12864-017-3716-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sugarcane smut caused by Sporisorium scitamineum leads to a significant reduction in cane yield and sucrose content. MicroRNAs (miRNAs) play an important role in regulating plant responses to biotic stress. The present study was the first to use two sugarcane genotypes, YA05-179 (smut-resistant) and ROC22 (smut-susceptible), to identify differentially expressed miRNAs in sugarcane challenged with S. scitamineum by using high-throughput sequencing. RESULTS The predicted target gene number corresponding to known differentially expressed miRNAs in YA05-179 was less than that in ROC22, however most of them were in common. Expression of differential miRNAs under S. scitamineum challenge was mostly downregulated, with similar trends in the two varieties. Gene ontology (GO) analysis showed that the target gene classification of known miRNAs was similar to that of the newly identified miRNAs. These were mainly associated with cellular processes and metabolic processes in the biological process category, as well as combination and catalytic activity in the molecular function category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that these predicted target genes involved in a series of physiological and biochemical pathways or disease resistance-related physiological metabolism and signal transduction pathways, suggesting that the molecular interaction mechanism between sugarcane and S. scitamineum was a complex network system. These findings also showed certain predicted target genes of miR5671, miR5054, miR5783, miR5221, and miR6478 play roles in the mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and plant-pathogen interaction. Quantitative real-time PCR (qRT-PCR) analysis showed that majority of the known miRNAs and its predicted target genes followed a negatively regulated mode. Seven out of eight predicted target genes showed identical expression after 12 h treatment and reached the highest degree of matching at 48 h, indicating that the regulatory role of miRNAs on the target genes in sugarcane was maximized at 48 h after S. scitamineum challenge. CONCLUSIONS Taken together, our findings serve as evidence for the association of miRNA expression with the molecular mechanism underlying the pathogenesis of sugarcane smut, particularly on the significance of miRNA levels in relation to the cultivation of smut-resistant sugarcane varieties.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuye Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ning Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Feng Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Waqar Ahmad
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
14
|
Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding. Sci Rep 2017; 7:44729. [PMID: 28300183 PMCID: PMC5353604 DOI: 10.1038/srep44729] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/14/2017] [Indexed: 11/24/2022] Open
Abstract
Chickpea (C. arietinum L.) is an important pulse crop in Asian and African countries that suffers significant yield losses due to attacks by insects like H. armigera. To obtain insights into early responses of chickpea to insect attack, a transcriptomic analysis of chickpea leaves just 20 minutes after simulated herbivory was performed, using oral secretions of H. armigera coupled with mechanical wounding. Expression profiles revealed differential regulation of 8.4% of the total leaf transcriptome with 1334 genes up-regulated and 501 down-regulated upon wounding at log2-fold change (|FC| ≤ −1 and ≥1) and FDR value ≤ 0.05. In silico analysis showed the activation of defenses through up-regulation of genes of the phenylpropanoid pathway, pathogenesis, oxidases and CYTP450 besides differential regulation of kinases, phosphatases and transcription factors of the WRKY, MYB, ERFs, bZIP families. A substantial change in the regulation of hormonal networks was observed with up-regulation of JA and ethylene pathways and suppression of growth associated hormone pathways like GA and auxin within 20 minutes of wounding. Secondary qPCR comparison of selected genes showed that oral secretions often increased differential expression relative to mechanical damage alone. The studies provide new insights into early wound responses in chickpea.
Collapse
|
15
|
Wu P, Wang W, Duan W, Li Y, Hou X. Comprehensive Analysis of the CDPK-SnRK Superfamily Genes in Chinese Cabbage and Its Evolutionary Implications in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:162. [PMID: 28239387 PMCID: PMC5301275 DOI: 10.3389/fpls.2017.00162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/25/2017] [Indexed: 05/30/2023]
Abstract
The CDPK-SnRK (calcium-dependent protein kinase/Snf1-related protein kinase) gene superfamily plays important roles in signaling pathways for disease resistance and various stress responses, as indicated by emerging evidence. In this study, we constructed comparative analyses of gene structure, retention, expansion, whole-genome duplication (WGD) and expression patterns of CDPK-SnRK genes in Brassica rapa and their evolution in plants. A total of 49 BrCPKs, 14 BrCRKs, 3 BrPPCKs, 5 BrPEPRKs, and 56 BrSnRKs were identified in B. rapa. All BrCDPK-SnRK proteins had highly conserved kinase domains. By statistical analysis of the number of CDPK-SnRK genes in each species, we found that the expansion of the CDPK-SnRK gene family started from angiosperms. Segmental duplication played a predominant role in CDPK-SnRK gene expansion. The analysis showed that PEPRK was more preferentially retained than other subfamilies and that CPK was retained similarly to SnRK. Among the CPKs and SnRKs, CPKIII and SnRK1 genes were more preferentially retained than other groups. CRK was closest to CPK, which may share a common evolutionary origin. In addition, we identified 196 CPK genes and 252 SnRK genes in 6 species, and their different expansion and evolution types were discovered. Furthermore, the expression of BrCDPK-SnRK genes is dynamic in different tissues as well as in response to abiotic stresses, demonstrating their important roles in development in B. rapa. In summary, this study provides genome-wide insight into the evolutionary history and mechanisms of CDPK-SnRK genes following whole-genome triplication in B. rapa.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Wenli Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- School of Life Science and Food Engineering, Huaiyin Institute of TechnologyHuaian, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
16
|
Transcriptomic profiling of soybean in response to UV-B and Xanthomonas axonopodis treatment reveals shared gene components in stress defense pathways. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Saxena I, Srikanth S, Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:570. [PMID: 27200043 PMCID: PMC4848386 DOI: 10.3389/fpls.2016.00570] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/13/2016] [Indexed: 05/18/2023]
Abstract
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.
Collapse
Affiliation(s)
| | | | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
18
|
Saxena I, Srikanth S, Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:570. [PMID: 27200043 DOI: 10.3389/ffpls.2016.00570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.
Collapse
Affiliation(s)
- Ina Saxena
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Sandhya Srikanth
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
19
|
Saxena I, Srikanth S, Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:570. [PMID: 27200043 DOI: 10.3389/fpls.2016.00570/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/13/2016] [Indexed: 05/20/2023]
Abstract
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.
Collapse
Affiliation(s)
- Ina Saxena
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Sandhya Srikanth
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
20
|
Hu Z, Lv X, Xia X, Zhou J, Shi K, Yu J, Zhou Y. Genome-Wide Identification and Expression Analysis of Calcium-dependent Protein Kinase in Tomato. FRONTIERS IN PLANT SCIENCE 2016; 7:469. [PMID: 27092168 PMCID: PMC4824780 DOI: 10.3389/fpls.2016.00469] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/24/2016] [Indexed: 05/04/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) play critical roles in regulating growth, development and stress response in plants. Information about CDPKs in tomato, however, remains obscure although it is one of the most important model crops in the world. In this study, we performed a bioinformatics analysis of the entire tomato genome and identified 29 CDPK genes. These CDPK genes are found to be located in 12 chromosomes, and could be divided into four groups. Analysis of the gene structure and splicing site reflected high structure conservation within different CDPK gene groups both in the exon-intron pattern and mRNA splicing. Transcripts of most CDPK genes varied with plant organs and developmental stages and their transcripts could be differentially induced by abscisic acid (ABA), brassinosteroids (BRs), methyl jasmonate (MeJA), and salicylic acid (SA), as well as after exposure to heat, cold, and drought, respectively. To our knowledge, this is the first report about the genome-wide analysis of the CDPK gene family in tomato, and the findings obtained offer a clue to the elaborated regulatory role of CDPKs in plant growth, development and stress response in tomato.
Collapse
Affiliation(s)
- Zhangjian Hu
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Xiangzhang Lv
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang UniversityHangzhou, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang UniversityHangzhou, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| |
Collapse
|
21
|
Pawełek A, Szmidt-Jaworska A, Świeżawska B, Jaworski K. Genomic structure and promoter characterization of the CDPK kinase gene expressed during seed formation in Pharbitis nil. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:87-96. [PMID: 26546919 DOI: 10.1016/j.jplph.2015.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
CDPK kinases are a unique class of calcium sensor/responders that regulate many growth and developmental processes as well as stress responses of plants. PnCDPK1 kinase from Pharbitis nil is regulated by light and contributes to seed germination, seedling growth and flower formation. Following an earlier work in which we identified the PnCDPK1 coding sequence and a 330bp long 3'UTR (untranslated region), we present for the first time the genomic organization of PnCDPK1, including intron analysis and the gene copy number designation. We completed the research by identifying the 5'-flanking region of PnCDPK1 and analyzed it in silico, which led to the discovery of several cis-regulatory elements involved in light regulation, embryogenesis and seed development. The functional analysis of P. nil CDPK showed characterization of the PnCDPK1 transcript and PnCDPK protein level during seed formation and fruit maturation. The greatest amount of PnCDPK1 mRNA was present in the last stages of seed maturation. Moreover, two PnCDPK proteins of different molecular masses were discovered during fruit development, showing various protein accumulation and activity profile. The 56kDa protein dominated in the early stages of fruit development, whereas the smaller protein (52kDa) was prominent in the latter stages.
Collapse
Affiliation(s)
- Agnieszka Pawełek
- Nicolaus Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Adriana Szmidt-Jaworska
- Nicolaus Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland
| | - Brygida Świeżawska
- Nicolaus Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland
| | - Krzysztof Jaworski
- Nicolaus Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland
| |
Collapse
|
22
|
Zhang K, Han YT, Zhao FL, Hu Y, Gao YR, Ma YF, Zheng Y, Wang YJ, Wen YQ. Genome-wide Identification and Expression Analysis of the CDPK Gene Family in Grape, Vitis spp. BMC PLANT BIOLOGY 2015; 15:164. [PMID: 26122404 PMCID: PMC4485369 DOI: 10.1186/s12870-015-0552-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/15/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Calcium-dependent protein kinases (CDPKs) play vital roles in plant growth and development, biotic and abiotic stress responses, and hormone signaling. Little is known about the CDPK gene family in grapevine. RESULTS In this study, we performed a genome-wide analysis of the 12X grape genome (Vitis vinifera) and identified nineteen CDPK genes. Comparison of the structures of grape CDPK genes allowed us to examine their functional conservation and differentiation. Segmentally duplicated grape CDPK genes showed high structural conservation and contributed to gene family expansion. Additional comparisons between grape and Arabidopsis thaliana demonstrated that several grape CDPK genes occured in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grapevine and Arabidopsis. Phylogenetic analysis divided the grape CDPK genes into four groups. Furthermore, we examined the expression of the corresponding nineteen homologous CDPK genes in the Chinese wild grape (Vitis pseudoreticulata) under various conditions, including biotic stress, abiotic stress, and hormone treatments. The expression profiles derived from reverse transcription and quantitative PCR suggested that a large number of VpCDPKs responded to various stimuli on the transcriptional level, indicating their versatile roles in the responses to biotic and abiotic stresses. Moreover, we examined the subcellular localization of VpCDPKs by transiently expressing six VpCDPK-GFP fusion proteins in Arabidopsis mesophyll protoplasts; this revealed high variability consistent with potential functional differences. CONCLUSIONS Taken as a whole, our data provide significant insights into the evolution and function of grape CDPKs and a framework for future investigation of grape CDPK genes.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yong-Tao Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Feng-Li Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yu-Rong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yan-Fei Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - Yue-Jin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
23
|
Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li HY, Burritt DJ, Fujita M, Tran LSP. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. FRONTIERS IN PLANT SCIENCE 2015; 6:420. [PMID: 26136756 PMCID: PMC4468828 DOI: 10.3389/fpls.2015.00420] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/25/2015] [Indexed: 05/08/2023]
Abstract
Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS; hydrogen peroxide, H2O2; superoxide, [Formula: see text]; hydroxyl radical, OH(⋅) and singlet oxygen, (1)O2) is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism.
Collapse
Affiliation(s)
- Mohammad A. Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | | | - Saed-Moucheshi Armin
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz UniversityShiraz, Iran
| | - Pingping Qian
- Department of Biological Science, Graduate School of Science, Osaka UniversityToyonaka, Japan
| | - Wang Xin
- School of Pharmacy, Lanzhou UniversityLanzhou, China
| | - Hong-Yu Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa UniversityTakamatsu, Japan
| | - Lam-Son P. Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
24
|
Cai H, Cheng J, Yan Y, Xiao Z, Li J, Mou S, Qiu A, Lai Y, Guan D, He S. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes in Capsicum annuum. FRONTIERS IN PLANT SCIENCE 2015; 6:737. [PMID: 26442050 PMCID: PMC4584942 DOI: 10.3389/fpls.2015.00737] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/29/2015] [Indexed: 05/09/2023]
Abstract
As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs) play important roles in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a genome wide comprehensive analysis of genes encoding CDPKs and CDPK-related protein kinases (CRKs) was performed in pepper, a total of 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CDPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the C. annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and 8 CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families.
Collapse
Affiliation(s)
- Hanyang Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Junbin Cheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yan Yan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhuoli Xiao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jiazhi Li
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Shaoliang Mou
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Ailian Qiu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yan Lai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Shuilin He, National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
25
|
Khan M, Rozhon W, Unterholzner SJ, Chen T, Eremina M, Wurzinger B, Bachmair A, Teige M, Sieberer T, Isono E, Poppenberger B. Interplay between phosphorylation and SUMOylation events determines CESTA protein fate in brassinosteroid signalling. Nat Commun 2014; 5:4687. [PMID: 25134617 PMCID: PMC4167607 DOI: 10.1038/ncomms5687] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/14/2014] [Indexed: 02/05/2023] Open
Abstract
Brassinosteroids are steroid hormones that are essential for plant growth. Responses to these hormones are mediated by transcription factors of the BES1/BZR1 subfamily, and brassinosteroids activate these factors by impairing their inhibitory phosphorylation by GSK3/shaggy-like kinases. Here we show that brassinosteroids induce nuclear compartmentalization of CESTA (CES), a bHLH transcription factor that regulates brassinosteroid responses, and reveal that this process is regulated by CES SUMOylation. We demonstrate that CES contains an extended SUMOylation motif, and that SUMOylation of this motif is antagonized by phosphorylation to control CES subnuclear localization. Moreover, we provide evidence that phosphorylation regulates CES transcriptional activity and protein turnover by the proteasome. A coordinated modification model is proposed in which, in a brassinosteroid-deficient situation, CES is phosphorylated to activate target gene transcription and enable further posttranslational modification that controls CES protein stability.
Collapse
Affiliation(s)
- Mamoona Khan
- 1] Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany [2] Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Wilfried Rozhon
- 1] Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany [2] Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Simon Josef Unterholzner
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Tingting Chen
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Marina Eremina
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Bernhard Wurzinger
- Department of Molecular Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Andreas Bachmair
- Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Markus Teige
- Department of Molecular Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Tobias Sieberer
- Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Erika Isono
- Plant Systems Biology, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Brigitte Poppenberger
- 1] Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany [2] Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
26
|
VaCPK20 gene overexpression significantly increased resveratrol content and expression of stilbene synthase genes in cell cultures of Vitis amurensis Rupr. Appl Microbiol Biotechnol 2014; 98:5541-9. [DOI: 10.1007/s00253-014-5625-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
|
27
|
Fürstenberg-Hägg J, Zagrobelny M, Bak S. Plant defense against insect herbivores. Int J Mol Sci 2013; 14:10242-97. [PMID: 23681010 PMCID: PMC3676838 DOI: 10.3390/ijms140510242] [Citation(s) in RCA: 376] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/27/2013] [Accepted: 05/02/2013] [Indexed: 01/09/2023] Open
Abstract
Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal.
Collapse
Affiliation(s)
- Joel Fürstenberg-Hägg
- Plant Biochemistry Laboratory and VKR Research Centre ‘Pro-Active Plants’, Department of Plant and Environmental Science, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, Copenhagen DK-1871, Denmark; E-Mails: (J.F.-H.); (M.Z.)
| | - Mika Zagrobelny
- Plant Biochemistry Laboratory and VKR Research Centre ‘Pro-Active Plants’, Department of Plant and Environmental Science, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, Copenhagen DK-1871, Denmark; E-Mails: (J.F.-H.); (M.Z.)
| | - Søren Bak
- Plant Biochemistry Laboratory and VKR Research Centre ‘Pro-Active Plants’, Department of Plant and Environmental Science, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, Copenhagen DK-1871, Denmark; E-Mails: (J.F.-H.); (M.Z.)
| |
Collapse
|
28
|
Kang CH, Moon BC, Park HC, Koo SC, Chi YH, Cheong YH, Yoon BD, Lee SY, Kim CY. Rice small C2-domain proteins are phosphorylated by calcium-dependent protein kinase. Mol Cells 2013; 35:381-7. [PMID: 23456295 PMCID: PMC3887858 DOI: 10.1007/s10059-013-2185-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 11/25/2022] Open
Abstract
We previously reported that OsERG1 and OsERG3 encode rice small C2-domain proteins with different biochemical properties in Ca(2+)- and phospholipid-binding assays. Os-ERG1 exhibited Ca(2+)-dependent phospholipid binding, which was not observed with OsERG3. In the present study, we show that both OsERG1 and OsERG3 proteins exhibit oligomerization properties as determined by native polyacrylamide gel electrophoresis (PAGE) and glutaraldehyde cross-linking experiments. Furthermore, in vitro phosphorylation assays reveal the phosphorylation of OsERG1 and OsERG3 by a rice calcium-dependent protein kinase, OsCDPK5. Our mutation analysis on putative serine phosphorylation sites shows that the first serine (Ser) at position 41 of OsERG1 may be an essential residue for phosphorylation by OsCDPK5. Mutation of Ser41 to alanine (OsERG1S41A) and aspartate (OsERG1S41D) abolishes the ability of OsERG1 to bind phospholipids regardless of the presence or absence of Ca(2+) ions. In addition, unlike the OsERG1 wild-type form, the mutant OsERG1 (S41A)::smGFP construct lost the ability to translocate from the cytosol to the plasma membrane in response to calcium ions or fungal elicitor. These results indicate that Ser41 may be essential for the function of OsERG1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Byung-Dae Yoon
- Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580–185,
Korea
| | | | - Cha Young Kim
- Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580–185,
Korea
| |
Collapse
|
29
|
Kiselev KV, Dubrovina AS, Shumakova OA, Karetin YA, Manyakhin AY. Structure and expression profiling of a novel calcium-dependent protein kinase gene, CDPK3a, in leaves, stems, grapes, and cell cultures of wild-growing grapevine Vitis amurensis Rupr. PLANT CELL REPORTS 2013; 32:431-42. [PMID: 23233131 DOI: 10.1007/s00299-012-1375-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/27/2012] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE : VaCDPK3a is actively expressed in leaves, stems, inflorescences, and berries of Vitis amurensis and may act as a positive growth regulator, but is not involved in the regulation of resveratrol biosynthesis. Calcium-dependent protein kinases (CDPKs) are known to play important roles in plant development and defense against biotic and abiotic stresses. It has previously been shown that CDPK3a is the predominant CDPK transcript in cell cultures of wild-growing grapevine Vitis amurensis Rupr., which is known to possess high resistance against environmental stresses and to produce resveratrol, a polyphenol with valuable pharmacological effects. In this study, we aimed to define the full cDNA sequence of VaCDPK3a and analyze its organ-specific expression, responses to plant hormones, temperature stress and exogenous NaCl, and the effects of VaCDPK3a overexpression on biomass accumulation and resveratrol content in V. amurensis calli. VaCDPK3a was actively expressed in all analyzed V. amurensis organs and tissues and was not transcriptionally regulated by salt and temperature stresses. The highest VaCDPK3a expression was detected in young leaves and the lowest in stems. A reduction in the VaCDPK3a expression correlated with a lower rate of biomass accumulation and higher resveratrol content in calli of V. amurensis under different growth conditions. Overexpression of the VaCDPK3a gene in the V. amurensis calli significantly increased cell growth for a short period of time but did not have an effect on resveratrol production. Further subculturing of the transformed calli resulted in cell death and a decrease in expression of the endogenous VaCDPK3a. The data suggest that while VaCDPK3a acts as a positive regulator of V. amurensis cell growth, it is not involved in the signaling pathway regulating resveratrol biosynthesis and resistance to salt and temperature stresses.
Collapse
Affiliation(s)
- K V Kiselev
- Laboratory of Biotechnology, Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | | | | | | | | |
Collapse
|
30
|
Ma P, Liu J, Yang X, Ma R. Genome-wide identification of the maize calcium-dependent protein kinase gene family. Appl Biochem Biotechnol 2013; 169:2111-25. [PMID: 23397323 DOI: 10.1007/s12010-013-0125-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 01/24/2013] [Indexed: 12/26/2022]
Abstract
In higher plants, calcium is a ubiquitous second messenger in eukaryotic signal transduction cascades. The plant-specific calcium-dependent protein kinases (CDPKs) play important roles regulating downstream components of calcium signaling. We conducted a genome-wide analysis of maize (Zea mays) CDPKs and identified 35 CDPK genes. Maize CDPKs were found to be similar to their counterparts in rice in gene structure, GC content and subgroup classification. Divergence time estimation suggested that maize-rice orthologs were largely consistent with the time when these two species diverged from the last common ancestor. Semiquantitative RT-PCR revealed that the 29 of total 35 maize CDPK genes were expressed in all tissues, including root, stem, leaf, tassel, ear, and kernel. Our genomic and bioinformatics analyses will provide an important foundation for further functional dissection of the maize CDPK gene family.
Collapse
Affiliation(s)
- Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Grandellis C, Giammaria V, Bialer M, Santin F, Lin T, Hannapel DJ, Ulloa RM. The novel Solanum tuberosum calcium dependent protein kinase, StCDPK3, is expressed in actively growing organs. PLANTA 2012; 236:1831-48. [PMID: 22922879 DOI: 10.1007/s00425-012-1732-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/30/2012] [Indexed: 05/11/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are key components of calcium regulated signaling cascades in plants. In this work, isoform StCDPK3 from Solanum tuberosum was studied and fully described. StCDPK3 encodes a 63 kDa protein with an N-terminal variable domain (NTV), rich in prolines and glutamines, which presents myristoylation and palmitoylation consensus sites and a PEST sequence indicative of rapid protein degradation. StCDPK3 gene (circa 11 kb) is localized in chromosome 3, shares the eight exons and seven introns structure with other isoforms from subgroup IIa and contains an additional intron in the 5'UTR region. StCDPK3 expression is ubiquitous being transcripts more abundant in early elongating stolons (ES), leaves and roots, however isoform specific antibodies only detected the protein in leaf particulate extracts. The recombinant 6xHis-StCDPK3 is an active kinase that differs in its kinetic parameters and calcium requirements from StCDPK1 and 2 isoforms. In vitro, StCDPK3 undergoes autophosphorylation regardless of the addition of calcium. The StCDPK3 promoter region (circa 1,800 bp) was subcloned by genome walking and fused to GUS. Light and ABRE responsive elements were identified in the promoter region as well as elements associated to expression in roots. StCDPK3 expression was enhanced by ABA while GA decreased it. Potato transgenic lines harboring StCDPK3 promoter∷GUS construct were generated by Agrobacterium tumefaciens mediated plant transformation. Promoter activity was detected in leaves, root tips and branching points, early ES, tuber eyes and developing sprouts indicating that StCDPK3 is expressed in actively growing organs.
Collapse
Affiliation(s)
- Carolina Grandellis
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Hector N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
32
|
Kobayashi M, Yoshioka M, Asai S, Nomura H, Kuchimura K, Mori H, Doke N, Yoshioka H. StCDPK5 confers resistance to late blight pathogen but increases susceptibility to early blight pathogen in potato via reactive oxygen species burst. THE NEW PHYTOLOGIST 2012; 196:223-237. [PMID: 22783903 DOI: 10.1111/j.1469-8137.2012.04226.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• Potato (Solanum tuberosum) calcium-dependent protein kinase (StCDPK5) has been shown to phosphorylate the N-terminal region of plasma membrane RBOH (respiratory burst oxidase homolog) proteins, and participate in StRBOHB-mediated reactive oxygen species (ROS) burst. The constitutively active form, StCDPK5VK, provides a useful tool for gain-of-function analysis of RBOH in defense responses. • StCDPK5- and StCDPK5VK-green fluorescent protein fusion proteins were predominantly targeted to the plasma membrane, and conditional expression of StCDPK5VK activated StRBOHA-D. The interaction was confirmed by bimolecular fluorescence complementation assay. We generated transgenic potato plants containing StCDPK5VK under the control of a pathogen-inducible promoter to investigate the role of ROS burst on defense responses to blight pathogens. • Virulent isolates of the late blight pathogen Phytophthora infestans and the early blight pathogen Alternaria solani induced hypersensitive response-like cell death accompanied by ROS production at the infection sites of transgenic plants. Transgenic plants showed resistance to the near-obligate hemibiotrophic pathogen P. infestans and, by contrast, increased susceptibility to the necrotrophic pathogen A. solani. • These results indicate that RBOH-dependent ROS contribute to basal defense against near-obligate pathogens, but have a negative role in resistance or have a positive role in expansion of disease lesions caused by necrotrophic pathogens.
Collapse
Affiliation(s)
| | | | - Shuta Asai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hironari Nomura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuo Kuchimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Noriyuki Doke
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hirofumi Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
33
|
Szczegielniak J, Borkiewicz L, Szurmak B, Lewandowska-Gnatowska E, Statkiewicz M, Klimecka M, Cieśla J, Muszyńska G. Maize calcium-dependent protein kinase (ZmCPK11): local and systemic response to wounding, regulation by touch and components of jasmonate signaling. PHYSIOLOGIA PLANTARUM 2012; 146:1-14. [PMID: 22289134 DOI: 10.1111/j.1399-3054.2012.01587.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Expression of ZmCPK11, a member of the maize (Zea mays) calcium-dependent protein kinases (CDPKs) family, is induced by mechanical wounding. A rapid increase of the activity of a 56-kDa CDPK has been observed in damaged leaves. In the present work, it is shown that the 56-kDa CDPK, identified as ZmCPK11, is also activated in non-wounded leaves as an element of systemic wound response. Moreover, an increase of the enzyme's activity and induction of ZmCPK11 expression was observed after touching the leaves. To study the role of ZmCPK11 in wound and touch signaling, transgenic Arabidopsis thaliana plants in which c-Myc-ZmCPK11 was expressed under control of the CaMV 35S promoter were generated. Analysis of the transgenic plants showed that c-Myc-ZmCPK11 was activated upon wounding and touching. Furthermore, pre-treatment with acetylsalicylic acid (acSA), an inhibitor of jasmonic acid (JA)-dependent wound signaling, abolished the wound-induced activation of ZmCPK11 in maize and the transgenic A. thaliana plants. Methyl jasmonate (MeJA) and linolenic acid (LA) stimulated the activity of ZmCPK11 as well as induced the expression of ZmCPK11 and other wound-responsive genes, lipoxygenase 1 (ZmLOX1) and proteinase inhibitor 1 (ZmWIP1). These results indicate that ZmCPK11, regulated at the enzymatic and transcriptional level by LA and MeJA, is a component of touch- and wound-induced pathway(s), participating in early stages of local and systemic responses.
Collapse
Affiliation(s)
- Jadwiga Szczegielniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Muñiz García MN, Giammaria V, Grandellis C, Téllez-Iñón MT, Ulloa RM, Capiati DA. Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro. PLANTA 2012; 235:761-78. [PMID: 22042328 DOI: 10.1007/s00425-011-1540-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/14/2011] [Indexed: 05/19/2023]
Abstract
ABF/AREB bZIP transcription factors mediate plant abiotic stress responses by regulating the expression of stress-related genes. These proteins bind to the abscisic acid (ABA)-responsive element (ABRE), which is the major cis-acting regulatory sequence in ABA-dependent gene expression. In an effort to understand the molecular mechanisms of abiotic stress resistance in cultivated potato (Solanum tuberosum L.), we have cloned and characterized an ABF/AREB-like transcription factor from potato, named StABF1. The predicted protein shares 45-57% identity with A. thaliana ABFs proteins and 96% identity with the S. lycopersicum SlAREB1 and presents all of the distinctive features of ABF/AREB transcription factors. Furthermore, StABF1 is able to bind to the ABRE in vitro. StABF1 gene is induced in response to ABA, drought, salt stress and cold, suggesting that it might be a key regulator of ABA-dependent stress signaling pathways in cultivated potato. StABF1 is phosphorylated in response to ABA and salt stress in a calcium-dependent manner, and we have identified a potato CDPK isoform (StCDPK2) that phosphorylates StABF1 in vitro. Interestingly, StABF1 expression is increased during tuber development and by tuber-inducing conditions (high sucrose/nitrogen ratio) in leaves. We also found that StABF1 calcium-dependent phosphorylation is stimulated by tuber-inducing conditions and inhibited by gibberellic acid, which inhibits tuberization.
Collapse
Affiliation(s)
- María Noelia Muñiz García
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 2º Piso, C1428ADN Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
35
|
Petrov VD, Van Breusegem F. Hydrogen peroxide-a central hub for information flow in plant cells. AOB PLANTS 2012; 2012:pls014. [PMID: 22708052 PMCID: PMC3366437 DOI: 10.1093/aobpla/pls014] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/14/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Hydrogen peroxide (H(2)O(2)) was initially recognized as a toxic reactive oxygen species, able to cause damage to a variety of cellular structures. However, it became clear in the last decade that H(2)O(2) can also act as a potent signalling molecule, involved in a plethora of physiological functions. SCOPE In the present review, we offer a brief summary of H(2)O(2) signalling events and focus on the mechanisms of its perception and signal transduction, the factors that act downstream, as well as H(2)O(2) interference with other information transfer mechanisms. CONCLUSION The significant scientific effort in the last 10 years to determine the position of H(2)O(2) in signal transduction networks in plants demonstrated that it is essential for both the communication with external biotic and abiotic stimuli and the control of developmentally regulated processes. In addition, H(2)O(2) complements, synergizes or antagonizes many cellular regulatory circuits by active interaction with other signals and plant hormones during growth, development and stress responses. Therefore, further understanding of H(2)O(2) signal transduction is not only of fundamental, but also of practical importance, since this knowledge may contribute to improve agricultural practices and reduce stress-induced damage to crops.
Collapse
Affiliation(s)
- Veselin Dimitrov Petrov
- Department of Plant Physiology and Plant Molecular Biology, University of Plovdiv, 24 Tsar Assen str., Plovdiv 4000, Bulgaria
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
- Corresponding author's e-mail address:
| |
Collapse
|
36
|
Lanteri ML, Lamattina L, Laxalt AM. Mechanisms of xylanase-induced nitric oxide and phosphatidic acid production in tomato cells. PLANTA 2011; 234:845-55. [PMID: 21643989 DOI: 10.1007/s00425-011-1446-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/18/2011] [Indexed: 05/20/2023]
Abstract
The second messenger nitric oxide (NO), phosphatidic acid (PA) and reactive oxygen species (ROS) are involved in the plant defense response during plant-pathogen interactions. NO has been shown to participate in PA production in response to the pathogen-associated molecular pattern xylanase in tomato cell suspensions. Defense responses downstream of PA include ROS production. The goal of this work was to study the signaling mechanisms involved in PA production during the defense responses triggered by xylanase and mediated by NO in the suspension-cultured tomato cells. We analyzed the participation of protein kinases, guanylate cyclase and the NO-mediated posttranslational modification S-nitrosylation, by means of pharmacology and biochemistry. We showed that NO, PA and ROS levels are significantly diminished by treatment with the general protein kinase inhibitor staurosporine. This indicates that xylanase-induced protein phosphorylation events might be the important components leading to NO formation, and hence for the downstream regulation of PA and ROS levels. When assayed, a guanylate cyclase inhibitor or a cGMP analog did not alter the PA accumulation. These results suggest that a cGMP-mediated pathway is not involved in xylanase-induced PA formation. Finally, the inhibition of protein S-nitrosylation did not affect NO formation but compromised PA and ROS production. Data collectively indicate that upon xylanase perception, cells activate a protein kinase pathway required for NO formation and that, S-nitrosylation-dependent mechanisms are involved in downstream signaling leading to PA and ROS.
Collapse
Affiliation(s)
- M Luciana Lanteri
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | | | | |
Collapse
|
37
|
Nemoto K, Seto T, Takahashi H, Nozawa A, Seki M, Shinozaki K, Endo Y, Sawasaki T. Autophosphorylation profiling of Arabidopsis protein kinases using the cell-free system. PHYTOCHEMISTRY 2011; 72:1136-44. [PMID: 21477822 DOI: 10.1016/j.phytochem.2011.02.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/19/2011] [Accepted: 02/24/2011] [Indexed: 05/20/2023]
Abstract
Protein phosphorylation is one of the main process in the signal transduction pathway. In recent years, there has been increasing attention to plant phosphorylation signaling and many laboratories are trying to elucidate pathways using various approaches. Although more than 1000 protein kinase (PK) genes have been annotated in the Arabidopsis genome, biochemical characterization of those PKs is limited. In this work, we demonstrate high-throughput profiling of serine/threonine autophosphorylation activity by a combination of the 759N-terminal biotinylated proteins library, produced using a wheat germ cell-free protein production system, and a commercially available luminescence system. Luminescent analysis revealed that 179 of the 759 PKs had autophosphorylation activity. From these 179 PKs, 67 of the most active PKs were analyzed to determine their function using the PlantP database. This analysis revealed that 35 (53%) of the proteins were classified as non-transmembrane protein kinases, and 15 (23%) were receptor-like protein kinases. Additionally, PKs from Group 4.4-MAP3K, Group 1.6, Group 4.5-MAPK/CDC/CK2/GSK kinases and Group 1.10-receptor like cytoplasmic kinases contained the highest percentage of autophosphorylated activity. Next, to get a better overview of the annotated 67 PKs, we used the gene ontology annotation search on the TAIR website to classify the 67 PKs into functional category. As a result, some of these PKs may be involved in phospho-signaling pathways such as signal transduction, stress response, and the regulation of cell division. Information from this study may shed light on many unknown plant PKs. This study will be a basis for understanding the function of PKs in phosphorylation network for future research.
Collapse
Affiliation(s)
- Keiichirou Nemoto
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Calmodulin Involved in The Cell Proliferation of Root Apical Meristem and ABA Response in Arabidopsis*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Giammaria V, Grandellis C, Bachmann S, Gargantini PR, Feingold SE, Bryan G, Ulloa RM. StCDPK2 expression and activity reveal a highly responsive potato calcium-dependent protein kinase involved in light signalling. PLANTA 2011; 233:593-609. [PMID: 21132327 DOI: 10.1007/s00425-010-1319-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/12/2010] [Indexed: 05/11/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are essential calcium sensors. In this work, we have studied StCDPK2 isoform from potato both at gene and protein level. StCdpk2 genomic sequence contains eight exons and seven introns, as was observed for StCdpk1. There is one copy of the gene per genome located in chromosome 7. StCDPK2 encodes an active CDPK of 515 aminoacids, with an apparent MW of 57 kDa, which presents myristoylation and palmitoylation consensus in its N-terminus. StCDPK2 is highly expressed in leaves and green sprouts; enhanced expression was detected under light treatment, which corresponds well with light responsive cis-acting elements found in its promoter sequence. Antibodies against the recombinant StCDPK2::6xHis protein detected this isoform in soluble and particulate fractions from leaves. StCDPK2 autophosphorylation and kinase activity are both calcium dependent reaching half maximal activation at 0.6 μM calcium. The active kinase is autophosphorylated on serine and tyrosine residues and its activity is negatively modulated by phosphatidic acid (PA). Our results reveal StCDPK2 as a signalling element involved in plant growth and development and show that its activity is tightly regulated.
Collapse
Affiliation(s)
- Verónica Giammaria
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 2do piso, 1428, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
40
|
Structure and Function of CDPK: A Sensor Responder of Calcium. CODING AND DECODING OF CALCIUM SIGNALS IN PLANTS 2011. [DOI: 10.1007/978-3-642-20829-4_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Asano T, Hakata M, Nakamura H, Aoki N, Komatsu S, Ichikawa H, Hirochika H, Ohsugi R. Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. PLANT MOLECULAR BIOLOGY 2011; 75:179-91. [PMID: 21136139 DOI: 10.1007/s11103-010-9717-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 11/22/2010] [Indexed: 05/05/2023]
Abstract
Calcium acts as a messenger in various signal transduction pathways in plants. Calcium-dependent protein kinases (CDPKs) play important roles in regulating downstream components in calcium signaling pathways. In rice, the CDPKs constitute a large multigene family consisting of 29 genes, but the biological functions and functional divergence or redundancy of most of these genes remain unclear. Using a mini-scale full-length cDNA overexpressor (FOX) gene hunting system, we generated 250 independent transgenic rice plants overexpressing individual rice CDPKs (CDPK FOX-rice lines). These CDPK FOX-rice lines were screened for salt stress tolerance. The survival rate of the OsCPK21-FOX plants was higher than that of wild-type (WT) plants grown under high salinity conditions. The inhibition of seedling growth by abscisic acid (ABA) treatment was greater in the OsCPK21-FOX plants than in WT plants. Several ABA- and high salinity-inducible genes were more highly expressed in the OsCPK21-FOX plants than in WT plants. These results suggest that OsCPK21 is involved in the positive regulation of the signaling pathways that are involved in the response to ABA and salt stress.
Collapse
Affiliation(s)
- Takayuki Asano
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yoshioka H, Mase K, Yoshioka M, Kobayashi M, Asai S. Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity. Nitric Oxide 2010; 25:216-21. [PMID: 21195205 DOI: 10.1016/j.niox.2010.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 12/15/2010] [Accepted: 12/19/2010] [Indexed: 12/18/2022]
Abstract
Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in diverse physiological processes, such as programmed cell death, development, cell elongation and hormonal signaling, in plants. Much attention has been paid to the regulation of plant innate immunity by these signal molecules. Recent studies provide evidence that an NADPH oxidase, respiratory burst oxidase homolog, is responsible for pathogen-responsive ROS burst. However, we still do not know about NO-producing enzymes, except for nitrate reductase, although many studies suggest the existence of NO synthase-like activity responsible for NO burst in plants. Here, we introduce regulatory mechanisms of NO and ROS bursts by mitogen-activated protein kinase cascades, calcium-dependent protein kinase or riboflavin and its derivatives, flavin mononucleotide and flavin adenine dinucleotide, and we discuss the roles of the bursts in defense responses against plant pathogens.
Collapse
Affiliation(s)
- Hirofumi Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | | | |
Collapse
|
43
|
Kamiyoshihara Y, Iwata M, Fukaya T, Tatsuki M, Mori H. Turnover of LeACS2, a wound-inducible 1-aminocyclopropane-1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:140-50. [PMID: 20659278 DOI: 10.1111/j.1365-313x.2010.04316.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) is the rate-limiting enzyme of the ethylene biosynthesis pathway. ACS is regulated both transcriptionally and post-translationally. We previously reported that LeACS2, a wound-inducible ACS in tomato (Solanum lycopersicum), is phosphorylated in vivo, and suggested that phosphorylation regulates protein stability rather than enzymatic activity. In this report, we demonstrate that phosphorylation/dephosphorylation of LeACS2 regulates its turnover upstream of the ubiquitin-26S-proteasome degradation pathway. Pulse-chase experiments coupled with treatment with protein kinase/phosphatase inhibitors demonstrated that LeACS2 is stabilized by phosphorylation and degraded after dephosphorylation. The amount of LeACS2 affected by the protein kinase/phosphatase inhibitors significantly influenced cellular ACS activity, ACC content, and ethylene production levels in tomato fruit tissue, suggesting that post-translational regulation by phosphorylation plays an important role in the control of ethylene production. A calcium-dependent protein kinase (CDPK), LeCDPK2, was isolated as one of the protein kinases that are able to phosphorylate LeACS2 at Ser-460. LeACS2 was immediately phosphorylated after translation by CDPK and mitogen-activated protein kinase at different sites in response to wound signaling and almost all functional LeACS2 molecules are phosphorylated in the cell. Phosphorylation at both sites was required for LeACS2 stability.
Collapse
Affiliation(s)
- Yusuke Kamiyoshihara
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa-ku, Nagoya, Aichi, Japan
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Cloning and Expression of Calcium-Dependent Protein Kinase (CDPK) Gene Family in Common Tobacco (Nicotiana tabacum). ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1671-2927(08)60358-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Yoshioka H, Asai S, Yoshioka M, Kobayashi M. Molecular mechanisms of generation for nitric oxide and reactive oxygen species, and role of the radical burst in plant immunity. Mol Cells 2009; 28:321-9. [PMID: 19830396 DOI: 10.1007/s10059-009-0156-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/06/2009] [Indexed: 12/17/2022] Open
Abstract
Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and H(2)O(2) accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.
Collapse
Affiliation(s)
- Hirofumi Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | |
Collapse
|
47
|
Beyhl D, Hörtensteiner S, Martinoia E, Farmer EE, Fromm J, Marten I, Hedrich R. The fou2 mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:715-23. [PMID: 19298454 DOI: 10.1111/j.1365-313x.2009.03820.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The SV channel encoded by the TPC1 gene represents a Ca(2+)- and voltage-dependent vacuolar cation channel. Point mutation D454N within TPC1, named fou2 for fatty acid oxygenation upregulated 2, results in increased synthesis of the stress hormone jasmonate. As wounding causes Ca2+ signals and cytosolic Ca2+ is required for SV channel function, we here studied the Ca(2+)-dependent properties of this major vacuolar cation channel with Arabidopsis thaliana mesophyll vacuoles. In patch clamp measurements, wild-type and fou2 SV channels did not exhibit differences in cytosolic Ca2+ sensitivity and Ca2+ impermeability. K+ fluxes through wild-type TPC1 were reduced or even completely faded away when vacuolar Ca2+ reached the 0.1-mm level. The fou2 protein under these conditions, however, remained active. Thus, D454N seems to be part of a luminal Ca2+ recognition site. Thereby the SV channel mutant gains tolerance towards elevated luminal Ca2+. A three-fold higher vacuolar Ca/K ratio in the fou2 mutant relative to wild-type plants seems to indicate that fou2 can accumulate higher levels of vacuolar Ca(2+) before SV channel activity vanishes and K(+) homeostasis is impaired. In response to wounding fou2 plants might thus elicit strong vacuole-derived cytosolic Ca2+ signals resulting in overproduction of jasmonate.
Collapse
Affiliation(s)
- Diana Beyhl
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Han RB, Yuan YJ. Oxidative Burst in Suspension Culture of Taxus cuspidataInduced by a Laminar Shear Stress in Short-Term. Biotechnol Prog 2008; 20:507-13. [PMID: 15058996 DOI: 10.1021/bp034242p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Generation of active oxidative species induced by shear stress in suspension cultures of Taxus cuspidata was investigated in a Couette-type shear reactor. It was found that T. cuspidata cells respond to a shear rate of 95 s(-)(1) with oxidative bursts. Their triphasic characteristics in 6 h were similar in both intracellular H(2)O(2) production and extracellular O(2)(-)( )(*) production. Additionally, inhibition studies with diphenylene iodonium and azide suggested that the key enzyme responsible for oxidative bursts under the shear rate of 95 s(-)(1) is primarily NADPH oxidase and the contribution of peroxidase for oxidative bursts was less. Investigation of the relationship between active oxidative species and defense responses induced by the shear stress indicated that the O(2)(-)( )(*) burst may account for the change of membrane permeability, and the H(2)O(2) burst plays an important role in inducing secondary metabolites such as the activation of phenylalanine ammonia lyase enzyme and phenolic accumulation. Furthermore, oxidative bursts elicited by the shear rate of 95 s(-)(1) were suppressed by treatment with suramin, nifedipine, and neomycin prior to the shear stress treatment, suggesting that G-protein, Ca(2+) channel, and phospholipase C are involved in the signal pathway for oxidative bursts induced by the shear stress. A model is proposed to explain the oxidative burst in cultured T. cuspidata cells challenged with the shear stress.
Collapse
Affiliation(s)
- Rong-Bin Han
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | | |
Collapse
|
49
|
Roux D, Faure C, Bonnet P, Girard S, Ledoigt G, Davies E, Gendraud M, Paladian F, Vian A. A possible role for extra-cellular ATP in plant responses to high frequency, low amplitude electromagnetic field. PLANT SIGNALING & BEHAVIOR 2008; 227:883-91. [PMID: 19704572 DOI: 10.1007/s00425-007-0664-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/29/2007] [Indexed: 05/21/2023]
Abstract
In parallel to evoking the accumulation of stress-related transcripts, exposure to low level 900 MHz EMF affected the levels of ATP, the main energy molecule of the cell. Its concentration dropped rapidly (27% after 30 min) in response to EMF exposure, along with a 18% decrease in the adenylate energy charge (AEC), a good marker of cell energy status. One could interpret this decrease in ATP and AEC in a classical way, i.e., as the result of an increase in cellular energy usage, but recent work brings exciting new insights in pointing out a signalling function for ATP, especially in the stress physiology context where it could trigger both reactive oxygen species and calcium movement (this latter being involved in plant responses to EMF exposure). In this addendum, we discuss our results within this new perspective for ATP function.
Collapse
|
50
|
Li AL, Zhu YF, Tan XM, Wang X, Wei B, Guo HZ, Zhang ZL, Chen XB, Zhao GY, Kong XY, Jia JZ, Mao L. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2008; 66:429-43. [PMID: 18185910 DOI: 10.1007/s11103-007-9281-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 12/21/2007] [Indexed: 05/05/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are crucial sensors of calcium concentration changes in plant cells under diverse endogenous and environmental stimuli. We identified 20 CDPK genes from bread wheat and performed a comprehensive study on their structural, functional and evolutionary characteristics. Full-length cDNA sequences of 14 CDPKs were obtained using various approaches. Wheat CDPKs were found to be similar to their counterparts in rice in genomic structure, GC content, subcellular localization, and subgroup classification. Divergence time estimation of wheat CDPK gene pairs and wheat-rice orthologs suggested that most duplicated genes already existed in the common ancestor of wheat and rice. The number of CDPKs in diploid wheat genome was estimated to be at least 26, a number close to that in rice, Arabidopsis, and poplar. However, polymorphism among EST sequences uncovered transcripts of all three homoeologous alleles for 13 out of 20 CDPKs. Thus, the hexaploid wheat should have 2-3 fold more CDPK genes expressing in their cells than the diploid species. Wheat CDPK genes were found to respond to various biotic and abiotic stimuli, including cold, hydrogen peroxide (H(2)O(2)), salt, drought, powdery mildew (Blumeria graminis tritici, Bgt), as well as phytohormones abscisic acid (ABA) and gibberellic acid (GA). Each CDPK gene often responded to multiple treatments, suggesting that wheat CDPKs are converging points for multiple signal transduction pathways. The current work represents the first comprehensive study of CDPK genes in bread wheat and provides a foundation for further functional study of this important gene family in Triticeae.
Collapse
Affiliation(s)
- Ai-Li Li
- National Key Facility of Crop Gene Resources and Genetic Improvement (NFCRI), Key Laboratory of Crop Germplasm & Biotechnology, Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing 100081, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|