1
|
Maruyama H, Sasaki T, Yamamoto Y, Wasaki J. AtALMT3 is Involved in Malate Efflux Induced by Phosphorus Deficiency in Arabidopsis thaliana Root Hairs. PLANT & CELL PHYSIOLOGY 2019; 60:107-115. [PMID: 30239977 DOI: 10.1093/pcp/pcy190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Under phosphorus (P)-deficient conditions, organic acid secretion from roots plays an important role in P mobilization from insoluble P in the soil. In this study, we characterized AtALMT3, a homolog of the Arabidopsis thaliana aluminum-activated malate transporter family gene. Among the 14 AtALMT family genes, only AtALMT3 was significantly up-regulated in P-deficient roots. AtALMT3 promoter::β-glucuronidase is expressed in the epidermis in roots, especially in root hair cells. AtALMT3 protein was localized in the plasma membrane and in small vesicles. Fluorescence of AtALMT3::GFP was not observed on the vacuole membrane of protoplast after lysis, indicating that AtALMT3 localizes mainly in the plasma membrane. Compared with the wild-type (WT) line, malate exudation in the AtALMT3-knockdown line (atalmt3-1) and overexpression line (atalmt3-2) under P deficiency were, respectively, 37% and 126%. In contrast, no significant difference was found in citrate exudation among these lines. The complementation of the atalmt3-1 line with AtALMT3 recovered the malate exudation to the level of the WT. Taken together, these results suggest that AtALMT3 localized in root hair membranes is involved in malate efflux in response to P deficiency.
Collapse
Affiliation(s)
- Hayato Maruyama
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, Japan
| | - Takayuki Sasaki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Yoko Yamamoto
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Jun Wasaki
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, Japan
| |
Collapse
|
2
|
Govender N, Senan S, Mohamed-Hussein ZA, Wickneswari R. A gene co-expression network model identifies yield-related vicinity networks in Jatropha curcas shoot system. Sci Rep 2018; 8:9211. [PMID: 29907786 PMCID: PMC6003958 DOI: 10.1038/s41598-018-27493-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022] Open
Abstract
The plant shoot system consists of reproductive organs such as inflorescences, buds and fruits, and the vegetative leaves and stems. In this study, the reproductive part of the Jatropha curcas shoot system, which includes the aerial shoots, shoots bearing the inflorescence and inflorescence were investigated in regard to gene-to-gene interactions underpinning yield-related biological processes. An RNA-seq based sequencing of shoot tissues performed on an Illumina HiSeq. 2500 platform generated 18 transcriptomes. Using the reference genome-based mapping approach, a total of 64 361 genes was identified in all samples and the data was annotated against the non-redundant database by the BLAST2GO Pro. Suite. After removing the outlier genes and samples, a total of 12 734 genes across 17 samples were subjected to gene co-expression network construction using petal, an R library. A gene co-expression network model built with scale-free and small-world properties extracted four vicinity networks (VNs) with putative involvement in yield-related biological processes as follow; heat stress tolerance, floral and shoot meristem differentiation, biosynthesis of chlorophyll molecules and laticifers, cell wall metabolism and epigenetic regulations. Our VNs revealed putative key players that could be adapted in breeding strategies for J. curcas shoot system improvements.
Collapse
Affiliation(s)
- Nisha Govender
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
- Center for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Siju Senan
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Center for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Ratnam Wickneswari
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Munusamy P, Zolotarov Y, Meteignier LV, Moffett P, Strömvik MV. De novo computational identification of stress-related sequence motifs and microRNA target sites in untranslated regions of a plant translatome. Sci Rep 2017; 7:43861. [PMID: 28276452 PMCID: PMC5343461 DOI: 10.1038/srep43861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/31/2017] [Indexed: 01/24/2023] Open
Abstract
Gene regulation at the transcriptional and translational level leads to diversity in phenotypes and function in organisms. Regulatory DNA or RNA sequence motifs adjacent to the gene coding sequence act as binding sites for proteins that in turn enable or disable expression of the gene. Whereas the known DNA and RNA binding proteins range in the thousands, only a few motifs have been examined. In this study, we have predicted putative regulatory motifs in groups of untranslated regions from genes regulated at the translational level in Arabidopsis thaliana under normal and stressed conditions. The test group of sequences was divided into random subgroups and subjected to three de novo motif finding algorithms (Seeder, Weeder and MEME). In addition to identifying sequence motifs, using an in silico tool we have predicted microRNA target sites in the 3′ UTRs of the translationally regulated genes, as well as identified upstream open reading frames located in the 5′ UTRs. Our bioinformatics strategy and the knowledge generated contribute to understanding gene regulation during stress, and can be applied to disease and stress resistant plant development.
Collapse
Affiliation(s)
- Prabhakaran Munusamy
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Yevgen Zolotarov
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | | | - Peter Moffett
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Martina V Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| |
Collapse
|
4
|
Comas J, Benfeitas R, Vilaprinyo E, Sorribas A, Solsona F, Farré G, Berman J, Zorrilla U, Capell T, Sandmann G, Zhu C, Christou P, Alves R. Identification of line-specific strategies for improving carotenoid production in synthetic maize through data-driven mathematical modeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:455-471. [PMID: 27155093 DOI: 10.1111/tpj.13210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
Plant synthetic biology is still in its infancy. However, synthetic biology approaches have been used to manipulate and improve the nutritional and health value of staple food crops such as rice, potato and maize. With current technologies, production yields of the synthetic nutrients are a result of trial and error, and systematic rational strategies to optimize those yields are still lacking. Here, we present a workflow that combines gene expression and quantitative metabolomics with mathematical modeling to identify strategies for increasing production yields of nutritionally important carotenoids in the seed endosperm synthesized through alternative biosynthetic pathways in synthetic lines of white maize, which is normally devoid of carotenoids. Quantitative metabolomics and gene expression data are used to create and fit parameters of mathematical models that are specific to four independent maize lines. Sensitivity analysis and simulation of each model is used to predict which gene activities should be further engineered in order to increase production yields for carotenoid accumulation in each line. Some of these predictions (e.g. increasing Zmlycb/Gllycb will increase accumulated β-carotenes) are valid across the four maize lines and consistent with experimental observations in other systems. Other predictions are line specific. The workflow is adaptable to any other biological system for which appropriate quantitative information is available. Furthermore, we validate some of the predictions using experimental data from additional synthetic maize lines for which no models were developed.
Collapse
Affiliation(s)
- Jorge Comas
- Departament de Ciencies Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomèdica de Lleida IRBLLeida, Edifici de Recerca Biomédica I, Av Rovira Roure 80, Lleida, Catalunya, 25198, Spain
- Computer Science Department and INSPIRES, University of Lleida, Jaume II 69, Lleida, Catalunya, 25001, Spain
| | - Rui Benfeitas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Ester Vilaprinyo
- Departament de Ciencies Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomèdica de Lleida IRBLLeida, Edifici de Recerca Biomédica I, Av Rovira Roure 80, Lleida, Catalunya, 25198, Spain
| | - Albert Sorribas
- Departament de Ciencies Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomèdica de Lleida IRBLLeida, Edifici de Recerca Biomédica I, Av Rovira Roure 80, Lleida, Catalunya, 25198, Spain
| | - Francesc Solsona
- Computer Science Department and INSPIRES, University of Lleida, Jaume II 69, Lleida, Catalunya, 25001, Spain
| | - Gemma Farré
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida Agrotecnio Center, Avenida Alcalde Rovira Roure 191, Lleida, 25198, Spain
| | - Judit Berman
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida Agrotecnio Center, Avenida Alcalde Rovira Roure 191, Lleida, 25198, Spain
| | - Uxue Zorrilla
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida Agrotecnio Center, Avenida Alcalde Rovira Roure 191, Lleida, 25198, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida Agrotecnio Center, Avenida Alcalde Rovira Roure 191, Lleida, 25198, Spain
| | - Gerhard Sandmann
- Institute of Molecular Bioscience, J. W. Goethe University, Max von Laue Strasse 9, Frankfurt am Main, D-60438, Germany
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida Agrotecnio Center, Avenida Alcalde Rovira Roure 191, Lleida, 25198, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida Agrotecnio Center, Avenida Alcalde Rovira Roure 191, Lleida, 25198, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avancats, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| | - Rui Alves
- Departament de Ciencies Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain.
- Institut de Recerca Biomèdica de Lleida IRBLLeida, Edifici de Recerca Biomédica I, Av Rovira Roure 80, Lleida, Catalunya, 25198, Spain.
| |
Collapse
|
5
|
Gill U, Brueggeman R, Nirmala J, Chai Y, Steffenson B, Kleinhofs A. Molecular and genetic characterization of barley mutants and genetic mapping of mutant rpr2 required for Rpg1-mediated resistance against stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1519-1529. [PMID: 27142847 DOI: 10.1007/s00122-016-2721-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
This study describes the generation, screening, genetic and molecular characterization, and high-resolution mapping of barley mutants susceptible to stem rust ( Puccinia graminis f. sp. tritici ) races MCCF and HKHJ. A single gene, Rpg1, has protected barley cultivars against many races of stem rust pathogen (Puccinia graminis f. sp. tritici) for the last 70 years in the United States and Canada. To identify signaling components of protein product RPG1, we employed a mutagenesis approach. Using this approach, six mutants exhibiting susceptibility to Puccinia graminis f. sp. tritici races MCCF and HKHJ were identified in the gamma irradiated M2 population of resistant cultivar Morex, which carries Rpg1 on chromosome 7H. The mutants retained a functional Rpg1 gene and an apparently functional protein, suggesting that the mutated genes were required for downstream or upstream signaling. Selected mutants were non-allelic, hence each mutant represents a unique gene. Low and high-resolution genetic mapping of the rpr2 mutant identified chromosome 6H (bin 6) as the location of the mutated gene. The target region was reduced to 0.6 cM and gene content analyzed. Based on the published barley genomic sequence, the target region contains approximately 157 genes, including a set that encodes putative leucine-rich receptor-like protein kinases, which may be strong candidates for the gene of interest. Overall, this study presents a strong platform for future map-based cloning of genes identified in this mutant screen.
Collapse
Affiliation(s)
- Upinder Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Jayaveeramuthu Nirmala
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Cereal Disease Laboratory, USDA-ARS, Saint Paul, MN, 55108, USA
| | - Yuan Chai
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Brian Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Andris Kleinhofs
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
6
|
Lim MN, Lee SE, Yim HK, Kim JH, Yoon IS, Hwang YS. Differential anoxic expression of sugar-regulated genes reveals diverse interactions between sugar and anaerobic signaling systems in rice. Mol Cells 2013; 36:169-76. [PMID: 23852132 PMCID: PMC3887949 DOI: 10.1007/s10059-013-0152-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 12/15/2022] Open
Abstract
The interaction between the dual roles of sugar as a metabolic fuel and a regulatory molecule was unveiled by examining the changes in sugar signaling upon oxygen deprivation, which causes the drastic alteration in the cellular energy status. In our study, the expression of anaerobically induced genes is commonly responsive to sugar, either under the control of hexokinase or non-hexokinase mediated signaling cascades. Only sugar regulation via the hexokinase pathway was susceptible for O2 deficiency or energy deficit conditions evoked by uncoupler. Examination of sugar regulation of those genes under anaerobic conditions revealed the presence of multiple paths underlying anaerobic induction of gene expression in rice, subgrouped into three distinct types. The first of these, which was found in type-1 genes, involved neither sugar regulation nor additional anaerobic induction under anoxia, indicating that anoxic induction is a simple result from the release of sugar repression by O2-deficient conditions. In contrast, type-2 genes also showed no sugar regulation, albeit with enhanced expression under anoxia. Lastly, expression of type-3 genes is highly enhanced with sugar regulation sustained under anoxia. Intriguingly, the inhibition of the mitochondrial ATP synthesis can reproduce expression pattern of a specific set of anaerobically induced genes, implying that rice cells may sense O2 deprivation, partly via perception of the perturbed cellular energy status. Our study of interaction between sugar signaling and anaerobic conditions has revealed that sugar signaling and the cellular energy status are likely to communicate with each other and influence anaerobic induction of gene expression in rice.
Collapse
Affiliation(s)
- Mi-na Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701,
Korea
| | - Sung-eun Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701,
Korea
| | - Hui-kyeong Yim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701,
Korea
| | | | | | - Yong-sic Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701,
Korea
| |
Collapse
|
7
|
Greenham T, Altosaar I. Molecular strategies to engineer transgenic rice seed compartments for large-scale production of plant-made pharmaceuticals. Methods Mol Biol 2013; 956:311-26. [PMID: 23135861 DOI: 10.1007/978-1-62703-194-3_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of plants as bioreactors for the large-scale production of recombinant proteins has emerged as an exciting area of research. The current shortages in protein therapeutics due to the capacity and economic bottlenecks faced with modern protein production platforms (microbial, yeast, mammalian) has driven considerable attention towards molecular pharming. Utilizing plants for the large-scale production of recombinant proteins is estimated to be 2-10% the cost of microbial platforms, and up to 1,000-fold more cost effective than mammalian platforms (Twyman et al. Trends Biotechnol 21:570-578, 2003; Sharma and Sharma, Biotechnol Adv 27:811-832, 2009). In order to achieve an economically feasible plant production host, protein expression and accumulation must be optimized. The seed, and more specifically the rice seed has emerged as an ideal candidate in molecular pharming due to its low protease activity, low water content, stable protein storage environment, relatively high biomass, and the molecular tools available for manipulation (Lau and Sun, Biotechnol Adv 27:1015-1022, 2009).
Collapse
Affiliation(s)
- Trevor Greenham
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
8
|
De Muynck B, Navarre C, Boutry M. Production of antibodies in plants: status after twenty years. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:529-63. [PMID: 20132515 DOI: 10.1111/j.1467-7652.2009.00494.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Thanks to their potential to bind virtually all types of molecules; monoclonal antibodies are in increasing demand as therapeutics and diagnostics. To overcome the overloading of current production facilities, alternative expression systems have been developed, of which plants appear the most promising. In this review, we focus on the expression of monoclonal IgG or IgM in plant species. We analyse the data for 32 different antibodies expressed in various ways, differing in DNA construction, transformation method, signal peptide source, presence or absence of an endoplasmic reticulum retention sequence, host species and the organs tested, together resulting in 98 reported combinations. A large heterogeneity is found in the quantity and quality of the antibody produced. We discuss in more detail the strategy used to express both chains, the nature of the transcription promoters, subcellular localization and unintended proteolysis, when encountered.
Collapse
Affiliation(s)
- Benoit De Muynck
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
9
|
Sharma AK, Sharma MK. Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol Adv 2009; 27:811-832. [PMID: 19576278 PMCID: PMC7125752 DOI: 10.1016/j.biotechadv.2009.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 12/18/2022]
Abstract
In recent years, the use of plants as bioreactors has emerged as an exciting area of research and significant advances have created new opportunities. The driving forces behind the rapid growth of plant bioreactors include low production cost, product safety and easy scale up. As the yield and concentration of a product is crucial for commercial viability, several strategies have been developed to boost up protein expression in transgenic plants. Augmenting tissue-specific transcription, elevating transcript stability, tissue-specific targeting, translation optimization and sub-cellular accumulation are some of the strategies employed. Various kinds of products that are currently being produced in plants include vaccine antigens, medical diagnostics proteins, industrial and pharmaceutical proteins, nutritional supplements like minerals, vitamins, carbohydrates and biopolymers. A large number of plant-derived recombinant proteins have reached advanced clinical trials. A few of these products have already been introduced in the market.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | - Manoj K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
10
|
Yasuda H, Hirose S, Kawakatsu T, Wakasa Y, Takaiwa F. Overexpression of BiP has Inhibitory Effects on the Accumulation of Seed Storage Proteins in Endosperm Cells of Rice. ACTA ACUST UNITED AC 2009; 50:1532-43. [DOI: 10.1093/pcp/pcp098] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
11
|
Sanzol J. Pistil-function breakdown in a new S-allele of European pear, S21*, confers self-compatibility. PLANT CELL REPORTS 2009; 28:457-67. [PMID: 19096853 DOI: 10.1007/s00299-008-0645-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/30/2008] [Accepted: 11/16/2008] [Indexed: 05/07/2023]
Abstract
European pear exhibits RNase-based gametophytic self-incompatibility controlled by the polymorphic S-locus. S-allele diversity of cultivars has been extensively investigated; however, no mutant alleles conferring self-compatibility have been reported. In this study, two European pear cultivars, 'Abugo' and 'Ceremeño', were classified as self-compatible after fruit/seed setting and pollen tube growth examination. S-genotyping through S-PCR and sequencing identified a new S-RNase allele in the two cultivars, with identical deduced amino acid sequence as S(21), but differing at the nucleotide level. Test-pollinations and analysis of descendants suggested that the new allele is a self-compatible pistil-mutated variant of S(21), so it was named S(21)*. S-genotypes assigned to 'Abugo' and 'Ceremeño' were S(10)S(21)* and S(21)*S(25) respectively, of which S(25) is a new functional S-allele of European pear. Reciprocal crosses between cultivars bearing S(21) and S(21)* indicated that both alleles exhibit the same pollen function; however, cultivars bearing S(21)* had impaired pistil-S function as they failed to reject either S(21) or S (21)* pollen. RT-PCR analysis showed absence of S(21)* -RNase gene expression in styles of 'Abugo' and 'Ceremeño', suggesting a possible origin for S(21)* pistil dysfunction. Two polymorphisms found within the S-RNase genomic region (a retrotransposon insertion within the intron of S(21)* and indels at the 3'UTR) might explain the different pattern of expression between S(21) and S(21)*. Evaluation of cultivars with unknown S-genotype identified another cultivar 'Azucar Verde' bearing S(21)*, and pollen tube growth examination confirmed self-compatibility for this cultivar as well. This is the first report of a mutated S-allele conferring self-compatibility in European pear.
Collapse
Affiliation(s)
- Javier Sanzol
- Unidad de Fruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain.
| |
Collapse
|
12
|
Ciarbelli AR, Ciolfi A, Salvucci S, Ruzza V, Possenti M, Carabelli M, Fruscalzo A, Sessa G, Morelli G, Ruberti I. The Arabidopsis homeodomain-leucine zipper II gene family: diversity and redundancy. PLANT MOLECULAR BIOLOGY 2008; 68:465-78. [PMID: 18758690 DOI: 10.1007/s11103-008-9383-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 07/23/2008] [Indexed: 05/20/2023]
Abstract
The Arabidopsis genome contains 10 genes belonging to the HD-Zip II family including ATHB2 and HAT2. Previous work has shown that ATHB2 is rapidly and strongly induced by light quality changes that provoke the shade avoidance response whereas HAT2 expression responds to auxin. Here, we present a genome-wide analysis of the HD-Zip II family. Phylogeny reconstruction revealed that almost all of the HD-Zip II genes can be subdivided into 4 clades (alpha-delta), each clade comprising 2-3 paralogs. Gene expression studies demonstrated that all the gamma and delta genes are regulated by light quality changes. Kinetics of induction, low R/FR/high R/FR reversibility and auxin response analyses strongly suggested that HAT1, HAT3 and ATHB4, as ATHB2, are under the control of the phytochrome system whereas HAT2 is up-regulated by low R/FR as a consequence of the induction of the auxin signaling pathway provoked by FR-rich light. Root and shoot digital in situ revealed that gamma and delta genes are also tightly regulated during plant development with both distinct and overlapping patterns. Phenotypes of gain of function and dominant negative lines demonstrated that one or more of the HD-Zip II gamma genes negatively regulate cell proliferation during leaf development in a high R/FR light environment. Finally, target gene analysis using a chimeric transcription factor (HD-Zip2-V-G), known to activate ATHB2 target genes in a glucocorticoid-dependent manner, revealed that all the 10 HD-Zip II genes can be recognized by the HD-Zip 2 domain in vivo, implying an intricate negative feedback network.
Collapse
|
13
|
Streatfield SJ. Approaches to achieve high-level heterologous protein production in plants. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:2-15. [PMID: 17207252 DOI: 10.1111/j.1467-7652.2006.00216.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants offer an alternative to microbial fermentation and animal cell cultures for the production of recombinant proteins. For protein pharmaceuticals, plant systems are inherently safer than native and even recombinant animal sources. In addition, post-translational modifications, such as glycosylation, which cannot be achieved with bacterial fermentation, can be accomplished using plants. The main advantage foreseen for plant systems is reduced production costs. Plants should have a particular advantage for proteins produced in bulk, such as industrial enzymes, for which product pricing is low. In addition, edible plant tissues are well suited to the expression of vaccine antigens and pharmaceuticals for oral delivery. Three approaches have been followed to express recombinant proteins in plants: expression from the plant nuclear genome; expression from the plastid genome; and expression from plant tissues carrying recombinant plant viral sequences. The most important factor in moving plant-produced heterologous proteins from developmental research to commercial products is to ensure competitive production costs, and the best way to achieve this is to boost expression. Thus, considerable research effort has been made to increase the amount of recombinant protein produced in plants. This research includes molecular technologies to increase replication, to boost transcription, to direct transcription in tissues suited for protein accumulation, to stabilize transcripts, to optimize translation, to target proteins to subcellular locations optimal for their accumulation, and to engineer proteins to stabilize them. Other methods include plant breeding to increase transgene copy number and to utilize germplasm suited to protein accumulation. Large-scale commercialization of plant-produced recombinant proteins will require a combination of these technologies.
Collapse
Affiliation(s)
- Stephen J Streatfield
- Applied Biotechnology Institute, Building 36, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
14
|
Patel M, Siegel AJ, Berry JO. Untranslated regions of FbRbcS1 mRNA mediate bundle sheath cell-specific gene expression in leaves of a C4 plant. J Biol Chem 2006; 281:25485-91. [PMID: 16803877 DOI: 10.1074/jbc.m604162200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C4 photosynthesis typically requires two specialized leaf cell types, bundle sheath (bs) and mesophyll (mp), which provide the foundation for this highly efficient carbon assimilation pathway. In leaves of Flaveria bidentis, a dicotyledonous C4 plant, ribulose 1,5-bisphosphate carboxylase (rubisco) accumulates only in bs cells surrounding the vascular centers and not in mp cells. This is in contrast to the more common C3 plants, which accumulate rubisco in all photosynthetic cells. Many previous studies have focused on transcriptional control of C4 cell type-specificity; however, post-transcriptional regulation has also been implicated in the bs-specific expression of genes encoding the rubisco subunits. In this current study, a biolistic leaf transformation assay has provided direct evidence that the 5'- and 3'-untranslated regions (UTRs) of F. bidentis FbRbcS1 mRNA (from a nuclear gene encoding the rubisco small subunit), in themselves, confer strong bs cell-specific expression to gfpA reporter gene transcripts when transcribed from a constitutive CaMV promoter. In transformed leaf regions, strong bs cell-specific GFP expression was accompanied by corresponding bs cell-specific accumulation of the constitutively transcribed FbRbcS1 5'-UTR-gfpA-3'-UTR mRNAs. Control constructs lacking any RbcS mRNA sequences were expressed in all leaf cell types. These findings demonstrate that characteristic cell type-specific FbRbcS1 expression patterns in C4 leaves can be established entirely by sequences contained within the transcribed UTRs of FbRbcS1 mRNAs. We conclude that selective transcript stabilization (in bs cells) or degradation (in mp cells) plays a key role in determining bs cell-specific localization of the rubisco enzyme.
Collapse
Affiliation(s)
- Minesh Patel
- Department of Biological Sciences, State University of New York, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
15
|
Streatfield SJ. Mucosal immunization using recombinant plant-based oral vaccines. Methods 2006; 38:150-7. [PMID: 16431131 DOI: 10.1016/j.ymeth.2005.09.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 09/19/2005] [Indexed: 11/21/2022] Open
Abstract
The induction of mucosal immunity is very important in conferring protection against pathogens that typically invade via mucosal surfaces. Delivery of a vaccine to a mucosal surface optimizes the induction of mucosal immunity. The apparent linked nature of the mucosal immune system allows delivery to any mucosal surface to potentially induce immunity at others. Oral administration is a very straightforward and inexpensive approach to deliver a vaccine to the mucosal lining of the gut. However, vaccines administered by this route are subject to proteolysis in the gastrointestinal tract. Thus, dose levels for protein subunit vaccines are likely to be very high and the antigen may need to be protected from proteolysis for oral delivery to be efficacious. Expression of candidate vaccine antigens in edible recombinant plant material offers an inexpensive means to deliver large doses of vaccines in encapsulated forms. Certain plant tissues can also stably store antigens for extensive periods of time at ambient temperatures, obviating the need for a cold-chain during vaccine storage and distribution, and so further limiting costs. Antigens can be expressed from transgenes stably incorporated into a host plant's nuclear or plastid genome, or from engineered plant viruses infected into plant tissues. Molecular approaches can serve to boost expression levels and target the expressed protein for appropriate post-translational modification. There is a wide range of options for processing plant tissues to allow for oral delivery of a palatable product. Alternatively, the expressed antigen can be enriched or purified prior to formulation in a tablet or capsule for oral delivery. Fusions to carrier molecules can stabilize the expressed antigen, aid in antigen enrichment or purification strategies, and facilitate delivery to effector sites in the gastrointestinal tract. Many antigens have been expressed in plants. In a few cases, vaccine candidates have entered into early phase clinical trials, and in the case of farmed animal vaccines into relevant animal trials.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antigens/administration & dosage
- Antigens/genetics
- Antigens/immunology
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Chloroplasts/genetics
- Clinical Trials, Phase I as Topic
- Gastroenteritis, Transmissible, of Swine/immunology
- Gastroenteritis, Transmissible, of Swine/prevention & control
- Gene Expression Regulation, Plant/genetics
- Gram-Negative Bacterial Infections/immunology
- Gram-Negative Bacterial Infections/prevention & control
- Humans
- Immunity, Mucosal/immunology
- Plant Extracts/genetics
- Plant Extracts/immunology
- Plant Viruses/genetics
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/isolation & purification
- Rhizobium/genetics
- Seeds/chemistry
- Seeds/genetics
- Seeds/immunology
- Swine
- Transformation, Genetic
- Vaccination/methods
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/genetics
- Vaccines, Edible/immunology
- Virus Diseases/immunology
- Virus Diseases/prevention & control
- Zea mays/genetics
- Zea mays/immunology
Collapse
Affiliation(s)
- Stephen J Streatfield
- Applied Biotechnology Institute, 101 Gateway Boulevard, Suite 100, College Station, TX 77845, USA.
| |
Collapse
|
16
|
Nagaraj VJ, Altenbach D, Galati V, Lüscher M, Meyer AD, Boller T, Wiemken A. Distinct regulation of sucrose: sucrose-1-fructosyltransferase (1-SST) and sucrose: fructan-6-fructosyltransferase (6-SFT), the key enzymes of fructan synthesis in barley leaves: 1-SST as the pacemaker. THE NEW PHYTOLOGIST 2004; 161:735-748. [PMID: 33873712 DOI: 10.1111/j.1469-8137.2004.00995.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Previously we have cloned sucrose: fructan-6-fructosyltransferase (6-SFT) from barley (Hordeum vulgare) and proposed that synthesis of fructans in grasses depends on the concerted action of two main enzymes: sucrose: sucrose-1-fructosyltransferase (1-SST), as in other fructan producing plants, and 6-SFT, found only in grasses. • Here we report the cloning of barley 1-SST, verifying the activity of the encoded protein by expression in Pichia pastoris. As expected, the barley 1-SST is homologous to invertases and fructosyltransferases, and in particular to barley 6-SFT. • The gene expression pattern of 1-SST and 6-SFT, along with the corresponding enzyme activities and fructan levels, were investigated in excised barley leaves subjected to a light-dark regime known to sequentially induce fructan accumulation and mobilization. The turnover of transcripts and enzyme activities of 1-SST and 6-SFT was compared, using appropriate inhibitors. • We found the 1-SST transcripts and enzymatic activity respond quickly, being subject to a rapid turnover. By contrast, the 6-SFT transcripts and enzymatic activity were found to be much more stable. The much higher responsiveness of 1-SST to regulatory processes, as compared with 6-SFT, clearly indicates that 1-SST plays the role of the pacemaker enzyme of fructan synthesis in barley leaves.
Collapse
Affiliation(s)
- Vinay J Nagaraj
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | - Denise Altenbach
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | - Virginie Galati
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | - Marcel Lüscher
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
- Present address: Marcel Lüscher, Hauptstrasse 74, CH-4450 Sissach, Switzerland
| | - Alain D Meyer
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
- Present address: Alain Denis Meyer, Thiersteinerrain 118, CH-4059 Basel, Switzerland
| | - Thomas Boller
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | - Andres Wiemken
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| |
Collapse
|
17
|
Simões-Araújo JL, Rumjanek NG, Margis-Pinheiro M. Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. ACTA ACUST UNITED AC 2003. [DOI: 10.1590/s1677-04202003000100005] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plants respond to temperature stress by synthesizing a set of heat shock proteins (HSPs), which may be responsible for the acquisition of thermotolerance. In this study, the induction of small HSPs (sHSPs) in eight common bean varieties was evaluated by Northern blot analysis using the W HSP 16.9 cDNA as heterologous probe. Cowpea was used, as a positive control since this plant, as opposed to common bean, is known to grow well under high temperature regimes such as that found in the Brazilian semi-arid region. After the growth period, the plants were submitted to two h of heat shock at 40 ºC. All varieties tested were able to induce sHSP mRNAs that hybridized with W HSP 16.9 probe. However, significant kinetic differences were found when comparing different varieties. SHSP mRNA levels induced after heat shock in cowpea was higher than the levels observed on the bean varieties displaying the highest expression of these proteins. Besides, the sHSP expression was also assessed at the protein accumulation level by Western-blot analysis for cowpea and both IPA 7 and Negro Argel varieties of bean plants. The revealed protein pattern confirmed that sHSPs are differentially expressed in distinct varieties of common bean according their heat stress tolerance.
Collapse
|
18
|
Magnotta SM, Gogarten JP. Multi site polyadenylation and transcriptional response to stress of a vacuolar type H+-ATPase subunit A gene in Arabidopsis thaliana. BMC PLANT BIOLOGY 2002; 2:3. [PMID: 11985780 PMCID: PMC103671 DOI: 10.1186/1471-2229-2-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Accepted: 04/02/2002] [Indexed: 05/21/2023]
Abstract
BACKGROUND Vacuolar type H+-ATPases play a critical role in the maintenance of vacuolar homeostasis in plant cells. V-ATPases are also involved in plants' defense against environmental stress. This research examined the expression and regulation of the catalytic subunit of the vacuolar type H+-ATPase in Arabidopsis thaliana and the effect of environmental stress on multiple transcripts generated by this gene. RESULTS Evidence suggests that subunit A of the vacuolar type H+-ATPase is encoded by a single gene in Arabidopsis thaliana. Genome blot analysis showed no indication of a second subunit A gene being present. The single gene identified was shown by whole RNA blot analysis to be transcribed in all organs of the plant. Subunit A was shown by sequencing the 3' end of multiple cDNA clones to exhibit multi site polyadenylation. Four different poly (A) tail attachment sites were revealed. Experiments were performed to determine the response of transcript levels for subunit A to environmental stress. A PCR based strategy was devised to amplify the four different transcripts from the subunit A gene. CONCLUSIONS Amplification of cDNA generated from seedlings exposed to cold, salt stress, and etiolation showed that transcript levels for subunit A of the vacuolar type H+-ATPase in Arabidopsis were responsive to stress conditions. Cold and salt stress resulted in a 2-4 fold increase in all four subunit A transcripts evaluated. Etiolation resulted in a slight increase in transcript levels. All four transcripts appeared to behave identically with respect to stress conditions tested with no significant differential regulation.
Collapse
Affiliation(s)
- Scot M Magnotta
- Department of Biology, University of Hartford, West Hartford, CT, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
19
|
Aalen RB, Salehian Z, Steinum TM. Stability of barley aleurone transcripts: Dependence on protein synthesis, influence of the starchy endosperm and destabilization by GA3. PHYSIOLOGIA PLANTARUM 2001; 112:403-413. [PMID: 11473698 DOI: 10.1034/j.1399-3054.2001.1120314.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have studied the stability of Barley aleurone and embryo expressed (Balem) transcripts in aleurone layers. The Per1, Ole1 and Ole2 transcripts are abundant during desiccation and in dry resting seeds, while B12D and B22E transcripts are expressed mainly during seed maturation and germination. From 21 to 40 days post anthesis (DPA) incubation of aleurone layers resulted in a substantial, but differential reduction in the levels of these transcripts. In contrast, Balem transcript levels in aleurone layers of incubated embryoless grains were (except for B22E) similar to those of freshly dissected layers. Cycloheximide lowered transcript levels significantly. This indicates that a protein-synthesis-dependent mRNA-stabilizing mechanism is active in the aleurone cells when attached to the starchy endosperm. At the onset of seed desiccation (40 DPA), half-lives of transcripts to be stored in the dry seed were up to several days longer than the half-life of B22E, which decreases during seed maturation. While the Per1, Ole1 and Ole2 transcript levels decline rapidly in the aleurone layers of mature, germinating seeds, the genes are actively transcribed and their transcripts highly stable in the aleurone of incubated embryoless seeds. The expression of Ole1 and Ole2, as well as Per1, can be repressed 100-1 000-fold by gibberellic acid (GA3) in a dose-dependent manner. Abscisic acid can counteract the GA3 repression. Incubations with transcriptional and translational inhibitors indicate that GA3 inhibits the transcription of these genes and at the same time induces a protein-synthesis-dependent mechanism destabilizing their mRNA molecules present.
Collapse
Affiliation(s)
- R. B. Aalen
- Division of Molecular Biology, University of Oslo, P.O. Box 1031, Blindern, N-0315 Oslo, Norway; Present address: Department of Pharmacology, Microbiology and Food Hygiene, Norwegian College of Veterinary Medicine, P.O. Box 8146, N-0033 Oslo, Norway
| | | | | |
Collapse
|
20
|
Ohgishi M, Oka A, Morelli G, Ruberti I, Aoyama T. Negative autoregulation of the Arabidopsis homeobox gene ATHB-2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:389-398. [PMID: 11260495 DOI: 10.1046/j.1365-313x.2001.00966.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Arabidopsis homeobox gene ATHB-2 is tightly regulated by light signals, and is thought to direct morphological changes during shade avoidance responses. To understand how ATHB-2 mediates light signals in plant morphogenesis, we investigated its transcriptional network. We constructed a gene encoding a chimeric transcription factor (HD-Zip-2-V-G) that is expected to activate target genes of ATHB-2 in a glucocorticoid-dependent manner. In transgenic Arabidopsis plants expressing HD-Zip-2-V-G, glucocorticoid treatment activates the ATHB-2 gene itself, independent of de novo protein synthesis. An in vitro DNase I-footprinting experiment showed that recombinant ATHB-2 protein specifically bound to an ATHB-2 promoter region. These complementary results indicate that ATHB-2 recognizes its own promoter. Consistent with the fact that ATHB-2 itself has been shown to act as a repressor, expression of the endogenous ATHB-2 gene was repressed in transgenic plants overexpressing an ATHB-2 transgene. Moreover, target-gene analysis using the HD-Zip-2-V-G suggested that ATHB-2 recognizes other HD-Zip II subfamily genes. We conclude that ATHB-2 has a negative autoregulatory loop and may be involved in a complicated transcriptional network involving paralogous genes, as is the case with animal homeobox genes.
Collapse
Affiliation(s)
- M Ohgishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | | | | | | | | |
Collapse
|
21
|
Nuccio ML, McNeil SD, Ziemak MJ, Hanson AD, Jain RK, Selvaraj G. Choline import into chloroplasts limits glycine betaine synthesis in tobacco: analysis of plants engineered with a chloroplastic or a cytosolic pathway. Metab Eng 2000; 2:300-11. [PMID: 11120642 DOI: 10.1006/mben.2000.0158] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biosynthesis of the osmoprotectant glycine betaine (GlyBet) is a target for metabolic engineering to enhance stress resistance in crops. Certain plants synthesize GlyBet in chloroplasts via a two-step oxidation of choline (Cho). In previous work, a chloroplastic GlyBet synthesis pathway was inserted into tobacco (which lacks GlyBet) by expressing spinach choline monooxygenase (CMO). The transformants had low CMO enzyme activity, and produced little GlyBet (less than or = 70 nmol g(-1) fresh wt). In this study, transformants with up to 100-fold higher CMO activity showed no further increase in GlyBet. In contrast, tobacco expressing a cytosolic GlyBet synthesis pathway accumulated significantly more GlyBet (430 nmol g(-1) fresh wt), suggesting that subcellular localization influences pathway flux. Modeling of the labeling kinetics of Cho metabolites observed when [14C]Cho was supplied to engineered plants demonstrated that Cho import into chloroplasts indeed limits the flux to GlyBet in the chloroplastic pathway. A high-activity Cho transporter in the chloroplast envelope may therefore be an integral part of the GlyBet synthesis pathway in species that accumulate GlyBet naturally, and hence a target for future engineering.
Collapse
Affiliation(s)
- M L Nuccio
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611-0690, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ciceri P, Castelli S, Lauria M, Lazzari B, Genga A, Bernard L, Sturaro M, Viotti A. Specific combinations of zein genes and genetic backgrounds influence the transcription of the heavy-chain zein genes in maize opaque-2 endosperms. PLANT PHYSIOLOGY 2000; 124:451-460. [PMID: 10982458 PMCID: PMC59158 DOI: 10.1104/pp.124.1.451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2000] [Accepted: 06/02/2000] [Indexed: 05/23/2023]
Abstract
The transcript levels of heavy-chain zein genes (zH1 and zH2) and the occurrence of the zH polypeptides in different opaque-2 (o2) lines were investigated by RNA-blot analyses and by sodium dodecylsulfate-polyacrylamide gel electrophoresis or two-dimensional gel electrophoresis protein fractionations. Four mutant alleles o2R, o2T, o2It, and o2-676 introgressed into different genetic backgrounds (GBs) were considered. The mono-dimensional gel electrophoresis zein pattern can be either conserved or different among the various GBs carrying the same o2 allele. Likewise, in the identical GB carrying different o2 alleles, the zein pattern can be either conserved or differentially affected by the different mutant allele. Zein protein analysis of reciprocal crosses between lines with different o2 alleles or the same o2 showed in some case a more than additive zH pattern in respect to the o2 parent lines. Electrophoretic mobility shift assay approaches, with O2-binding oligonucleotide and endosperm extracts from the above o2 lines, failed to reveal o2-specific retarded band in any of the o2 extracts. The results suggest that the promoter of some zH1 and zH2 contains motif(s) that can respond to factors other than O2.
Collapse
Affiliation(s)
- P Ciceri
- Istituto Biosintesi Vegetali, Consiglio Nazionale delle Ricerche, Via Bassini 15, I-20133 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Anderson MB, Folta K, Warpeha KM, Gibbons J, Gao J, Kaufman LS. Blue light-directed destabilization of the pea Lhcb1*4 transcript depends on sequences within the 5' untranslated region. THE PLANT CELL 1999; 11:1579-90. [PMID: 10449589 PMCID: PMC144292 DOI: 10.1105/tpc.11.8.1579] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pea seedlings grown in continuous red light accumulate significant levels of Lhcb1 RNA. When treated with a single pulse of blue light with a total fluence >10(4) micromol m(-2), the rate of Lhcb1 transcription is increased, whereas the level of Lhcb1 RNA is unchanged from that in control seedlings. This RNA destabilization response occurs in developing leaves but not in the apical bud. The data presented here indicate that the same response occurs in the cotyledons of etiolated Arabidopsis seedlings. The blue light-induced destabilization response persists in long hypocotyl hy4 and phytochrome phyA, phyB, and hy1 mutants as well as in far-red light-grown seedlings, indicating that neither CRY1 (encoded by the hy4 locus) nor phytochrome is the sole photoreceptor. Studies with transgenic plants indicate that the destabilization element in the pea Lhcb1*4 transcript resides completely in the 5' untranslated region.
Collapse
Affiliation(s)
- M B Anderson
- Department of Biological Sciences, Laboratory for Molecular Biology, M/C 567, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, Illinois 60607, USA
| | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- A M Fontes
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
25
|
|
26
|
Hamilton AJ, Brown S, Yuanhai H, Ishizuka M, Lowe A, Solis AGA, Grierson D. A transgene with repeated DNA causes high frequency, post-transcriptional suppression of ACC-oxidase gene expression in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:737-746. [PMID: 29368810 DOI: 10.1046/j.1365-313x.1998.00251.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gene silencing with sense genes is an important method for down-regulating the expression of endogenous plant genes, but the frequency of silencing is unpredictable. Fifteen per cent of tomato plants transformed with a 35S-ACC-oxidase ( ACO 1) sense gene had reduced ACC-oxidase activity. However, 96% of plants transformed with an ACC-oxidase sense gene, containing two additional upstream inverted copies of its 5' untranslated region, exhibited reduced ACC-oxidase activity compared to wild-type plants. In the three plants chosen for analysis, there were substantially reduced amounts of both endogenous and transgenic ACO RNA, indicating that this was an example of co-suppression. Ribonuclease protection assays using probes spanning intron-exon borders showed that the reduced accumulation of endogenous ACO mRNA occurred post-transcriptionally since the abundance of unprocessed transcripts was not affected. The ACO1 transgene with the repeated 5'UTR also strongly inhibited the accumulation of RNA from the related ACO 2 gene in flowers, although there is little homology between the 5'UTRs of ACO 1 and ACO 2. These results indicate that although repeated DNA in a transgene greatly enhances the probability of gene silencing of an endogenous gene, it also involves generation of a trans -acting silencing signal produced, at least partly, from sequences external to the repeat.
Collapse
Affiliation(s)
- Andrew J Hamilton
- BBSRC Research Group in Plant Gene Regulation, School of Biological Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Stephen Brown
- BBSRC Research Group in Plant Gene Regulation, School of Biological Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Han Yuanhai
- BBSRC Research Group in Plant Gene Regulation, School of Biological Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Masakatsu Ishizuka
- BBSRC Research Group in Plant Gene Regulation, School of Biological Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Alex Lowe
- BBSRC Research Group in Plant Gene Regulation, School of Biological Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Angel-Gabriel Alpuche Solis
- BBSRC Research Group in Plant Gene Regulation, School of Biological Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Don Grierson
- BBSRC Research Group in Plant Gene Regulation, School of Biological Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
27
|
Fennoy SL, Nong T, Bailey-Serres J. Transcriptional and post-transcriptional processes regulate gene expression in oxygen-deprived roots of maize. THE PLANT JOURNAL 1998; 15:727-735. [PMID: 0 DOI: 10.1046/j.1365-313x.1998.00249.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
28
|
Suzuki K, Suzuki N, Ohme-Takagi M, Shinshi H. Immediate early induction of mRNAs for ethylene-responsive transcription factors in tobacco leaf strips after cutting. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:657-665. [PMID: 29368806 DOI: 10.1046/j.1365-313x.1998.00243.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To investigate the functional relationship between the expression of genes for ethylene-responsive transcription factors (ERFs) and the expression of ethylene-responsive genes, we examined the expression of genes for ERFs and the expression of a reporter gene in transgenic tobacco that carried a gene for β-glucuronidase (GUS) under the control of the ethylene-responsive element, which includes four copies of the 11-bp consensus sequence (designated the GCC-box, TAAGAGCCGCC). In strips of leaves of transgenic tobacco, the GCC-box-mediated expression of the reporter gene was induced in response to treatment with ethylene. We also observed the ethylene-independent immediate early induction of the synthesis of mRNAs for ERFs in wounded leaves and the enhancement of this induction by cycloheximide (CHX). Since CHX suppressed the induction of mRNAs for chitinase and GUS by ethylene, protein synthesis de novo was required for induction of the ethylene-dependent GCC-box-mediated transcription of genes. In contrast, the enhancement by CHX of the wound-induced expression of ERFs suggested that no synthesis of new proteins was required for the wounding signal transduction leading to rapid expression of ERFs. Methyl jasmonate did not stimulate the wounding-responsive accumulation of ERF mRNAs, but it reduced such accumulation of mRNAs for ERF1, ERF2, ERF4 and the ethylene-dependent GCC-box-mediated transcription of the reporter gene. Thus, the immediate early induction of the expression of genes for ERFs in strips of tobacco leaves appears to be a novel type of wound-responsive activation of transcription. These results suggested that the expression of ERFs was not sufficient for activation of the GCC-box-mediated transcription but the expression of ERF1, ERF2 and ERF4, and that conversion of these ERFs by ethylene to their active form might be crucial for the GCC-box-mediated activation of the transcription of defense genes.
Collapse
Affiliation(s)
- Kaoru Suzuki
- Plant Molecular Biology Laboratory, Molecular Biology Department, National Institute of Bioscience and Human Technology, AIST, MITI, 1-1 Higashi, Tsukuba 305-8566, Japan
| | - Nao Suzuki
- Plant Molecular Biology Laboratory, Molecular Biology Department, National Institute of Bioscience and Human Technology, AIST, MITI, 1-1 Higashi, Tsukuba 305-8566, Japan
| | - Masaru Ohme-Takagi
- Plant Molecular Biology Laboratory, Molecular Biology Department, National Institute of Bioscience and Human Technology, AIST, MITI, 1-1 Higashi, Tsukuba 305-8566, Japan
| | - Hideaki Shinshi
- Plant Molecular Biology Laboratory, Molecular Biology Department, National Institute of Bioscience and Human Technology, AIST, MITI, 1-1 Higashi, Tsukuba 305-8566, Japan
| |
Collapse
|
29
|
De Neve M, Van Houdt H, Bruyns AM, Van Montagu M, Depicker A. Screening for Transgenic Lines with Stable and Suitable Accumulation Levels of a Heterologous Protein. RECOMBINANT PROTEINS FROM PLANTS 1998. [DOI: 10.1007/978-1-60327-260-5_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Fennoy SL, Jayachandran S, Bailey-Serres J. RNase Activities Are Reduced Concomitantly with Conservation of Total Cellular RNA and Ribosomes in O2-Deprived Seedling Roots of Maize. PLANT PHYSIOLOGY 1997; 115:1109-1117. [PMID: 12223861 PMCID: PMC158575 DOI: 10.1104/pp.115.3.1109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The effect of O2 deprivation on the activities of RNases and levels of total cellular RNA and ribosomes in seedling roots of maize (Zea mays L.) was investigated. Sodium dodecyl sulfate-polyacrylamide gels containing RNA were used to distinguish RNase isoenzymes by apparent molecular mass. Since O2 deprivation causes a decrease in cytosolic pH from approximately pH 7.4 to 6.4 and an elevation in cytosolic Ca2+, RNase levels were examined in the physiological range of cytosolic pH and in the presence of Ca2+, Mg2+, Zn2+, ethylenediaminetetracetate, or ethyleneglycol-bis([beta]-aminoethyl ether)-N,N[prime]-tetraacetic acid. The activity of a number of RNases present in aerobic roots was reduced in response to O2 deprivation. Several RNases with a pH optimum of 6.4 were rapidly down-regulated by O2 deprivation. Spectrophotometric assay of extracts revealed that RNase activity was higher at pH 6.4 than at 7.2, and ethylenediaminetetracetate-insensitive RNase activity decreased in response to O2 deprivation. The decrease in RNase activity was correlated with no loss of total cellular RNA or ribosomes, despite a 4-fold decrease in run-on transcription of rRNA in isolated nuclei. Regulation of RNase activity may facilitate the conservation of nontranslating ribosomes and poorly translated mRNAs during O2 deprivation.
Collapse
Affiliation(s)
- S. L. Fennoy
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124
| | | | | |
Collapse
|
31
|
Iannacone R, Grieco PD, Cellini F. Specific sequence modifications of a cry3B endotoxin gene result in high levels of expression and insect resistance. PLANT MOLECULAR BIOLOGY 1997; 34:485-496. [PMID: 9225859 DOI: 10.1023/a:1005876323398] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Solanum melongena (eggplant) cv. Picentia and the wild species Solanum integrifolium were transformed with both a wild type (wt) and four mutagenized versions of Bacillus thuringiensis (Bt) gene Bt43 belonging to the cry3 class. The Bt gene was partly modified in its nucleotide sequence by replacing four target regions (W: +1 to +170; X: +592 to +1057; Y: +1203 to +1376; Z: +1376 to +1984) with synthetic fragments obtained by polymerase chain reaction amplification of crude oligonucleotides. The synthetic Bt genes were designed to avoid, in their modified regions, sequences such as ATTTA sequence, polyadenylation sequences and splicing sites, which might destabilize the messenger RNA. Furthermore, the codon usage was improved for a better expression in the plant system. The amino acid composition was not altered. Four versions of the modified Bt gene were obtained, BtE, BtF, BtH and BtI, with a nucleotide subtitution percentage of 8.2, 8.6, 14, and 16%, respectively, in comparison to the wt gene Bt43. Modified versions contained different subsets of substituted regions: BtE-W + Z, BtF - Y + Z, BtH-X + Y + Z, BtI - W + X + Y + Z. In the final modified version (BtI), overall guanine+cytosine was increased from the 34.1% of the wt gene to 45.5%, and most of the destabilizing sequences were eliminated. Transgenic plants obtained with the more modified versions, BtH and BtI, were fully resistant to Leptinotarsa decemlineata Say first- and third-instar larvae, while Bt43 wt, BtE and BtF genotypes did not cause mortality and did not affect larval development.
Collapse
|
32
|
Phillips JR, Dunn MA, Hughes MA. mRNA stability and localisation of the low-temperature-responsive barley gene family blt14. PLANT MOLECULAR BIOLOGY 1997; 33:1013-1023. [PMID: 9154983 DOI: 10.1023/a:1005717613224] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Transcription and translation inhibitors have been used to investigate the role of mRNA stability in the low-temperature-regulated expression of the post-transcriptionally controlled low temperature responsive barley gene family, blt14. Genomic clones (blt14.1, blt14.2) representing additional members of the blt14 gene family have been isolated and sequenced. Gene specific probes have been used to analyse the spatial expression of each individual member of the blt14 gene family. Findings indicate that all of the genes are responsive to low temperature, but the organ distribution is different for each gene. The results indicate that blt14.0 mRNA is stabilised by a low-temperature-dependent protein factor. Taken together, the results suggest that organ-specific post-transcriptional mechanisms are important in the low-temperature regulation of blt14 gene expression.
Collapse
Affiliation(s)
- J R Phillips
- Department of Biochemistry and Genetics, University of Newcastle upon Tyne, UK
| | | | | |
Collapse
|
33
|
Li SX, Showalter AM. Cloning and developmental/stress-regulated expression of a gene encoding a tomato arabinogalactan protein. PLANT MOLECULAR BIOLOGY 1996; 32:641-652. [PMID: 8980516 DOI: 10.1007/bf00020205] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Arabinogalactan proteins (AGPs) represent a major class of plant hydroxyproline-rich glycoproteins (HRGPs) and are components of cell walls and plasma membranes. AGPs are thought to play roles in cell differentiation, development, and cell-cell interactions. Using a synthetic DNA oligonucleotide based upon an amino acid sequence motif common to AGPs from Lolium, rose, and carrot (i.e., Hyp-Ala-Hyp-Ala-Hyp), we have isolated and sequenced the first AGP gene from a partial Sau3A tomato genomic library packaged in bacteriophage charon 35. The deduced 215 amino acid protein contains 20% Ala, 22% Pro, 10% Gly, and 11% Ser and consists of two Pro-Ala-Pro-Ala-Pro pentapeptide repeats and 16 Ala-Pro dipeptide repeats, consistent with known AGP amino acid compositions and sequences. Comparison of the genomic sequence to a reverse transcribed PCR product and tomato cDNA confirmed the AGP gene is expressed and contains one large intervening sequence. RNA blot hybridization analysis in tomato indicates this AGP gene is strongly expressed in stem and flower, moderately expressed in root and green fruit, and weakly expressed in leaves and red fruit as a 980 nucleotide transcript. Five-day-old seedlings also express this transcript; however, this expression is not regulated by light. More significantly, a gradient of AGP gene expression is observed in tomato stems, ranging from high levels of expression in young internodes to low levels of expression in old internodes. Wounding serves to down-regulate expression in young and old internodes. Heat shock also affects AGP gene expression in stems by transiently down-regulating mRNA levels.
Collapse
Affiliation(s)
- S X Li
- Department of Environmental and Plant Biology, Ohio University, Athens 45701-2979, USA
| | | |
Collapse
|
34
|
Baulcombe DC. Mechanisms of Pathogen-Derived Resistance to Viruses in Transgenic Plants. THE PLANT CELL 1996; 8:1833-1844. [PMID: 12239365 PMCID: PMC161318 DOI: 10.1105/tpc.8.10.1833] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- D. C. Baulcombe
- The Sainsbury Laboratory, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
35
|
Abstract
Translation processes in plants are very similar to those in other eukaryotic organisms and can in general be explained with the scanning model. Particularly among plant viruses, unconventional mRNAs are frequent, which use modulated translation processes for their expression: leaky scanning, translational stop codon readthrough or frameshifting, and transactivation by virus-encoded proteins are used to translate polycistronic mRNAs; leader and trailer sequences confer (cap-independent) efficient ribosome binding, usually in an end-dependent mechanism, but true internal ribosome entry may occur as well; in a ribosome shunt, sequences within an RNA can be bypassed by scanning ribosomes. Translation in plant cells is regulated under conditions of stress and during development, but the underlying molecular mechanisms have not yet been determined. Only a small number of plant mRNAs, whose structure suggests that they might require some unusual translation mechanisms, have been described.
Collapse
Affiliation(s)
- J Fütterer
- Institute of Plant Sciences, ETHZ, Zürich, Switzerland
| | | |
Collapse
|
36
|
Baulcombe DC. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. PLANT MOLECULAR BIOLOGY 1996; 32:79-88. [PMID: 8980475 DOI: 10.1007/978-94-009-0353-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Post-transcriptional gene silencing in transgenic plants is the manifestation of a mechanism that suppresses RNA accumulation in a sequence-specific manner. The target RNA species may be the products of transgenes, endogenous plant genes or viral RNAs. For an RNA to be a target it is necessary only that it has sequence homology to the sense RNA product of the transgene. There are three current hypotheses to account for the mechanism of post transcriptional gene silencing. These models all require production of an antisense RNA of the RNA targets to account for the specificity of the mechanism. There could be either direct transcription of the antisense RNA from the transgene, antisense RNA produced in response to over expression of the transgene or antisense RNA produced in response to the production of an aberrant sense RNA product of the transgene. To determine which of these models is correct it will be necessary to find out whether transgene methylation, which is frequently associated with the potential of transgenes to confer post-transcriptional gene silencing, is a cause or a consequence of the process.
Collapse
Affiliation(s)
- D C Baulcombe
- Sainsbury Laboratory, John Innes Centre, Norwich, UK
| |
Collapse
|
37
|
Abstract
Our understanding of how the 3' ends of mRNAs are formed in plants is rudimentary compared to what we know about this process in other eukaryotes. The salient features of plant pre-mRNAs that signal cleavage and polyadenylation remain obscure, and the biochemical mechanism is as yet wholly uncharacterized. Nevertheless, despite the lack of universally conserved cis-acting motifs, a common underlying architecture is emerging from functional analyses of plant poly(A) signals, allowing meaningful comparison with components of poly(A) signals in other eukaryotes. A plant poly(A) signal consists of one or more near-upstream elements (NUE), each directing processing at a poly(A) site a short distance downstream of it, and an extensive far-upstream element (FUE) that enhances processing efficiency at all sites. By analogy with other systems, a model for a plant 3'-end processing complex can be proposed. Plant poly(A) polymerases have been isolated and partially characterised. These, together with hints that some processing factors are conserved in different organisms, opens promising avenues toward initial characterisation of the trans-acting factors involved in 3'-end formation of mRNAs in higher plants.
Collapse
Affiliation(s)
- H M Rothnie
- Friedrich Miescher-Institut, Basel, Switzerland
| |
Collapse
|
38
|
Baulcombe DC. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. PLANT MOLECULAR BIOLOGY 1996; 32:79-88. [PMID: 8980475 DOI: 10.1007/bf00039378] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Post-transcriptional gene silencing in transgenic plants is the manifestation of a mechanism that suppresses RNA accumulation in a sequence-specific manner. The target RNA species may be the products of transgenes, endogenous plant genes or viral RNAs. For an RNA to be a target it is necessary only that it has sequence homology to the sense RNA product of the transgene. There are three current hypotheses to account for the mechanism of post transcriptional gene silencing. These models all require production of an antisense RNA of the RNA targets to account for the specificity of the mechanism. There could be either direct transcription of the antisense RNA from the transgene, antisense RNA produced in response to over expression of the transgene or antisense RNA produced in response to the production of an aberrant sense RNA product of the transgene. To determine which of these models is correct it will be necessary to find out whether transgene methylation, which is frequently associated with the potential of transgenes to confer post-transcriptional gene silencing, is a cause or a consequence of the process.
Collapse
Affiliation(s)
- D C Baulcombe
- Sainsbury Laboratory, John Innes Centre, Norwich, UK
| |
Collapse
|
39
|
Abstract
The degradation rates of different mRNAs in higher plants can vary over a broad range and are regulated by a variety of endogenous and exogenous stimuli. During the past several years, efforts to better understand the control of mRNA stability in plants have increased considerably and this has led to improved methodologies and important mechanistic insights. In this review, we highlight some of the most interesting examples of plant transcripts that are controlled at the level of mRNA decay and discuss what has been learned from their study. Experiments that implicate or demonstrate the involvement of particular cis- and trans-acting factors in mRNA decay pathways are a major focus, as are those experiments that have led to mechanistic models. Emphasis is also placed on studies that address the relationship between translation and mRNA stability. Our current knowledge indicates that some of the determinants and pathways for mRNA decay may differ in plants compared to other eukaryotes, whereas others appear to be similar. This knowledge, coupled with the availability of biochemical, molecular and genetic approaches to elucidate plant mRNA decay mechanisms, should continue to lead to findings of novel and general significance.
Collapse
Affiliation(s)
- M L Abler
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing 48824-1312, USA
| | | |
Collapse
|
40
|
Silver DL, Pinaev A, Chen R, De Bruijn FJ. Posttranscriptional Regulation of the Sesbania rostrata Early Nodulin Gene SrEnod2 by Cytokinin. PLANT PHYSIOLOGY 1996; 112:559-567. [PMID: 12226409 PMCID: PMC157978 DOI: 10.1104/pp.112.2.559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The mRNA from the Sesbania rostrata early nodulin gene SrEnod2 accumulates in response to cytokinin application. Nuclear run-on assays using isolated root nuclei have shown that this accumulation occurs posttranscriptionally, and northern blot analysis of nuclear and total RNA levels revealed that it occurs primarily in the cytoplasm and not in the nucleus. After cytokinin enhancement of SrEnod2 mRNA accumulation and the subsequent removal of cytokinin, the levels of SrEnod2 mRNA did not return to basal levels, but oscillated over a 36-h time course. Application of the translational inhibitor cycloheximide was found to inhibit the enhancement of SrEnod2 mRNA accumulation by cytokinin and to cause its rapid decay. Okadaic acid and staurosporine, inhibitors of protein phosphatases and kinases, respectively, also inhibited cytokinin enhancement of SrEnod2 mRNA accumulation. In addition, okadaic acid was found to cause a decrease in SrEnod2 mRNA levels. These results provide evidence for a posttranscriptional mechanism of cytokinin enhancement of SrEnod2 mRNA accumulation, which appears to require concurrent protein synthesis, to involve protein phosphatases and kinases, and to occur primarily in the cytoplasm of the plant cell.
Collapse
Affiliation(s)
- D. L. Silver
- Michigan State University-Department of Energy Plant Research Laboratory (D.L.S., A.P., R.C., F.J.d.B.), Genetics Program (D.L.S., F.J.d.B.), Department of Biochemistry (R.C.), and Department of Microbiology (F.J.d.B.), Michigan State University, East Lansing, Michigan 48824
| | | | | | | |
Collapse
|
41
|
Horvath DM, Chua NH. Identification of an immediate-early salicylic acid-inducible tobacco gene and characterization of induction by other compounds. PLANT MOLECULAR BIOLOGY 1996; 31:1061-72. [PMID: 8843948 DOI: 10.1007/bf00040724] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tobacco genes that are induced in response to salicylic acid (SA) treatment with immediate-early kinetics were identified by differential mRNA display. Detailed analysis of IS10a, one cDNA clone identified by this method, revealed induction within 30 min of treatment, with a peak of expression at 3 h, that decayed rapidly thereafter. Treatment with the protein synthesis inhibitor, cycloheximide (CHX), also caused induction of IS10a mRNA to comparable levels, but the IS10a mRNA continued to accumulate after 3 h of induction. In combination, CHX and SA led to a superinduction of IS10a mRNA levels that was also sustained. Half-maximal induction was evident at ca. 100-150 microM SA. In addition to SA, induction of IS10a occurred to varying degrees upon treatment with acetylsalicylic acid, benzoic acid, 2,4-dichlorophenoxyacetic acid, methyl jasmonate, and hydrogen peroxide, whereas treatment with other compounds had no effect. The proteins encoded by IS10a and a second highly homologous cDNA show sequence similarity to UDP-glucose: flavonoid glucosyltransferases.
Collapse
Affiliation(s)
- D M Horvath
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
42
|
Plotnikov VK, Bakaldina NB. Differential stability of zein mRNA in developing corn kernel. PLANT MOLECULAR BIOLOGY 1996; 31:507-515. [PMID: 8790284 DOI: 10.1007/bf00042224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The lifetime of the zein mRNA in a developing corn (Zea mays L.) kernel under genome transcription blockade with actinomycin D (in vivo) and in a cell-free system (in vitro) was studied. After a 10 h blockade of gene transcription with actinomycin D, only 55% of 19 kDa zein mRNA and 40% of 22 kDa mRNA were detected in a developing kernel of normal corn. In that of the opaque-2 mutant 80% of 19 kDa zein mRNA remained. To examine the relative stability of poly(A)-containing mRNA, cell-free systems from rabbit reticulocyte lysate and wheat-germ extract were used. In both cases only 40% of 19 kDa zein mRNA and 60% of 22 kDa zein mRNA decayed during a 30 min incubation. Differential mRNA degradation of poly(A)-containing zein mRNA was observed on affinity chromatography; poly(A)-containing 19 kDa zein mRNA from normal corn partially decayed by elution from poly(U)-Sepharose whereas that from opaque-2 remained stable. These data suggest that differential mRNA stability is an important factor in the regulation of the zein gene expression in a developing corn kernel.
Collapse
Affiliation(s)
- V K Plotnikov
- Laboratory of Molecular Biology, Krasnodar Lukyanenko Research Institute of Agriculture, Russia
| | | |
Collapse
|
43
|
Joshi CP, Nguyen HT. Differential display-mediated rapid identification of different members of a multigene family, HSP 16.9 in wheat. PLANT MOLECULAR BIOLOGY 1996; 31:575-584. [PMID: 8790290 DOI: 10.1007/bf00042230] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Isolation of cDNAs encoding individual members of a gene family is essential for assessing their role in a biological phenomenon. However, this process is often laborious and slow due to highly conserved protein-coding region that interferes with the isolation of the individual members. Identification of gene-specific probes from 3' non-coding regions of different members can assist in the fast retrieval and characterization of individual members of a multigene family. We used the recent technique of differential display for the same purpose. As an example of a multigene family in plants, we selected a heat shock protein gene family, HSP16.9 from wheat, with estimated 12 members. We modified the original differential display technique for selective amplification of the 3' non-coding regions of different wheat HSP16.9 genes by replacing the random 10-mer in the original method with a conserved HSP16.9 gene family-specific primer. Sixteen cDNA fragments from these experiments were sequenced and they represent 8 different members of a 12 member gene family. Our success can be attributed to shorter 3' non-coding regions that are typical of higher-plant genes and use of highly conserved gene family-specific primer in these experiments. This modified differential display technique can be of general application to other plant systems where cloning of the different members of a gene family is desired.
Collapse
Affiliation(s)
- C P Joshi
- Department of Plant and Soil Science, Texas Tech University, Lubbock 79409-2122, USA
| | | |
Collapse
|
44
|
Vanlerberghe GC, McLntosh L. Signals Regulating the Expression of the Nuclear Gene Encoding Alternative Oxidase of Plant Mitochondria. PLANT PHYSIOLOGY 1996; 111:589-595. [PMID: 12226312 PMCID: PMC157870 DOI: 10.1104/pp.111.2.589] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Suspension cells of tobacco (Nicotiana tabacum L. cv Bright Yellow) were used to investigate signals regulating the expression of the nuclear gene Aox1 encoding the mitochondrial alternative oxidase (AOX) protein responsible for cyanide-resistant respiration in plants. We found that an increase in the tricarboxylic acid cycle intermediate citrate (either after its exogenous supply to cells or after inhibition of aconitase by monofluoroacetate) caused a rapid and dramatic increase in the steady-state level of Aox1 mRNA and AOX protein. This led to a large increase in the capacity for AOX respiration, defined as the amount of salicylhydroxamic acid-sensitive O2 uptake by cells in the presence of potassium cyanide. The results indicate that citrate may be an important signal metabolite regulating Aox1 gene expression. A number of other treatments were also identified that rapidly induced the level of Aox1 mRNA and AOX capacity. These included short-term incubation of cells with 10 mM acetate, 2 [mu]M antimycin A, 5 mM H2O2, or 1 mM cysteine. For some of these treatments, induction of AOX occurred without an increase in cellular citrate level, indicating that other signals (possibly related to oxidative stress conditions) are also important in regulating Aox1 gene expression. The signals influencing Aox1 gene expression are discussed with regard to the potential function(s) of AOX to modulate tricarboxylic acid cycle metabolism and/or to prevent the generation of active oxygen species by the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- G. C. Vanlerberghe
- Department of Botany and Division of Life Sciences, University of Toronto, Scarborough Campus, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4 (G.C.V.)
| | | |
Collapse
|
45
|
Holtorf H, Apel K. Transcripts of the two NADPH protochlorophyllide oxidereductase genes PorA and PorB are differentially degraded in etiolated barley seedlings. PLANT MOLECULAR BIOLOGY 1996; 31:387-92. [PMID: 8756602 DOI: 10.1007/bf00021799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The light-dependent reduction of protochlorophyllide to chlorophyllide in higher plants is catalyzed by two closely related enzymes, the NADPH-Pchlide oxidoreductases A and B that are encoded by the nuclear genes PorA and PorB, respectively. The expression of the PorA gene is negatively regulated by light. It has formerly been reasoned that, apart from the well-studied transcriptional down-regulation, a post-transcriptional mechanism may exist that contributes markedly to the light-induced decline of PorA mRNA steady-state levels. We investigated the degradation kinetics of the PorA messenger after inhibiting RNA synthesis with cordycepin. The PorA mRNA was found to be inherently unstable. In contrast, the PorB mRNA was shown to be stabilized in the presence of cordycepin, suggesting degradation by a mechanism different from that of PorA mRNA degradation. The PorA messenger instability is postulated to be conferred by a previously described plant-specific DST element in its 3'UTR.
Collapse
Affiliation(s)
- H Holtorf
- Swiss Federal Institute of Technology Zürich (ETH, Institute for Plant Sciences), ETH-Zentrum, Switzerland
| | | |
Collapse
|
46
|
Li B, Foley ME. Transcriptional and Posttranscriptional Regulation of Dormancy-Associated Gene Expression by Afterripening in Wild Oat. PLANT PHYSIOLOGY 1996; 110:1267-1273. [PMID: 12226258 PMCID: PMC160920 DOI: 10.1104/pp.110.4.1267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To investigate whether the afterripening-induced changes in gene expression are at the transcriptional or posttranscriptional level in wild oat (Avena fatua) seeds, we chose four dormancy-associated genes to estimate their relative transcription activities and the stability of their corresponding transcripts in afterripened and dormant embryos. The transcription activities for those genes were 1.5 to 7 times higher in dormant embryos than in afterripened embryos 24 h after incubation, as determined by nuclear run-on assays. The half-lives of the transcripts in afterripened and dormant embryos were estimated by the use of actinomycin D. The application of actinomycin D resulted in the stabilization of the transcripts. Nevertheless, the results indicated that the half-lives of the transcripts were much greater in dormant embryos than in afterripened embryos. Considering the great differences in the steady-state levels and the half-lives of the mRNAs, and the relatively small differences in transcription activities of the genes between afterripened and dormant embryos, we conclude that afterripening regulates the expression of dormancy-associated genes in excised embryos mainly at the posttranscriptional level and that transcriptional control plays a minor role.
Collapse
Affiliation(s)
- Bailin. Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-1155
| | | |
Collapse
|
47
|
Gil P, Green PJ. Multiple regions of the Arabidopsis SAUR-AC1 gene control transcript abundance: the 3' untranslated region functions as an mRNA instability determinant. EMBO J 1996; 15:1678-86. [PMID: 8612592 PMCID: PMC450079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The small-auxin-up-RNA (SAUR) transcripts are rapidly induced by auxin and are among the most short-lived mRNAs in higher plants. In this study, we investigate the regulation of SAUR-AC1, a well characterized SAUR gene of Arabidopsis. Be examining the expression of chimeric genes in transgenic tobacco, we demonstrate that the promoter region of SAUR-AC1 mediates auxin induction. Sequences downstream of the promoter region were found to limit mRNA accumulation in a manner that was independent of auxin treatment. Both the coding region and the 3' untranslated region (UTR) of SAUR-AC1 independently contribute to this limitation. Effects on mRNA stability were assayed using chimeric genes under the control of the tetracycline-repressible Top10 promoter. mRNA half-life analysis following tetracycline treatment showed that the SAUR-AC1 coding region does not contain elements that decrease mRNA stability. In contrast, the 3' UTR was found to act as a potent mRNA instability determinant. This finding and the general utility of the Top10 system should provide the means to elucidate mRNA decay pathways that are potentially novel and specific for certain unstable transcripts.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins
- Drug Stability
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Genes, Reporter
- Indoleacetic Acids/pharmacology
- Plant Proteins/genetics
- Plants, Genetically Modified
- Plants, Toxic
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- P Gil
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing 48824-1312, USA
| | | |
Collapse
|
48
|
St-Pierre B, Bertrand C, Camirand A, Cappadocia M, Brisson N. The starch phosphorylase gene is subjected to different modes of regulation in starch-containing tissues of potato. PLANT MOLECULAR BIOLOGY 1996; 30:1087-1098. [PMID: 8704121 DOI: 10.1007/bf00019544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Analysis of the levels of starch phosphorylase mRNA and its product in the various organs of the potato plant indicates that the gene is differentially regulated, leading to a high accumulation of the gene product in tubers. The amount of phosphorylase transcripts synthesized in nuclei isolated from tubers and leaves indicates that the difference in the steady-state levels of phosphorylase mRNA in these organs can be explained by different rates of initiation of transcription. However, while rates of initiation of transcription are similar in tubers and stems, the steady-state level of phosphorylase mRNA is much lower in the stem. Transgenic potato plants expressing the beta-glucuronidase (GUS) gene under the control of 5'-flanking sequences of the phosphorylase gene exhibited high levels of GUS activity in petioles, stems, stolons, tubers and roots, but low levels in leaves. This confirms the results of transcription assays observed for leaves, stems and tubers, and indicates that accumulation of phosphorylase mRNA in stems and tubers is not controlled solely by transcription initiation. Finally, histochemical analysis for GUS activity in transgenic potato plants suggests that transcription of the phosphorylase gene predominantly occurs in starch-containing cells associated to vascular tissues, and suggests a role for starch phosphorylase in the mobilization of starch stored along the translocation pathway.
Collapse
Affiliation(s)
- B St-Pierre
- Department of Biochemistry, Université de Montréal, Canada
| | | | | | | | | |
Collapse
|
49
|
English JJ, Mueller E, Baulcombe DC. Suppression of Virus Accumulation in Transgenic Plants Exhibiting Silencing of Nuclear Genes. THE PLANT CELL 1996; 8:179-188. [PMID: 12239381 PMCID: PMC161090 DOI: 10.1105/tpc.8.2.179] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Homology-dependent gene silencing contributes to variation between transgenic plants with respect to transgene and/or endogenous gene expression levels. Recent studies have linked post-transcriptional gene silencing and virus resistance in plants expressing virus-derived transgenes. Using a potato virus X vector, we present three examples in which silencing of nonviral transgenes prevented virus accumulation. This effect was dependent on sequence homology between the virus and the silenced transgene. Analysis of potato virus X derivatives carrying bacterial [beta]-glucuronidase (GUS) sequences showed that the 3[prime] region of the GUS coding sequence was a target of the silencing mechanism in two independent tobacco lines. Methylation of the silenced GUS transgenes in these lines was also concentrated in the 3[prime] region of the GUS coding sequence. Based on this concurrence, we propose a link between the DNA-based transgene methylation and the RNA-based gene silencing process.
Collapse
Affiliation(s)
- J. J. English
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich, NR4 7UH, United Kingdom
| | | | | |
Collapse
|
50
|
Walker EL, Weeden NF, Taylor CB, Green P, Coruzzi GM. Molecular evolution of duplicate copies of genes encoding cytosolic glutamine synthetase in Pisum sativum. PLANT MOLECULAR BIOLOGY 1995; 29:1111-25. [PMID: 8616212 DOI: 10.1007/bf00020456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Here, we describe two nearly identical expressed genes for cytosolic glutamine synthetase (GS3A and GS3B) in Pisum sativum L. RFLP mapping data indicates that the GS3A and GS3B genes are separate loci located on different chromosomes. DNA sequencing of the GS3A and GS3B genes revealed that the coding regions are 99% identical with only simple nucleotide substitutions resulting in three amino acid differences. Surprisingly, the non-coding regions (5' non-coding leader, the 11 introns, and 3' non-coding tail) all showed a high degree of identity (96%). In these non-coding regions, 25% of the observed differences between the GS3A and GS3B genes were deletions or duplications. The single difference in the 3' non-coding regions of the GS3A and GS3B genes was a 25 bp duplication of an AU-rich element in the GS3B gene. As the GS3B mRNA accumulates to lower levels than the GS3A gene, we tested whether this sequence which resembles an mRNA instability determinant functioned as such in the context of the GS mRNA. Using the GS3B 3' tail as part of a chimeric gene in transgenic plants, we showed that this AU-rich sequence has little effect on transgene mRNA levels. To determine whether the GS3A/GS3B genes represent a recent duplication, we examined GS3-like genes in genomic DNA of ancient relatives of P. sativum. We observed that several members of the Viceae each contain two genomic DNA fragments homologous to the GS3B gene, suggesting that this is an ancient duplication event. Gene conversion has been invoked as a possible mechanism for maintaining the high level of nucleotide similarity found between GS3A and GS3B genes. Possible evolutionary reasons for the maintenance of these 'twin' GS genes in pea, and the general duplication of genes for cytosolic GS in all plant species are discussed.
Collapse
Affiliation(s)
- E L Walker
- New York University, Dept. of Biology, NY 10003, USA
| | | | | | | | | |
Collapse
|