1
|
Hanko EKR, Sherlock G, Minton NP, Malys N. Biosensor-informed engineering of Cupriavidus necator H16 for autotrophic D-mannitol production. Metab Eng 2022; 72:24-34. [PMID: 35149227 DOI: 10.1016/j.ymben.2022.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/26/2023]
Abstract
Cupriavidus necator H16 is one of the most researched carbon dioxide (CO2)-fixing bacteria. It can store carbon in form of the polymer polyhydroxybutyrate and generate energy by aerobic hydrogen oxidation under lithoautotrophic conditions, making C. necator an ideal chassis for the biological production of value-added compounds from waste gases. Despite its immense potential, however, the experimental evidence of C. necator utilisation for autotrophic biosynthesis of chemicals is limited. Here, we genetically engineered C. necator for the high-level de novo biosynthesis of the industrially relevant sugar alcohol mannitol directly from Calvin-Benson-Bassham (CBB) cycle intermediates. To identify optimal mannitol production conditions in C. necator, a mannitol-responsive biosensor was applied for screening of mono- and bifunctional mannitol 1-phosphate dehydrogenases (MtlDs) and mannitol 1-phosphate phosphatases (M1Ps). We found that MtlD/M1P from brown alga Ectocarpus siliculosus performed overall the best under heterotrophic growth conditions and was selected to be chromosomally integrated. Consequently, autotrophic fermentation of recombinant C. necator yielded up to 3.9 g/L mannitol, representing a substantial improvement over mannitol biosynthesis using recombinant cyanobacteria. Importantly, we demonstrate that at the onset of stationary growth phase nearly 100% of carbon can be directed from the CBB cycle into mannitol through the glyceraldehyde 3-phosphate and fructose 6-phosphate intermediates. This study highlights for the first time the potential of C. necator to generate sugar alcohols from CO2 utilising precursors derived from the CBB cycle.
Collapse
Affiliation(s)
- Erik K R Hanko
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom; Present address: Manchester Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Gillian Sherlock
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Naglis Malys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
2
|
Du G, Li X, Wang J, Che S, Zhong X, Mao Y. Discrepancy in photosynthetic responses of the red alga Pyropia yezoensis to dehydration stresses under exposure to desiccation, high salinity, and high mannitol concentration. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:10-17. [PMID: 37073361 PMCID: PMC10077162 DOI: 10.1007/s42995-021-00115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 05/03/2023]
Abstract
Macroalgae that inhabit intertidal zones are exposed to the air for several hours during low tide and must endure desiccation and high variations in temperature, light intensity, and salinity. Pyropia yezoensis (Rhodophyta, Bangiales), a typical intertidal red macroalga that is commercially cultivated in the northwestern Pacific Ocean, was investigated under different dehydration stresses of desiccation, high salinity, and high mannitol concentration. Using chlorophyll fluorescence imaging, photosynthetic activities of P. yezoensis thalli were analyzed using six parameters derived from quenching curves and rapid light curves. A distinct discrepancy was revealed in photosynthetic responses to different dehydration stresses. Dehydration caused by exposure to air resulted in rapid decreases in photosynthetic activities, which were always lower than two other stresses at the same water loss (WL) level. High salinity only reduced photosynthesis significantly at its maximum WL of 40% but maintained a relatively stable maximum quantum yield of photosystem II (PSII) (Fv/Fm). High mannitol concentration induced maximum WL of 20% for a longer time (60 min) than the other two treatments and caused no adverse influences on the six parameters at different WL except for a significant decrease in non-photochemical quenching (NPQ) at 20% WL. Illustrated by chlorophyll fluorescence images, severe spatial heterogeneities were induced by desiccation with lower values in the upper parts than the middle or basal parts of the thalli. The NPQ and rETRmax (maximum relative electron transport rate) demonstrated clear distinctions for evaluating photosynthetic responses, indicating their sensitivity and applicability. The findings of this study indicated that the natural dehydration of exposure to air results in stronger and more heterogeneous effects than those of high salinity or high mannitol concentration.
Collapse
Affiliation(s)
- Guoying Du
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Xiaojiao Li
- Qingdao West Coast New Area Marine Development Bureau, Qingdao, 266003 China
| | - Junhao Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Shuai Che
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Xuefeng Zhong
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022 China
| |
Collapse
|
3
|
Chi S, Wang G, Liu T, Wang X, Liu C, Jin Y, Yin H, Xu X, Yu J. Transcriptomic and Proteomic Analysis of Mannitol-metabolism-associated Genes in Saccharina japonica. GENOMICS, PROTEOMICS & BIOINFORMATICS 2020; 18:415-429. [PMID: 33248278 PMCID: PMC8242268 DOI: 10.1016/j.gpb.2018.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/20/2018] [Accepted: 12/14/2018] [Indexed: 11/22/2022]
Abstract
As a carbon-storage compound and osmoprotectant in brown algae, mannitol is synthesized and then accumulated at high levels in Saccharina japonica (Sja); however, the underlying control mechanisms have not been studied. Our analysis of genomic and transcriptomic data from Sja shows that mannitol metabolism is a cyclic pathway composed of four distinct steps. A mannitol-1-phosphate dehydrogenase (M1PDH2) and two mannitol-1-phosphatases (M1Pase1 and MIPase2) work together or in combination to exhibit full enzymatic properties. Based on comprehensive transcriptomic data from different tissues, generations, and sexes as well as under different stress conditions, coupled with droplet digital PCR (ddPCR) and proteomic confirmation, we suggest that SjaM1Pase1 plays a major role in mannitol biosynthesis and that the basic mannitol anabolism and the carbohydrate pool dynamics are responsible for carbon storage and anti-stress mechanism. Our proteomic data indicate that mannitol metabolism remains constant during diurnal cycle in Sja. In addition, we discover that mannitol-metabolism-associated (MMA) genes show differential expression between the multicellular filamentous (gametophyte) and large parenchymal thallus (sporophyte) generations and respond differentially to environmental stresses, such as hyposaline and hyperthermia conditions. Our results indicate that the ecophysiological significance of such differentially expressed genes may be attributable to the evolution of heteromorphic generations (filamentous and thallus) and environmental adaptation of Laminariales.
Collapse
Affiliation(s)
- Shan Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Qingdao Haida BlueTek Biotechnology Co., Ltd., Qingdao 266003, China
| | - Guoliang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Tao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Yantai University, Yantai 264005, China.
| | - Cui Liu
- Qingdao Haida BlueTek Biotechnology Co., Ltd., Qingdao 266003, China
| | - Yuemei Jin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongxin Yin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xin Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Zhu J, Wakisaka M. Effect of two lignocellulose related sugar alcohols on the growth and metabolites biosynthesis of Euglena gracilis. BIORESOURCE TECHNOLOGY 2020; 303:122950. [PMID: 32045866 DOI: 10.1016/j.biortech.2020.122950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
It is an effective solution to overcome the bottlenecks of commercial production of microalgal biomass by providing cost-effective and environment-friendly organic carbon sources for microalgal mixotrophic growth. In this study, effects of lignocellulose-related mannitol and xylitol on the growth, photosynthetic pigment content, cell morphology, and metabolites biosynthesis of freshwater microalga Euglena gracilis were investigated. The results revealed that both mannitol and xylitol effectively promoted the growth of E. gracilis, and at the optimal dosage of 4 g·L-1, the biomass yield was increased by 4.64-fold and 3.18-fold, respectively. Increase of cell aspect ratio was only observed in mannitol treatment groups, indicating that E. gracilis had different physiological responses to mannitol and xylitol. Fourier transform infrared spectroscopy combined with multivariate analysis was applied to analyze the cellular components. The lipid content of E. gracilis was significantly promoted by these two sugar alcohols, which would increase its potential in biofuel production.
Collapse
Affiliation(s)
- Jiangyu Zhu
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan
| | - Minato Wakisaka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan.
| |
Collapse
|
5
|
Zeidler S, Hubloher J, König P, Ngu ND, Scholz A, Averhoff B, Müller V. Salt induction and activation of MtlD, the key enzyme in the synthesis of the compatible solute mannitol in Acinetobacter baumannii. Microbiologyopen 2018; 7:e00614. [PMID: 29575790 PMCID: PMC6291793 DOI: 10.1002/mbo3.614] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 01/05/2023] Open
Abstract
Mannitol is the major compatible solute, next to glutamate, synthesized by the opportunistic human pathogen Acinetobacter baumannii under low water activities. The key enzyme for mannitol biosynthesis, MtlD, was identified. MtlD is highly similar to the bifunctional mannitol‐1‐phosphate dehydrogenase/phosphatase from Acinetobacter baylyi. After deletion of the mtlD gene from A. baumannii ATCC 19606T cells no longer accumulated mannitol and growth was completely impaired at high salt. Addition of glycine betaine restored growth, demonstrating that mannitol is an important compatible solute in the human pathogen. MtlD was heterologously produced and purified. Enzyme activity was strictly salt dependent. Highest stimulation was reached at 600 mmol/L NaCl. Addition of different sodium as well as potassium salts restored activity, with highest stimulations up to 41 U/mg protein by sodium glutamate. In contrast, an increase in osmolarity by addition of sugars did not restore activity. Regulation of mannitol synthesis was also assayed at the transcriptional level. Reporter gene assays revealed that expression of mtlD is strongly dependent on high osmolarity, not discriminating between different salts or sugars. The presence of glycine betaine or its precursor choline repressed promoter activation. These data indicate a dual regulation of mannitol production in A. baumannii, at the transcriptional and the enzymatic level, depending on high osmolarity.
Collapse
Affiliation(s)
- Sabine Zeidler
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Josephine Hubloher
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Patricia König
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Ngoc Dinh Ngu
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Anica Scholz
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
6
|
Patel VK, Srivastava R, Sharma A, Srivastava AK, Singh S, Srivastava AK, Kashyap PL, Chakdar H, Pandiyan K, Kalra A, Saxena AK. Halotolerant Exiguobacterium profundum PHM11 Tolerate Salinity by Accumulating L-Proline and Fine-Tuning Gene Expression Profiles of Related Metabolic Pathways. Front Microbiol 2018; 9:423. [PMID: 29662469 PMCID: PMC5890156 DOI: 10.3389/fmicb.2018.00423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/22/2018] [Indexed: 11/13/2022] Open
Abstract
Salinity stress is one of the serious factors, limiting production of major agricultural crops; especially, in sodic soils. A number of approaches are being applied to mitigate the salt-induced adverse effects in agricultural crops through implying different halotolerant microbes. In this aspect, a halotolerant, Exiguobacterium profundum PHM11 was evaluated under eight different salinity regimes; 100, 250, 500, 1000, 1500, 2000, 2500, and 3000 mM to know its inherent salt tolerance limits and salt-induced consequences affecting its natural metabolism. Based on the stoichiometric growth kinetics; 100 and 1500 mM concentrations were selected as optimal and minimal performance limits for PHM11. To know, how salt stress affects the expression profiles of regulatory genes of its key metabolic pathways, and total production of important metabolites; biomass, carotenoids, beta-carotene production, IAA and proline contents, and expression profiles of key genes affecting the protein folding, structural adaptations, transportation across the cell membrane, stress tolerance, carotenoids, IAA and mannitol production in PHM11 were studied under 100 and 1500 mM salinity. E. profundum PHM11 showed maximum and minimum growth, biomass and metabolite production at 100 and 1500 mM salinity respectively. Salt-induced fine-tuning of expression profiles of key genes of stress pathways was determined in halotolerant bacterium PHM11.
Collapse
Affiliation(s)
- Vikas K Patel
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Ruchi Srivastava
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Anjney Sharma
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Anchal K Srivastava
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Savita Singh
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Alok K Srivastava
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Prem L Kashyap
- Division of Plant Pathology, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Hillol Chakdar
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - K Pandiyan
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Alok Kalra
- Department of Microbial Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Anil K Saxena
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
7
|
Patel KG, Thankappan R, Mishra GP, Mandaliya VB, Kumar A, Dobaria JR. Transgenic Peanut ( Arachis hypogaea L.) Overexpressing mtlD Gene Showed Improved Photosynthetic, Physio-Biochemical, and Yield-Parameters under Soil-Moisture Deficit Stress in Lysimeter System. FRONTIERS IN PLANT SCIENCE 2017; 8:1881. [PMID: 29163606 PMCID: PMC5675886 DOI: 10.3389/fpls.2017.01881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/17/2017] [Indexed: 05/24/2023]
Abstract
Peanut, an important oilseed crop, frequently encounters drought stress (DS) during its life cycle. In this study, four previously developed mtlD transgenic (T) peanut lines were used for detailed characterization under DS, at the reproductive stage using lysimeter system under controlled greenhouse conditions. In dry-down experiments, T lines maintained better photosynthetic machinery, such as, photosynthesis rate, stomatal conductance, transpiration rate, and SPAD (Soil-Plant Analyses Development) values, and had lower oxidative damage, including lipid membrane peroxidation and hydrogen peroxide and superoxide radical accumulation than WT, when exposed to 24 days of DS. WT plants had a more negative water potential (WP; up to -3.22 MPa) than T lines did (-2.56 to -2.71 MPa) at day 24 of DS treatment. During recovery, T lines recovered easily whereas 67% of WT plants failed to recover. In T lines, the rate of photosynthesis strongly and positively correlated with the transpiration rate (r = 0.92), RWC (r = 0.90), WP (r = 0.86), and total chlorophyll content (r = 0.75), suggesting its strong correlation with water retention-related parameters. Furthermore, yield parameters such as, pod weight and harvest index of T lines were up to 2.19 and 1.38 times more than those of WT plants, respectively. Thus, the significantly better performance of mtlD T peanut lines than of WT plants under DS could be attributed to the accumulation of mannitol, which in turn helped in maintaining the osmoregulation and ROS scavenging activity of mannitol and ultimately conferred water-economizing capacity and higher yield in T lines than in WT plants.
Collapse
Affiliation(s)
- Kirankumar G. Patel
- Directorate of Groundnut Research (ICAR), Junagadh, India
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Changa, India
| | | | - Gyan P. Mishra
- Directorate of Groundnut Research (ICAR), Junagadh, India
| | - Viralkumar B. Mandaliya
- Directorate of Groundnut Research (ICAR), Junagadh, India
- Gujarat National Law University, Gandhinagar, India
| | - Abhay Kumar
- Directorate of Groundnut Research (ICAR), Junagadh, India
| | | |
Collapse
|
8
|
Tonon T, Li Y, McQueen-Mason S. Mannitol biosynthesis in algae: more widespread and diverse than previously thought. THE NEW PHYTOLOGIST 2017; 213:1573-1579. [PMID: 27883223 DOI: 10.1111/nph.14358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Thierry Tonon
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York, YO10 5DD, UK
| | - Yi Li
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York, YO10 5DD, UK
| | - Simon McQueen-Mason
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
9
|
Meena M, Prasad V, Zehra A, Gupta VK, Upadhyay RS. Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions. Front Microbiol 2015; 6:1019. [PMID: 26441941 PMCID: PMC4585237 DOI: 10.3389/fmicb.2015.01019] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/08/2015] [Indexed: 12/03/2022] Open
Abstract
Numerous plants and fungi produce mannitol, which may serve as an osmolyte or metabolic store; furthermore, mannitol also acts as a powerful quencher of reactive oxygen species (ROS). Some phytopathogenic fungi use mannitol to stifle ROS-mediated plant resistance. Mannitol is essential in pathogenesis to balance cell reinforcements produced by both plants and animals. Mannitol likewise serves as a source of reducing power, managing coenzymes, and controlling cytoplasmic pH by going about as a sink or hotspot for protons. The metabolic pathways for mannitol biosynthesis and catabolism have been characterized in filamentous fungi by direct diminishment of fructose-6-phosphate into mannitol-1-phosphate including a mannitol-1-phosphate phosphatase catalyst. In plants mannitol is integrated from mannose-6-phosphate to mannitol-1-phosphate, which then dephosphorylates to mannitol. The enzyme mannitol dehydrogenase plays a key role in host–pathogen interactions and must be co-localized with pathogen-secreted mannitol to resist the infection.
Collapse
Affiliation(s)
- Mukesh Meena
- Department of Botany, Banaras Hindu University Varanasi, India
| | - Vishal Prasad
- Institute of Environment and Sustainable Development, Banaras Hindu University Varanasi, India
| | - Andleeb Zehra
- Department of Botany, Banaras Hindu University Varanasi, India
| | - Vijai K Gupta
- Molecular Glycobiotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway Galway, Ireland
| | - Ram S Upadhyay
- Department of Botany, Banaras Hindu University Varanasi, India
| |
Collapse
|
10
|
Bonin P, Groisillier A, Raimbault A, Guibert A, Boyen C, Tonon T. Molecular and biochemical characterization of mannitol-1-phosphate dehydrogenase from the model brown alga Ectocarpus sp. PHYTOCHEMISTRY 2015; 117:509-520. [PMID: 26232554 DOI: 10.1016/j.phytochem.2015.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 06/04/2023]
Abstract
The sugar alcohol mannitol is important in the food, pharmaceutical, medical and chemical industries. It is one of the most commonly occurring polyols in nature, with the exception of Archaea and animals. It has a range of physiological roles, including as carbon storage, compatible solute, and osmolyte. Mannitol is present in large amounts in brown algae, where its synthesis involved two steps: a mannitol-1-phosphate dehydrogenase (M1PDH) catalyzes a reversible reaction between fructose-6-phosphate (F6P) and mannitol-1-phosphate (M1P) (EC 1.1.1.17), and a mannitol-1-phosphatase hydrolyzes M1P to mannitol (EC 3.1.3.22). Analysis of the model brown alga Ectocarpus sp. genome provided three candidate genes for M1PDH activities. We report here the sequence analysis of Ectocarpus M1PDHs (EsM1PDHs), and the biochemical characterization of the recombinant catalytic domain of EsM1PDH1 (EsM1PDH1cat). Ectocarpus M1PDHs are representatives of a new type of modular M1PDHs among the polyol-specific long-chain dehydrogenases/reductases (PSLDRs). The N-terminal domain of EsM1PDH1 was not necessary for enzymatic activity. Determination of kinetic parameters indicated that EsM1PDH1cat displayed higher catalytic efficiency for F6P reduction compared to M1P oxidation. Both activities were influenced by NaCl concentration and inhibited by the thioreactive compound pHMB. These observations were completed by measurement of endogenous M1PDH activity and of EsM1PDH gene expression during one diurnal cycle. No significant changes in enzyme activity were monitored between day and night, although transcription of two out of three genes was altered, suggesting different levels of regulation for this key metabolic pathway in brown algal physiology.
Collapse
Affiliation(s)
- Patricia Bonin
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France.
| | - Agnès Groisillier
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France.
| | - Alice Raimbault
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France.
| | - Anaïs Guibert
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France.
| | - Catherine Boyen
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France.
| | - Thierry Tonon
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France.
| |
Collapse
|
11
|
Ye N, Zhang X, Miao M, Fan X, Zheng Y, Xu D, Wang J, Zhou L, Wang D, Gao Y, Wang Y, Shi W, Ji P, Li D, Guan Z, Shao C, Zhuang Z, Gao Z, Qi J, Zhao F. Saccharina genomes provide novel insight into kelp biology. Nat Commun 2015; 6:6986. [PMID: 25908475 PMCID: PMC4421812 DOI: 10.1038/ncomms7986] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/20/2015] [Indexed: 01/28/2023] Open
Abstract
Seaweeds are essential for marine ecosystems and have immense economic value. Here we present a comprehensive analysis of the draft genome of Saccharina japonica, one of the most economically important seaweeds. The 537-Mb assembled genomic sequence covered 98.5% of the estimated genome, and 18,733 protein-coding genes are predicted and annotated. Gene families related to cell wall synthesis, halogen concentration, development and defence systems were expanded. Functional diversification of the mannuronan C-5-epimerase and haloperoxidase gene families provides insight into the evolutionary adaptation of polysaccharide biosynthesis and iodine antioxidation. Additional sequencing of seven cultivars and nine wild individuals reveal that the genetic diversity within wild populations is greater than among cultivars. All of the cultivars are descendants of a wild S. japonica accession showing limited admixture with S. longissima. This study represents an important advance toward improving yields and economic traits in Saccharina and provides an invaluable resource for plant genome studies.
Collapse
Affiliation(s)
- Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Miao Miao
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yi Zheng
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Zhou
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongsheng Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yuan Gao
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Wenyu Shi
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peifeng Ji
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biosystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zheng Guan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Sand M, Rodrigues M, González JM, de Crécy-Lagard V, Santos H, Müller V, Averhoff B. Mannitol-1-phosphate dehydrogenases/phosphatases: a family of novel bifunctional enzymes for bacterial adaptation to osmotic stress. Environ Microbiol 2014; 17:711-9. [DOI: 10.1111/1462-2920.12503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/30/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Miriam Sand
- Molecular Microbiology & Bioenergetics; Institute of Molecular Biosciences; Johann Wolfgang Goethe University Frankfurt am Main; Frankfurt Germany
| | - Marta Rodrigues
- Cell Physiology and NMR Lab; Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - José M. González
- Department of Microbiology; University of La Laguna; La Laguna Tenerife Spain
| | | | - Helena Santos
- Cell Physiology and NMR Lab; Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Volker Müller
- Molecular Microbiology & Bioenergetics; Institute of Molecular Biosciences; Johann Wolfgang Goethe University Frankfurt am Main; Frankfurt Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics; Institute of Molecular Biosciences; Johann Wolfgang Goethe University Frankfurt am Main; Frankfurt Germany
| |
Collapse
|
13
|
Shao Z, Zhang P, Li Q, Wang X, Duan D. Characterization of mannitol-2-dehydrogenase in Saccharina japonica: evidence for a new polyol-specific long-chain dehydrogenases/reductase. PLoS One 2014; 9:e97935. [PMID: 24830763 PMCID: PMC4022671 DOI: 10.1371/journal.pone.0097935] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/25/2014] [Indexed: 02/08/2023] Open
Abstract
Mannitol plays a crucial role in brown algae, acting as carbon storage, organic osmolytes and antioxidant. Transcriptomic analysis of Saccharina japonica revealed that the relative genes involved in the mannitol cycle are existent. Full-length sequence of mannitol-2-dehydrogenase (M2DH) gene was obtained, with one open reading frame of 2,007 bp which encodes 668 amino acids. Cis-regulatory elements for response to methyl jasmonic acid, light and drought existed in the 5'-upstream region. Phylogenetic analysis indicated that SjM2DH has an ancient prokaryotic origin, and is probably acquired by horizontal gene transfer event. Multiple alignment and spatial structure prediction displayed a series of conserved functional residues, motifs and domains, which favored that SjM2DH belongs to the polyol-specific long-chain dehydrogenases/reductase (PSLDR) family. Expressional profiles of SjM2DH in the juvenile sporophytes showed that it was influenced by saline, oxidative and desiccative factors. SjM2DH was over-expressed in Escherichia coli, and the cell-free extracts with recombinant SjM2DH displayed high activity on D-fructose reduction reaction. The analysis on SjM2DH gene structure and biochemical parameters reached a consensus that activity of SjM2DH is NADH-dependent and metal ion-independent. The characterization of SjM2DH showed that M2DH is a new member of PSLDR family and play an important role in mannitol metabolism in S. japonica.
Collapse
Affiliation(s)
- Zhanru Shao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Pengyan Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qiuying Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiuliang Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Delin Duan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
14
|
Yang LB, Zhan XB, Zheng ZY, Wu JR, Gao MJ, Lin CC. A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. BIORESOURCE TECHNOLOGY 2014; 151:120-7. [PMID: 24215768 DOI: 10.1016/j.biortech.2013.10.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 05/07/2023]
Abstract
The effect of osmotic pressure on erythritol and mannitol production by an osmophilic yeast strain of Yarrowia lipolytica CICC 1675 using glycerol as the sole carbon source was investigated. Appropriately high osmotic pressure was found to enhance erythritol production and inhibit mannitol formation. A novel two-stage osmotic pressure control fed-batch strategy based on the kinetic analysis was developed for higher erythritol yield and productivity. During the first 96 h, the osmotic pressure was maintained at 4.25 osmol/kg by feeding glycerol to reduce the inhibition of cell growth. After 132 h, the osmotic pressure was controlled at 4.94 osmol/kg to maintain a high dp(ery)/dt. Maximum erythritol yield of 194.3g/L was obtained with 0.95 g/L/h productivity, which were 25.7% and 2.2%, respectively, improvement over the best results in one-stage fed-batch fermentation. This is the first report that a novel osmotic pressure control fed-batch strategy significantly enhanced erythritol production.
Collapse
Affiliation(s)
- Li-Bo Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | | | | | | | | |
Collapse
|
15
|
Sand M, Mingote AI, Santos H, Müller V, Averhoff B. Mannitol, a compatible solute synthesized by Acinetobacter baylyi in a two-step pathway including a salt-induced and salt-dependent mannitol-1-phosphate dehydrogenase. Environ Microbiol 2013; 15:2187-97. [PMID: 23414076 DOI: 10.1111/1462-2920.12090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
Abstract
The nutritionally versatile and naturally competent soil bacterium Acinetobacter baylyi copes with salt stress by the accumulation of compatible solutes. NMR analyses revealed that cells amassed glutamate and the rather unusual sugar alcohol mannitol upon an increase of the external NaCl concentration. To unravel the path of mannitol biosynthesis, the genome was inspected for genes potentially involved in its biosynthesis. A gene encoding a potential mannitol-1-phosphate dehydrogenase (mtlD) was identified in the genome of A. baylyi. Expression of mtlD was highly induced at high salinity. mtlD was overexpressed and the purified protein indeed produced mannitol-1-phosphate from fructose-6-phosphate. The enzyme preferred NADPH over NADH and the specific activity of fructose-6-phosphate reduction with NADPH was 130 U mg(-1) . Enzymatic activity was strictly salt-dependent. Deletion of mtlD resulted in a complete loss of salt-dependent mannitol biosynthesis. We provide clear evidence that osmo-induced synthesis of the compatible solute mannitol is by a two-step pathway and that the mannitol-1-phosphate dehydrogenase mediating the first step of this pathway is regulated by salinity on the transcriptional as well as on the activity level.
Collapse
Affiliation(s)
- Miriam Sand
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
16
|
|
17
|
da Silva BA, Sodré CL, Souza-Gonçalves AL, Aor AC, Kneipp LF, Fonseca BB, Rozental S, Romanos MTV, Sola-Penna M, Perales J, Kalume DE, dos Santos ALS. Proteomic analysis of the secretions of Pseudallescheria boydii, a human fungal pathogen with unknown genome. J Proteome Res 2011; 11:172-88. [PMID: 22142336 DOI: 10.1021/pr200875x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pseudallescheria boydii is a filamentous fungus that causes a wide array of infections that can affect practically all the organs of the human body. The treatment of pseudallescheriosis is difficult since P. boydii exhibits intrinsic resistance to the majority of antifungal drugs used in the clinic and the virulence attributes expressed by this fungus are unknown. The study of the secretion of molecules is an important approach for understanding the pathogenicity of fungi. With this task in mind, we have shown that mycelial cells of P. boydii were able to actively secrete proteins into the extracellular environment; some of them were recognized by antibodies present in the serum of a patient with pseudallescheriosis. Additionally, molecules secreted by P. boydii induced in vitro irreversible damage in pulmonary epithelial cells. Subsequently, two-dimensional gel electrophoresis combined with mass spectrometry was carried out in order to start the construction of a map of secreted proteins from P. boydii mycelial cells. The two-dimensional map showed that most of the proteins (around 100 spots) were focused at pH ranging from 4 to 7 with molecular masses ranging from 14 to >117 kDa. Fifty spots were randomly selected, of which 30 (60%) were consistently identified, while 20 (40%) spots generated peptides that showed no resemblance to any known protein from other fungi and/or MS with low quality. Notably, we identified proteins involved in metabolic pathways (energy/carbohydrate, nucleotide, and fatty acid), cell wall remodeling, RNA processing, signaling, protein degradation/nutrition, translation machinery, drug elimination and/or detoxification, protection against environmental stress, cytoskeleton/movement proteins, and immunogenic molecules. Since the genome of this fungus is not sequenced, we performed enzymatic and immunodetection assays in order to corroborate the presence of some released proteins. The identification of proteins actively secreted by P. boydii provides important new information for understanding immune modulation and provides important new perspectives on the biology of this intriguing fungus.
Collapse
Affiliation(s)
- Bianca Alcântara da Silva
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rousvoal S, Groisillier A, Dittami SM, Michel G, Boyen C, Tonon T. Mannitol-1-phosphate dehydrogenase activity in Ectocarpus siliculosus, a key role for mannitol synthesis in brown algae. PLANTA 2011; 233:261-73. [PMID: 20981555 DOI: 10.1007/s00425-010-1295-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/26/2010] [Indexed: 05/30/2023]
Abstract
Mannitol represents a major end product of photosynthesis in brown algae (Phaeophyceae), and is, with the β-1,3-glucan laminarin, the main form of carbon storage for these organisms. Despite its importance, little is known about the genes and enzymes responsible for the metabolism of mannitol in these seaweeds. Taking benefit of the sequencing of the Ectocarpus siliculosus genome, we focussed our attention on the first step of the synthesis of mannitol (reduction of the photo-assimilate fructose-6-phosphate), catalysed by the mannitol-1-phosphate dehydrogenase (M1PDH). This activity was measured in algal extracts, and was shown to be regulated by NaCl concentration in the reaction medium. Genomic analysis revealed the presence of three putative M1PDH genes (named EsM1PHD1, EsM1PDH2 and EsM1PDH3). Sequence comparison with orthologs demonstrates the modular architecture of EsM1PHD1 and EsM1PDH2, with an additional N-terminal domain of unknown function. In addition, gene expression experiments carried out on samples harvested through the diurnal cycle, and after several short-term saline and oxidative stress treatments, showed that EsM1PDH1 is the most highly expressed of these genes, whatever the conditions tested. In order to assess the activity of the corresponding protein, this gene was expressed in Escherichia coli. Cell-free extracts prepared from bacteria containing EsM1PDH1 displayed higher M1PDH activity than bacteria transformed with an empty plasmid. Further characterisation of recombinant EsM1PDH1 activity revealed its very narrow substrate specificity, salt regulation, and sensitivity towards an inhibitor of SH-enzymes.
Collapse
Affiliation(s)
- Sylvie Rousvoal
- UPMC Univ Paris 6, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29682 Roscoff, France
| | | | | | | | | | | |
Collapse
|
19
|
Low Molecular Weight Carbohydrates in Red Algae – an Ecophysiological and Biochemical Perspective. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-3795-4_24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Wang ZL, Ying SH, Feng MG. Gene cloning and catalysis features of a new mannitol-1-phosphate dehydrogenase (BbMPD) from Beauveria bassiana. Carbohydr Res 2010; 345:50-4. [DOI: 10.1016/j.carres.2009.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/11/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
21
|
Iwamoto K, Shiraiwa Y. Salt-regulated mannitol metabolism in algae. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:407-15. [PMID: 16088352 DOI: 10.1007/s10126-005-0029-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Accepted: 04/28/2005] [Indexed: 05/03/2023]
Abstract
Mannitol, one of the most widely occurring sugar alcohol compounds, is found in bacteria, fungi, algae, and plants. In these organisms the compound acts as a compatible solute and has multiple functions, including osmoregulation, storage, and regeneration of reducing power, and scavenging of active oxygen species. Because of the diverse functions of mannitol, introducing the ability to accumulate it has been a hallmark of attempts to generate highly salt-tolerant transgenic plants. However, transgenic plants have not yet improved significantly in their salt tolerance. Recently, we purified and characterized 2 enzymes that biosynthesize mannitol, mannitol-1-phosphate dehydrogenase (M1PDH) and mannitol-1-phosphate-specific phosphatase, from the marine red alga Caloglossa continua, which grows in estuarine areas where tide levels fluctuate frequently. The activation of Caloglossa M1PDH is unique in that it is regulated by salt concentration at enzyme level. In this review we focus on the metabolism of mannitol, mainly in marine photosynthetic organisms, and suggest how this might be applied to producing salt-tolerant transgenic plants.
Collapse
Affiliation(s)
- Koji Iwamoto
- Functional Biosciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | |
Collapse
|
22
|
Kamiya M. Speciation and biogeography of the Caloglossa leprieurii complex (Delesseriaceae, Rhodophyta). JOURNAL OF PLANT RESEARCH 2004; 117:421-428. [PMID: 15309639 DOI: 10.1007/s10265-004-0166-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 06/20/2004] [Indexed: 05/24/2023]
Abstract
Studies on the morphology, reproductive compatibility, life cycle and molecular phylogeny of the euryhaline red alga Caloglossa provide insights into the speciation events and biogeographic patterns. The C. leprieurii complex is separated into three morphotypes based on the number of cell rows at nodes and the blade width. The three morphotypes are reproductively incompatible with each other, and furthermore many mating groups are recognized within the morphotypes. Incomplete reproductive isolation is occasionally seen between geographically distant mating groups, whereas no sexual compatibility occurs between sympatrically or parapatrically distributed mating groups. In the molecular phylogenetic analyses, the C. leprieurii complex is resolved as two clusters that phenotypically correspond to the single and multiple cell row types, respectively. The strains belonging to the same mating group are closely related to each other, without exception, while the mating groups showing incomplete reproductive reactions do not always make a clade. The genetic distance is generally not correlative to the geographic distance, and this is also suggested by the morphological data and crossability. These results indicate that allopatric speciation has frequently occurred in this species complex, although there is some evidence of long-distance dispersal.
Collapse
|