1
|
Zou Y, Sabljić I, Horbach N, Dauphinee AN, Åsman A, Sancho Temino L, Minina EA, Drag M, Stael S, Poreba M, Ståhlberg J, Bozhkov PV. Thermoprotection by a cell membrane-localized metacaspase in a green alga. THE PLANT CELL 2024; 36:665-687. [PMID: 37971931 PMCID: PMC10896300 DOI: 10.1093/plcell/koad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/10/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Caspases are restricted to animals, while other organisms, including plants, possess metacaspases (MCAs), a more ancient and broader class of structurally related yet biochemically distinct proteases. Our current understanding of plant MCAs is derived from studies in streptophytes, and mostly in Arabidopsis (Arabidopsis thaliana) with 9 MCAs with partially redundant activities. In contrast to streptophytes, most chlorophytes contain only 1 or 2 uncharacterized MCAs, providing an excellent platform for MCA research. Here we investigated CrMCA-II, the single type-II MCA from the model chlorophyte Chlamydomonas (Chlamydomonas reinhardtii). Surprisingly, unlike other studied MCAs and similar to caspases, CrMCA-II dimerizes both in vitro and in vivo. Furthermore, activation of CrMCA-II in vivo correlated with its dimerization. Most of CrMCA-II in the cell was present as a proenzyme (zymogen) attached to the plasma membrane (PM). Deletion of CrMCA-II by genome editing compromised thermotolerance, leading to increased cell death under heat stress. Adding back either wild-type or catalytically dead CrMCA-II restored thermoprotection, suggesting that its proteolytic activity is dispensable for this effect. Finally, we connected the non-proteolytic role of CrMCA-II in thermotolerance to the ability to modulate PM fluidity. Our study reveals an ancient, MCA-dependent thermotolerance mechanism retained by Chlamydomonas and probably lost during the evolution of multicellularity.
Collapse
Affiliation(s)
- Yong Zou
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Igor Sabljić
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Natalia Horbach
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Adrian N Dauphinee
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Anna Åsman
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Lucia Sancho Temino
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Simon Stael
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| |
Collapse
|
2
|
Wang L, Patena W, Van Baalen KA, Xie Y, Singer ER, Gavrilenko S, Warren-Williams M, Han L, Harrigan HR, Hartz LD, Chen V, Ton VTNP, Kyin S, Shwe HH, Cahn MH, Wilson AT, Onishi M, Hu J, Schnell DJ, McWhite CD, Jonikas MC. A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways. Cell 2023; 186:3499-3518.e14. [PMID: 37437571 DOI: 10.1016/j.cell.2023.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023]
Abstract
Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii. The localizations provide insights into the functions of poorly characterized proteins; identify novel components of nucleoids, plastoglobules, and the pyrenoid; and reveal widespread protein targeting to multiple compartments. We discovered and further characterized cellular organizational features, including eleven chloroplast punctate structures, cytosolic crescent structures, and unexpected spatial distributions of enzymes within the chloroplast. We also used machine learning to predict the localizations of other nuclear-encoded Chlamydomonas proteins. The strains and localization atlas developed here will serve as a resource to accelerate studies of chloroplast architecture and functions.
Collapse
Affiliation(s)
- Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kelly A Van Baalen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yihua Xie
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emily R Singer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Linqu Han
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Henry R Harrigan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Linnea D Hartz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vivian Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vinh T N P Ton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Henry H Shwe
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Matthew H Cahn
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jianping Hu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Claire D McWhite
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
3
|
Rafique F, Lauersen KJ, Chodasiewicz M, Figueroa NE. A New Approach to the Study of Plastidial Stress Granules: The Integrated Use of Arabidopsis thaliana and Chlamydomonas reinhardtii as Model Organisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:1467. [PMID: 35684240 PMCID: PMC9182737 DOI: 10.3390/plants11111467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 05/16/2023]
Abstract
The field of stress granules (SGs) has recently emerged in the study of the plant stress response, yet these structures, their dynamics and importance remain poorly characterized. There is currently a gap in our understanding of the physiological function of SGs during stress. Since there are only a few studies addressing SGs in planta, which are primarily focused on cytoplasmic SGs. The recent observation of SG-like foci in the chloroplast (cpSGs) of Arabidopsis thaliana opened even more questions regarding the role of these subcellular features. In this opinion article, we review the current knowledge of cpSGs and propose a workflow for the joint use of the long-established model organisms Chlamydomonas reinhardtii and A. thaliana to accelerate the evaluation of individual plant cpSGs components and their impact on stress responses. Finally, we present a short outlook and what we believe are the significant gaps that need to be addressed in the following years.
Collapse
Affiliation(s)
- Fareena Rafique
- Plant Science Program, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (F.R.); (M.C.)
| | - Kyle J. Lauersen
- Bioengineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Monika Chodasiewicz
- Plant Science Program, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (F.R.); (M.C.)
| | - Nicolás E. Figueroa
- Plant Science Program, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (F.R.); (M.C.)
| |
Collapse
|
4
|
Global asymptotic stability of the active disassembly model of flagellar length control. J Math Biol 2021; 84:8. [PMID: 34970717 PMCID: PMC8802998 DOI: 10.1007/s00285-021-01709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 09/10/2021] [Accepted: 12/10/2021] [Indexed: 01/01/2023]
Abstract
Organelle size control is a fundamental question in biology that demonstrates the fascinating ability of cells to maintain homeostasis within their highly variable environments. Theoretical models describing cellular dynamics have the potential to help elucidate the principles underlying size control. Here, we perform a detailed study of the active disassembly model proposed in Fai et al. (elife 8:e42599, 2019). We construct a hybrid system which is shown to be well-behaved throughout the domain. We rule out the possibility of oscillations arising in the model and prove global asymptotic stability in the case of two flagella by the construction of a suitable Lyapunov function. Finally, we generalize the model to the case of arbitrary flagellar number in order to study olfactory sensory neurons, which have up to twenty cilia per cell. We show that our theoretical results may be extended to this case and explore the implications of this universal mechanism of size control.
Collapse
|
5
|
Tran QG, Yoon HR, Cho K, Lee SJ, Crespo JL, Ramanan R, Kim HS. Dynamic Interactions between Autophagosomes and Lipid Droplets in Chlamydomonas reinhardtii. Cells 2019; 8:E992. [PMID: 31466295 PMCID: PMC6769876 DOI: 10.3390/cells8090992] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a highly conserved catabolic process in eukaryotic cells by which waste cellular components are recycled to maintain growth in both favorable and stress conditions. Autophagy has been linked to lipid metabolism in microalgae; however, the mechanism underlying this interaction remains unclear. In this study, transgenic Chlamydomonas reinhardtii cells that stably express the red fluorescent protein (mCherry) tagged-ATG8 as an autophagy marker were established. By using this tool, we were able to follow the autophagy process in live microalgal cells under various conditions. Live-cell and transmission electron microscopy (TEM) imaging revealed physical contacts between lipid droplets and autophagic structures during the early stage of nitrogen starvation, while fusion of these two organelles was observed in prolonged nutritional deficiency, suggesting that an autophagy-related pathway might be involved in lipid droplet turnover in this alga. Our results thus shed light on the interplay between autophagy and lipid metabolism in C. reinhardtii, and this autophagy marker would be a valuable asset for further investigations on autophagic processes in microalgae.
Collapse
Affiliation(s)
- Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Hyang Ran Yoon
- Immunotherapy Convergence Research Center, KRIBB, Daejeon 34141, Korea
| | - Kichul Cho
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrücken, Germany
| | - Seon-Jin Lee
- Environmental Disease Research Center, KRIBB, Daejeon 34141, Korea
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain
| | - Rishiram Ramanan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea.
| |
Collapse
|
6
|
Li X, Patena W, Fauser F, Jinkerson RE, Saroussi S, Meyer MT, Ivanova N, Robertson JM, Yue R, Zhang R, Vilarrasa-Blasi J, Wittkopp TM, Ramundo S, Blum SR, Goh A, Laudon M, Srikumar T, Lefebvre PA, Grossman AR, Jonikas MC. A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis. Nat Genet 2019. [PMID: 30886426 DOI: 10.1038/s41588-019-0370-376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Photosynthetic organisms provide food and energy for nearly all life on Earth, yet half of their protein-coding genes remain uncharacterized1,2. Characterization of these genes could be greatly accelerated by new genetic resources for unicellular organisms. Here we generated a genome-wide, indexed library of mapped insertion mutants for the unicellular alga Chlamydomonas reinhardtii. The 62,389 mutants in the library, covering 83% of nuclear protein-coding genes, are available to the community. Each mutant contains unique DNA barcodes, allowing the collection to be screened as a pool. We performed a genome-wide survey of genes required for photosynthesis, which identified 303 candidate genes. Characterization of one of these genes, the conserved predicted phosphatase-encoding gene CPL3, showed that it is important for accumulation of multiple photosynthetic protein complexes. Notably, 21 of the 43 higher-confidence genes are novel, opening new opportunities for advances in understanding of this biogeochemically fundamental process. This library will accelerate the characterization of thousands of genes in algae, plants, and animals.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, China
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Friedrich Fauser
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Robert E Jinkerson
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Shai Saroussi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Moritz T Meyer
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nina Ivanova
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Jacob M Robertson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Rebecca Yue
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Ru Zhang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Tyler M Wittkopp
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Silvia Ramundo
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Sean R Blum
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Audrey Goh
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Matthew Laudon
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Tharan Srikumar
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Paul A Lefebvre
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA.
| |
Collapse
|
7
|
A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis. Nat Genet 2019; 51:627-635. [PMID: 30886426 PMCID: PMC6636631 DOI: 10.1038/s41588-019-0370-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022]
Abstract
Photosynthetic organisms provide food and energy for nearly all life on Earth, yet half of their protein-coding genes remain uncharacterized1,2. Characterization of these genes could be greatly accelerated by new genetic resources for unicellular organisms. Here, we generated a genome-wide, indexed library of mapped insertion mutants for the unicellular alga Chlamydomonas reinhardtii. The 62,389 mutants in the library, covering 83% of nuclear, protein-coding genes, are available to the community. Each mutant contains unique DNA barcodes, allowing the collection to be screened as a pool. We performed a genome-wide survey of genes required for photosynthesis, which identified 303 candidate genes. Characterization of one of these genes, the conserved predicted phosphatase-encoding gene CPL3, showed it is important for accumulation of multiple photosynthetic protein complexes. Notably, 21 of the 43 highest-confidence genes are novel, opening new opportunities for advances in our understanding of this biogeochemically fundamental process. This library will accelerate the characterization of thousands of genes in algae, plants and animals. Generation of a library of 62,389 mapped insertion mutants for the unicellular alga Chlamydomonas reinhardtii enables screening for genes required for photosynthesis and the identification of 303 candidate genes.
Collapse
|
8
|
|
9
|
Meyer MT, McCormick AJ, Griffiths H. Will an algal CO2-concentrating mechanism work in higher plants? CURRENT OPINION IN PLANT BIOLOGY 2016; 31:181-8. [PMID: 27194106 DOI: 10.1016/j.pbi.2016.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/17/2016] [Accepted: 04/21/2016] [Indexed: 05/19/2023]
Abstract
Many algae use a biophysical carbon concentrating mechanism for active accumulation and retention of inorganic carbon within chloroplasts, with CO2 fixation by RuBisCO within a micro-compartment, the pyrenoid. Engineering such mechanisms into higher plant chloroplasts is a possible route to augment RuBisCO operating efficiency and photosynthetic rates. Significant progress has been made recently in characterising key algal transporters and identifying factors responsible for the aggregation of RuBisCO into the pyrenoid. Several transporters have now also been successfully incorporated into higher plant chloroplasts. Consistent with the predictions from modelling, regulation of higher plant plastidic carbonic anhydrases and some form of RuBisCO aggregation will be needed before the mechanism delivers potential benefits. Key research priorities include a better understanding of the regulation of the algal carbon concentrating mechanism, advancing the fundamental characterisation of known components, evaluating whether higher plant chloroplasts can accommodate a pyrenoid, and, ultimately, testing transgenic lines under realistic growth conditions.
Collapse
Affiliation(s)
- Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, CB2 3EA, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, CB2 3EA, UK.
| |
Collapse
|
10
|
Treves H, Raanan H, Kedem I, Murik O, Keren N, Zer H, Berkowicz SM, Giordano M, Norici A, Shotland Y, Ohad I, Kaplan A. The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. THE NEW PHYTOLOGIST 2016; 210:1229-43. [PMID: 26853530 DOI: 10.1111/nph.13870] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/16/2015] [Indexed: 05/24/2023]
Abstract
Excess illumination damages the photosynthetic apparatus with severe implications with regard to plant productivity. Unlike model organisms, the growth of Chlorella ohadii, isolated from desert soil crust, remains unchanged and photosynthetic O2 evolution increases, even when exposed to irradiation twice that of maximal sunlight. Spectroscopic, biochemical and molecular approaches were applied to uncover the mechanisms involved. D1 protein in photosystem II (PSII) is barely degraded, even when exposed to antibiotics that prevent its replenishment. Measurements of various PSII parameters indicate that this complex functions differently from that in model organisms and suggest that C. ohadii activates a nonradiative electron recombination route which minimizes singlet oxygen formation and the resulting photoinhibition. The light-harvesting antenna is very small and carotene composition is hardly affected by excess illumination. Instead of succumbing to photodamage, C. ohadii activates additional means to dissipate excess light energy. It undergoes major structural, compositional and physiological changes, leading to a large rise in photosynthetic rate, lipids and carbohydrate content and inorganic carbon cycling. The ability of C. ohadii to avoid photodamage relies on a modified function of PSII and the dissipation of excess reductants downstream of the photosynthetic reaction centers. The biotechnological potential as a gene source for crop plant improvement is self-evident.
Collapse
Affiliation(s)
- Haim Treves
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Hagai Raanan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Isaac Kedem
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Omer Murik
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Hagit Zer
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Simon M Berkowicz
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Alessandra Norici
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Yoram Shotland
- Department of Chemical Engineering, Shamoon College of Engineering, Beer Sheva, 84100, Israel
| | - Itzhak Ohad
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
11
|
Sanz-Luque E, Ocaña-Calahorro F, Galván A, Fernández E, de Montaigu A. Characterization of a Mutant Deficient for Ammonium and Nitric Oxide Signalling in the Model System Chlamydomonas reinhardtii. PLoS One 2016; 11:e0155128. [PMID: 27149516 PMCID: PMC4858171 DOI: 10.1371/journal.pone.0155128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023] Open
Abstract
The ubiquitous signalling molecule Nitric Oxide (NO) is characterized not only by the variety of organisms in which it has been described, but also by the wealth of biological processes that it regulates. In contrast to the expanding repertoire of functions assigned to NO, however, the mechanisms of NO action usually remain unresolved, and genes that work within NO signalling cascades are seldom identified. A recent addition to the list of known NO functions is the regulation of the nitrogen assimilation pathway in the unicellular alga Chlamydomonas reinhardtii, a well-established model organism for genetic and molecular studies that offers new possibilities in the search for mediators of NO signalling. By further exploiting a collection of Chlamydomonas insertional mutant strains originally isolated for their insensitivity to the ammonium (NH4+) nitrogen source, we found a mutant which, in addition to its ammonium insensitive (AI) phenotype, was not capable of correctly sensing the NO signal. Similarly to what had previously been described in the AI strain cyg56, the expression of nitrogen assimilation genes in the mutant did not properly respond to treatments with various NO donors. Complementation experiments showed that NON1 (NO Nitrate 1), a gene that encodes a protein containing no known functional domain, was the gene underlying the mutant phenotype. Beyond the identification of NON1, our findings broadly demonstrate the potential for Chlamydomonas reinhardtii to be used as a model system in the search for novel components of gene networks that mediate physiological responses to NO.
Collapse
Affiliation(s)
- Emanuel Sanz-Luque
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Ocaña-Calahorro
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Aurora Galván
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
- * E-mail: (EF); (AdM)
| | - Amaury de Montaigu
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
- * E-mail: (EF); (AdM)
| |
Collapse
|
12
|
Tilbrook K, Dubois M, Crocco CD, Yin R, Chappuis R, Allorent G, Schmid-Siegert E, Goldschmidt-Clermont M, Ulm R. UV-B Perception and Acclimation in Chlamydomonas reinhardtii. THE PLANT CELL 2016; 28:966-83. [PMID: 27020958 PMCID: PMC4863380 DOI: 10.1105/tpc.15.00287] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 03/25/2016] [Indexed: 05/03/2023]
Abstract
Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection.
Collapse
Affiliation(s)
- Kimberley Tilbrook
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Marine Dubois
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Carlos D Crocco
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Ruohe Yin
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Richard Chappuis
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Guillaume Allorent
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - Emanuel Schmid-Siegert
- SIB-Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Roman Ulm
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
13
|
Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R, Robertson JM, Lefebvre PA, Fitz-Gibbon ST, Grossman AR, Jonikas MC. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii. THE PLANT CELL 2016; 28:367-87. [PMID: 26764374 PMCID: PMC4790863 DOI: 10.1105/tpc.15.00465] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/30/2015] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Ru Zhang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Weronika Patena
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Spencer S Gang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Sean R Blum
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Nina Ivanova
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Rebecca Yue
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Jacob M Robertson
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Paul A Lefebvre
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Sorel T Fitz-Gibbon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| |
Collapse
|
14
|
Belcher S, Williams-Carrier R, Stiffler N, Barkan A. Large-scale genetic analysis of chloroplast biogenesis in maize. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1004-16. [PMID: 25725436 DOI: 10.1016/j.bbabio.2015.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/16/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Chloroplast biogenesis involves a collaboration between several thousand nuclear genes and ~100 genes in the chloroplast. Many of the nuclear genes are of cyanobacterial ancestry and continue to perform their ancestral function. However, many others evolved subsequently and comprise a diverse set of proteins found specifically in photosynthetic eucaryotes. Genetic approaches have been key to the discovery of nuclear genes that participate in chloroplast biogenesis, especially those lacking close homologs outside the plant kingdom. SCOPE OF REVIEW This article summarizes contributions from a genetic resource in maize, the Photosynthetic Mutant Library (PML). The PML collection consists of ~2000 non-photosynthetic mutants induced by Mu transposons. We include a summary of mutant phenotypes for 20 previously unstudied maize genes, including genes encoding chloroplast ribosomal proteins, a PPR protein, tRNA synthetases, proteins involved in plastid transcription, a putative ribosome assembly factor, a chaperonin 60 isoform, and a NifU-domain protein required for Photosystem I biogenesis. MAJOR CONCLUSIONS Insertions in 94 maize genes have been linked thus far to visible and molecular phenotypes with the PML collection. The spectrum of chloroplast biogenesis genes that have been genetically characterized in maize is discussed in the context of related efforts in other organisms. This comparison shows how distinct organismal attributes facilitate the discovery of different gene classes, and reveals examples of functional divergence between monocot and dicot plants. GENERAL SIGNIFICANCE These findings elucidate the biology of an organelle whose activities are fundamental to agriculture and the biosphere. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Nicholas Stiffler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
15
|
Characterization of DNA repair deficient strains of Chlamydomonas reinhardtii generated by insertional mutagenesis. PLoS One 2014; 9:e105482. [PMID: 25144319 PMCID: PMC4140758 DOI: 10.1371/journal.pone.0105482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/23/2014] [Indexed: 12/15/2022] Open
Abstract
While the mechanisms governing DNA damage response and repair are fundamentally conserved, cross-kingdom comparisons indicate that they differ in many aspects due to differences in life-styles and developmental strategies. In photosynthetic organisms these differences have not been fully explored because gene-discovery approaches are mainly based on homology searches with known DDR/DNA repair proteins. Here we performed a forward genetic screen in the green algae Chlamydomonas reinhardtii to identify genes deficient in DDR/DNA repair. We isolated five insertional mutants that were sensitive to various genotoxic insults and two of them exhibited altered efficiency of transgene integration. To identify genomic regions disrupted in these mutants, we established a novel adaptor-ligation strategy for the efficient recovery of the insertion flanking sites. Four mutants harbored deletions that involved known DNA repair factors, DNA Pol zeta, DNA Pol theta, SAE2/COM1, and two neighbouring genes encoding ERCC1 and RAD17. Deletion in the last mutant spanned two Chlamydomonas-specific genes with unknown function, demonstrating the utility of this approach for discovering novel factors involved in genome maintenance.
Collapse
|
16
|
Rosales-Mendoza S. Future directions for the development of Chlamydomonas-based vaccines. Expert Rev Vaccines 2014; 12:1011-9. [PMID: 24053395 DOI: 10.1586/14760584.2013.825455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Besides serving as a valuable model in biological sciences, Chamydomonas reinhardtii has been used during the last decade in the biotechnology arena to establish models for the low cost production of vaccines. Antigens from various pathogens including Plasmodium falciparum, foot and mouth disease virus, Staphylococcus aureus, classical swine fever virus (CSFV) as well as some auto-antigens, have been produced in C. reinhardtii. Although some of them have been functionally characterized with promising results, this review identifies future directions for the advancement in the exploitation of this robust and safe vaccine production platform. The present analysis reflects that important immunological implications exist for this system and remain unexplored, including the possible adjuvant effects of algae biomolecules, the effect of bioencapsulation on immunogenicity and the possible development of whole-cell vaccines as an approach to trigger cytotoxic immune responses. Recently described molecular strategies that aim to optimize the expression of nuclear-encoded target antigens are also discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México +52 444 826 2440 +52 444 826 2440
| |
Collapse
|
17
|
Chankova SG, Dimova EG, Mitrovska Z, Miteva D, Mokerova DV, Yonova PA, Yurina NP. Antioxidant and HSP70B responses in Chlamydomonas reinhardtii genotypes with different resistance to oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 101:131-137. [PMID: 24507138 DOI: 10.1016/j.ecoenv.2013.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
Today, the information from model species that differ in their resistance to oxidative stress and the determination of suitable plant markers for screening stress-resistant genotypes are essential for better understanding of plant stress responses and for selection. Here we aimed to assess the differences in antioxidant and HSP70B responses to paraquat treatment between genotypes susceptible and resistant to oxidative stress. Four genotypes of Chlamydomonas reinhardtii were chosen as a model of plant cells: two susceptible genotypes: wild type and paraquat-sensitive; and two paraquat-resistant genotypes: with high and moderate resistance. Varying responses to paraquat treatment were found depending on the genotype and paraquat concentrations. High paraquat concentrations (>50μM) were shown to be very stressful for all C. reinhardtii genotypes, leading to inhibition of enzyme activity. Only the paraquat-sensitive genotype responded to low-level paraquat treatment with a marked enhancement of SOD, CAT, GST activities. The lack of statistically significant response measured as SOD, CAT, GST activities in WT and resistant genotypes could be considered as an indication of absence of strong oxidative stress. This could relate to higher levels of endogenous SOD and CAT activities characteristic of moderately and highly paraquat-resistant genotypes. The response to lower paraquat concentrations evaluated as HSP70B accumulation was proportional to the level of genotype susceptibility to PQ. New evidence is provided that low-level oxidative stress impacts the antioxidant and HSP70B responses differently depending on the genotype resistance. In light of the still unresolved challenge for identification of reliable characters for screening of genotype resistance/susceptibility to oxidative stress, our study demonstrates that HSP70B accumulation could be used as an early marker for induced oxidative stress in the studied genotypes. The obtained results that the most pronounced differences in the antioxidant and HSP70B response were found between the two susceptible genotypes provoke us to convey future experiments with other susceptible genotypes.
Collapse
Affiliation(s)
- Stephka G Chankova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria.
| | - Evgeniya G Dimova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria.
| | - Zhana Mitrovska
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria.
| | - Daniela Miteva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria.
| | - Dariya V Mokerova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskii pr., 33, Moscow 119071, Russia.
| | - Petranka A Yonova
- Bulgaria Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad G. Bonchev Street, Building 21, 1113 Sofia, Bulgaria.
| | - Nadezhda P Yurina
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskii pr., 33, Moscow 119071, Russia.
| |
Collapse
|
18
|
Minagawa J. Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation of photosynthesis. FRONTIERS IN PLANT SCIENCE 2013; 4:513. [PMID: 24381578 PMCID: PMC3865443 DOI: 10.3389/fpls.2013.00513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/30/2013] [Indexed: 05/18/2023]
Abstract
Plants and algae have acquired the ability to acclimate to ever-changing environments in order to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2. The efficiency of photosynthesis is modulated by many environmental factors such as quality and quantity of light, temperature, drought, and CO2 concentration, among others. Accumulating evidence indicates that photosynthetic supercomplexes undergo supramolecular reorganization within a short time frame during acclimation to an environmental change. This reorganization includes state transitions that balance the excitation of photosystem I and II by shuttling peripheral antenna proteins between the two, thermal energy dissipation that occurs at energy-quenching sites within the light-harvesting antenna generated for negative feedback when excess light is absorbed, and cyclic electron flow that is facilitated between photosystem I and the cytochrome bf complex when cells demand more ATP and/or need to activate energy dissipation. This review will highlight the recent findings regarding these environmental acclimation events in model organisms with particular attention to the unicellular green alga C. reinhardtii and with reference to the vascular plant A. thaliana, which offers a glimpse into the dynamic behavior of photosynthetic machineries in nature.
Collapse
Affiliation(s)
- Jun Minagawa
- *Correspondence: Jun Minagawa, Division of Environmental Photobiology, National Institute for Basic Biology, 38 Nishigonaka, Okazaki 444-8585, Japan e-mail:
| |
Collapse
|
19
|
Grovenstein PB, Wilson DA, Lankford KD, Gaston KA, Perera S, Mitra M. Identification and molecular characterization of the second Chlamydomonas gun4 mutant, gun4-II. F1000Res 2013; 2:142. [PMID: 24627785 PMCID: PMC3931455 DOI: 10.12688/f1000research.2-142.v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2013] [Indexed: 11/20/2022] Open
Abstract
The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in photosynthesis and respiration. These tetrapyrroles are synthesized via a common branched pathway that involves mainly enzymes, encoded by nuclear genes. One of the enzymes in the pathway is Mg chelatase (MgChel). MgChel catalyzes insertion of Mg (2+) into protoporphyrin IX (PPIX, proto) to form Magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. The GUN4 (genomes uncoupled 4) protein is not essential for the MgChel activity but has been shown to significantly stimulate its activity. We have isolated a light sensitive mutant, 6F14, by random DNA insertional mutagenesis. 6F14 cannot tolerate light intensities higher than 90-100 μmol photons m (-2) s (-1). It shows a light intensity dependent progressive photo-bleaching. 6F14 is incapable of photo-autotrophic growth under light intensity higher than 100 μmol photons m (-2) s (-1). PCR based analyses show that in 6F14 the insertion of the plasmid outside the GUN4 locus has resulted in a genetic rearrangement of the GUN4 gene and possible deletions in the genomic region flanking the GUN4 gene. Our gun4 mutant has a Chl content very similar to that in the wild type in the dark and is very sensitive to fluctuations in the light intensity in the environment unlike the earlier identified Chlamydomonas gun4 mutant. Complementation with a functional copy of the GUN4 gene restored light tolerance, Chl biosynthesis and photo-autotrophic growth under high light intensities in 6F14. 6F14 is the second gun4 mutant to be identified in C. reinhardtii. Additionally, we show that our two gun4 complements over-express the GUN4 protein and show a higher Chl content per cell compared to that in the wild type strain.
Collapse
Affiliation(s)
| | - Darryel A Wilson
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Kathryn D Lankford
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Kelsey A Gaston
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA ; Current address: Pediatric Infectious Diseases, Emory-Children's Center, Atlanta GA, 30322, USA
| | - Surangi Perera
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA ; Current address: Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee WI, 53204, USA
| | - Mautusi Mitra
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| |
Collapse
|
20
|
Grovenstein PB, Wilson DA, Lennox CG, Smith KP, Contractor AA, Mincey JL, Lankford KD, Smith JM, Haye TC, Mitra M. Identification and molecular characterization of a novel Chlamydomonas reinhardtii mutant defective in chlorophyll biosynthesis. F1000Res 2013; 2:138. [PMID: 24555064 PMCID: PMC3901506 DOI: 10.12688/f1000research.2-138.v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2013] [Indexed: 09/29/2023] Open
Abstract
The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study all aspects of oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in energy metabolism in photosynthetic organisms and are synthesized via a common branched tetrapyrrole biosynthetic pathway. One of the enzymes in the pathway is Mg chelatase (MgChel) which inserts Mg (2+) into protoporphyrin IX (PPIX, proto) to form magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. MgChel is a multimeric enzyme that consists of three subunits designated CHLD, CHLI and CHLH. Plants have two isozymes of CHLI (CHLI1 and CHLI2) which are 70%-81% identical in protein sequences. Although the functional role of CHLI1 is well characterized, that of CHLI2 is not. We have isolated a non-photosynthetic light sensitive mutant 5A7 by random DNA insertional mutagenesis that is devoid of any detectable Chl. PCR based analyses show that 5A7 is missing the CHLI1 gene and at least eight additional functionally uncharacterized genes. 5A7 has an intact CHLI2 gene. Complementation with a functional copy of the CHLI1 gene restored Chl biosynthesis, photo-autotrophic growth and light tolerance in 5A7. We have identified the first chli1 mutant of Chlamydomonas reinhardtii and in green algae. Our results show that in the wild type Chlamydomonas CHLI2 protein amount is lower than that of CHLI1 and the chli1 mutant has a drastic reduction in CHLI2 protein levels although it possesses the CHLI2 gene. Our chli1 mutant opens up new avenues to explore the functional roles of CHLI1 and CHLI2 in Chl biosynthesis and chloroplast to nucleus retrograde signaling in Chlamydomonas, which has never been studied before.
Collapse
Affiliation(s)
| | - Darryel A Wilson
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Cameron G Lennox
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Katherine P Smith
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Alisha A Contractor
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Jonathan L Mincey
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Kathryn D Lankford
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Jacqueline M Smith
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Tashana C Haye
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Mautusi Mitra
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| |
Collapse
|
21
|
Grovenstein PB, Wilson DA, Lennox CG, Smith KP, Contractor AA, Mincey JL, Lankford KD, Smith JM, Haye TC, Mitra M. Identification and molecular characterization of a novel Chlamydomonas reinhardtii mutant defective in chlorophyll biosynthesis. F1000Res 2013; 2:138. [PMID: 24555064 PMCID: PMC3901506 DOI: 10.12688/f1000research.2-138.v2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2013] [Indexed: 11/20/2022] Open
Abstract
The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study all aspects of oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in energy metabolism in photosynthetic organisms and are synthesized via a common branched tetrapyrrole biosynthetic pathway. One of the enzymes in the pathway is Mg chelatase (MgChel) which inserts Mg (2+) into protoporphyrin IX (PPIX, proto) to form magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. MgChel is a multimeric enzyme that consists of three subunits designated CHLD, CHLI and CHLH. Plants have two isozymes of CHLI (CHLI1 and CHLI2) which are 70%-81% identical in protein sequences. Although the functional role of CHLI1 is well characterized, that of CHLI2 is not. We have isolated a non-photosynthetic light sensitive mutant 5A7 by random DNA insertional mutagenesis that is devoid of any detectable Chl. PCR based analyses show that 5A7 is missing the CHLI1 gene and at least eight additional functionally uncharacterized genes. 5A7 has an intact CHLI2 gene. Complementation with a functional copy of the CHLI1 gene restored Chl biosynthesis, photo-autotrophic growth and light tolerance in 5A7. We have identified the first chli1 (chli1-1) mutant of Chlamydomonas reinhardtii and in green algae. Our results show that in the wild type Chlamydomonas CHLI2 protein amount is lower than that of CHLI1 and the chli1-1 mutant has a drastic reduction in CHLI2 protein levels although it possesses the CHLI2 gene. Our chli1-1 mutant opens up new avenues to explore the functional roles of CHLI1 and CHLI2 in Chl biosynthesis in Chlamydomonas, which has never been studied before.
Collapse
Affiliation(s)
| | - Darryel A Wilson
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Cameron G Lennox
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Katherine P Smith
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Alisha A Contractor
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Jonathan L Mincey
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Kathryn D Lankford
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Jacqueline M Smith
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Tashana C Haye
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Mautusi Mitra
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| |
Collapse
|
22
|
Valverde F. CONSTANS and the evolutionary origin of photoperiodic timing of flowering. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2453-63. [PMID: 21239381 DOI: 10.1093/jxb/erq449] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A network of promoting and inhibiting pathways that respond to environmental and internal signals controls the flowering transition. The outcome of this regulatory network establishes, for any particular plant, the correct time of the year to flower. The photoperiod pathway channels inputs from light, day length, and the circadian clock to promote the floral transition. CONSTANS (CO) is a central regulator of this pathway, triggering the production of the mobile florigen hormone FT (FLOWERING LOCUS T) that induces flower differentiation. Because plant reproductive fitness is directly related to its capacity to flower at a precise time, the photoperiod pathway is present in all known plant species. Recent findings have stretched the evolutionary span of this photophase signal to unicellular algae, which show unexpected conserved characteristics with modern plant photoperiodic responses. In this review, a comparative description of the photoperiodic systems in algae and plants will be presented and a general role for the CO family of transcriptional activators proposed.
Collapse
Affiliation(s)
- Federico Valverde
- Molecular Plant Development and Metabolism Group, Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 49 Americo Vespucio Avenue, 41092-Sevilla, Spain.
| |
Collapse
|
23
|
de Montaigu A, Sanz-Luque E, Macias MI, Galvan A, Fernandez E. Transcriptional regulation of CDP1 and CYG56 is required for proper NH4+ sensing in Chlamydomonas. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1425-37. [PMID: 21127023 DOI: 10.1093/jxb/erq384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The assimilation of inorganic nitrogen is an essential process for all plant-like organisms. In the presence of ammonium and nitrate as nitrogen sources, Chlamydomonas reinhardtii preferentially assimilates ammonium and represses the nitrate assimilation pathway through an unknown mechanism that in part involves the guanylate cyclase CYG56. It is demonstrated that cells not only respond quantitatively to the NH(4)(+) signal but are also able to sense a balance between both nitrogen sources. This quantitative response was altered in a collection of mutants that were partially insensitive to NH(4)(+). In one of these mutants, reduced function of a gene named CDP1 encoding a cysteine domain-containing protein was genetically linked to NH(4)(+) insensitivity. Alteration of CYG56 or CDP1 transcription was detected in several mutants, and combined down-regulation of both genes seemed to enhance the incapacity to sense NH(4)(+) properly. These results suggest that transcriptional regulation of CYG56 and CDP1 are central and independent steps of the NH(4)(+) signalling pathway.
Collapse
Affiliation(s)
- Amaury de Montaigu
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba 14071, Spain
| | | | | | | | | |
Collapse
|
24
|
Cha TS, Chen CF, Yee W, Aziz A, Loh SH. Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J Microbiol Methods 2011; 84:430-4. [PMID: 21256888 DOI: 10.1016/j.mimet.2011.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/21/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
Abstract
The use of acetosyringone in Agrobacterium-mediated gene transfer into plant hosts has been favored for the past few decades. The influence of other phenolic compounds and their effectiveness in Agrobacterium-mediated plant transformation systems has been neglected. In this study, the efficacy of four phenolic compounds on Agrobacterium-mediated transformation of the unicellular green alga Nannochloropsis sp. (Strain UMT-M3) was assessed by using β-glucuronidase (GUS) assay. We found that cinnamic acid, vanillin and coumarin produced higher percentages of GUS positive cells as compared to acetosyringone. These results also show that the presence of methoxy group in the phenolic compounds may not be necessary for Agrobacterium vir gene induction and receptor binding as suggested by previous studies. These findings provide possible alternative Agrobacterium vir gene inducers that are more potent as compared to the commonly used acetosyringone in achieving high efficiency of Agrobacterium-mediated transformation in microalgae and possibly for other plants.
Collapse
Affiliation(s)
- Thye-San Cha
- Department of Biological Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
| | | | | | | | | |
Collapse
|
25
|
Grossman AR, Karpowicz SJ, Heinnickel M, Dewez D, Hamel B, Dent R, Niyogi KK, Johnson X, Alric J, Wollman FA, Li H, Merchant SS. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation. PHOTOSYNTHESIS RESEARCH 2010; 106:3-17. [PMID: 20490922 PMCID: PMC2947710 DOI: 10.1007/s11120-010-9555-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/16/2010] [Indexed: 05/18/2023]
Abstract
Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
From systems biology to fuel—Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. J Biotechnol 2009; 142:10-20. [DOI: 10.1016/j.jbiotec.2009.02.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/03/2009] [Accepted: 02/09/2009] [Indexed: 11/23/2022]
|
27
|
Rapid selection of mutants of Chlamydomonas reinhardtii for carbohydrate and fatty acid metabolism by fourier transform infrared spectroscopy and gas chromatography combined with multivariate analysis. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-008-0240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Abstract
The use of model or reference species has played a major role in furthering detailed understanding of mechanisms and processes in the plant kingdom over the past 25 years. Species which have been adopted as models for dicotyledons and monocotyledons include arabidopsis and rice and more recently brachy-podium,Such models are diploids, have few and small chromosomes, well developed genetics, rapid life cycles, are easily transformed and have extensive sets of technical resources and databases curated by international resource centres. The study of crop genomics today is deeply rooted in earlier studies on model species. Genomes of model species share reasonable genetic synteny with key crop plants which facilitates the discovery of genes and association of genes with phenotypes. While some mechanisms and processes are conserved across the plant kingdom and so can be revealed by studies on any model species,others have diverged during evolution and so are revealed by studying only a closely related model species.Examples of processes that are conserved across the plant kingdom and others that have diverged and therefore need to be understood by studying a more closely related model species are described.
Collapse
|
29
|
Galván A, González-Ballester D, Fernández E. Insertional mutagenesis as a tool to study genes/functions in Chlamydomonas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 616:77-89. [PMID: 18161492 DOI: 10.1007/978-0-387-75532-8_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unicellular alga Chlamydomonas reinhardtii has emerged during the last decades as a model system to understand gene functions, many of them shared by bacteria, fungi, plants, animals and humans. A powerful resource for the research community is the availability of complete collections of stable mutants for studying whole genome function. In the meantime other strategies might be developed; insertional mutagenesis has become currently the best strategy to disrupt and tag nuclear genes in Chlamydomonas allowing forward and reverse genetic approaches. Here, we outline the mutagenesis technique stressing the idea of generating databases for ordered mutant libraries, and also of improving efficient methods for reverse genetics to identify mutants defective in a particular gene.
Collapse
Affiliation(s)
- Aurora Galván
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba. Campus de Rabanales, Edificio Severo Ochoa, 14071 Córdoba, Spain.
| | | | | |
Collapse
|
30
|
Grossman AR. In the Grip of Algal Genomics. TRANSGENIC MICROALGAE AS GREEN CELL FACTORIES 2008; 616:54-76. [DOI: 10.1007/978-0-387-75532-8_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Aksmann A, Tukaj Z. Intact anthracene inhibits photosynthesis in algal cells: a fluorescence induction study on Chlamydomonas reinhardtii cw92 strain. CHEMOSPHERE 2008; 74:26-32. [PMID: 18980775 DOI: 10.1016/j.chemosphere.2008.09.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/11/2008] [Accepted: 09/23/2008] [Indexed: 05/27/2023]
Abstract
Short-term (24h) experiments were performed to examine the effect of anthracene (ANT) on Chlamydomonas reinhardtii cw92 grown in a batch culture system aerated with 2.5% CO(2). At concentrations ranging from 0.7 to 5.6 microM, ANT inhibited the growth of population in a concentration-dependent manner and EC(50) calculated amounted to 1.6 microM. At concentrations from 0.7 to 4.2 microM ANT stimulated respiration and inhibited the intensity of photosynthesis but did not affect chlorophyll content in the cells. ANT influenced chlorophyll a fluorescence parameters, measured by OJIP test (O, J, I and P are the different steps of fluorescence induction curve). ANT diminished the performance index (PI), the yield of primary photochemistry (phi(Po)), the yield of electron transport (phi(Epsilonomicron), the efficiency of moving the electron beyond Qa(-) (Psi(0)) and the fraction of active oxygen evolving complexes (OEC). The fraction of active PS II reaction centres in the treated samples dramatically dropped. The most pronounced changes in ANT-treated cells were observed in the stimulation of energy dissipation parameter (DI(0)/RC). The only OJIP parameter that was not influenced by ANT was energy absorption by photosynthetic antennae (ABS). The results lead to a conclusion that the inhibition of photosynthesis may be a consequence of unspecific ANT-membrane interaction, resulting from hydrophobic character of this hydrocarbon.
Collapse
Affiliation(s)
- Anna Aksmann
- Department of Plant Physiology, University of Gdańsk, Gdynia, Poland
| | | |
Collapse
|
32
|
Why is it so difficult to construct Qi site mutants in Chlamydomonas reinhardtii? C R Biol 2008; 331:510-7. [DOI: 10.1016/j.crvi.2008.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 11/18/2022]
|
33
|
Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN. Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol 2008; 8:R198. [PMID: 17880704 PMCID: PMC2375036 DOI: 10.1186/gb-2007-8-9-r198] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 12/23/2022] Open
Abstract
In silico and metabolic labeling studies of the selenoproteomes of several eukaryotes revealed distinct selenoprotein patterns as well as an ancient origin of selenoproteins and massive, independent losses in land plants, fungi, nematodes, insects and some protists, suggesting that the environment plays an important role in selenoproteome evolution. Background Selenocysteine (Sec) is a selenium-containing amino acid that is co-translationally inserted into nascent polypeptides by recoding UGA codons. Selenoproteins occur in both eukaryotes and prokaryotes, but the selenoprotein content of organisms (selenoproteome) is highly variable and some organisms do not utilize Sec at all. Results We analyzed the selenoproteomes of several model eukaryotes and detected 26 and 29 selenoprotein genes in the green algae Ostreococcus tauri and Ostreococcus lucimarinus, respectively, five in the social amoebae Dictyostelium discoideum, three in the fly Drosophila pseudoobscura, and 16 in the diatom Thalassiosira pseudonana, including several new selenoproteins. Distinct selenoprotein patterns were verified by metabolic labeling of O. tauri and D. discoideum with 75Se. More than half of the selenoprotein families were shared by unicellular eukaryotes and mammals, consistent with their ancient origin. Further analyses identified massive, independent selenoprotein losses in land plants, fungi, nematodes, insects and some protists. Comparative analyses of selenoprotein-rich and -deficient organisms revealed that aquatic organisms generally have large selenoproteomes, whereas several groups of terrestrial organisms reduced their selenoproteomes through loss of selenoprotein genes and replacement of Sec with cysteine. Conclusion Our data suggest many selenoproteins originated at the base of the eukaryotic domain and show that the environment plays an important role in selenoproteome evolution. In particular, aquatic organisms apparently retained and sometimes expanded their selenoproteomes, whereas the selenoproteomes of some terrestrial organisms were reduced or completely lost. These findings suggest a hypothesis that, with the exception of vertebrates, aquatic life supports selenium utilization, whereas terrestrial habitats lead to reduced use of this trace element due to an unknown environmental factor.
Collapse
Affiliation(s)
- Alexey V Lobanov
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Dmitri E Fomenko
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Yan Zhang
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Aniruddha Sengupta
- Section on the Molecular Biology of Selenium, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dolph L Hatfield
- Section on the Molecular Biology of Selenium, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vadim N Gladyshev
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
34
|
Lee DY, Fiehn O. High quality metabolomic data for Chlamydomonas reinhardtii. PLANT METHODS 2008; 4:7. [PMID: 18442406 PMCID: PMC2377246 DOI: 10.1186/1746-4811-4-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 04/28/2008] [Indexed: 05/18/2023]
Abstract
The green eukaryote alga Chlamydomonas reinhardtii is a unicellular model to study control of metabolism in a photosynthetic organism. We here present method improvements for metabolite profiling based on GC-TOF mass spectrometry focusing on three parameters: quenching and cell disruption, extract solvent composition and metabolite annotation. These improvements facilitate using smaller cell numbers and hence, smaller culture volumes which enable faster and more precise sampling techniques that eventually lead to a higher number of samples that can be processed, e.g. for time course experiments. Quenching of metabolism was achieved by mixing 1 ml of culture to 1 ml of -70 degrees C cold 70% methanol. After centrifugation, cells were lyophilized and disrupted by milling using 2-6E6 lyophilized cells, around 500-fold less than previously reported. Glass beads were compared to metal balls for milling, and five different extraction solvents were tested. Additionally, all peaks were annotated in an automated way using the GC-TOF database BinBase instead of manual investigation of a single reference chromatogram. Median precision of analysis was used to decide for the eventual procedure which was applied to a proof-of-principle study of time dependent changes of metabolism under standard conditions.
Collapse
Affiliation(s)
- Do Yup Lee
- University of California Davis, Genome Center, Davis, CA 95616, USA
| | - Oliver Fiehn
- University of California Davis, Genome Center, Davis, CA 95616, USA
| |
Collapse
|
35
|
Shao N, Bock R. A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii. Curr Genet 2008; 53:381-8. [PMID: 18408930 PMCID: PMC2413079 DOI: 10.1007/s00294-008-0189-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/20/2008] [Accepted: 03/29/2008] [Indexed: 11/26/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has emerged as a superb model species in plant biology. Although the alga is easily transformable, the low efficiency of transgene expression from the Chlamydomonas nuclear genome has severely hampered functional genomics research. For example, poor transgene expression is held responsible for the lack of sensitive reporter genes to monitor gene expression in vivo, analyze subcellular protein localization or study protein-protein interactions. Here, we have tested the luciferase from the marine copepod Gaussia princeps (G-Luc) for its suitability as a sensitive bioluminescent reporter of gene expression in Chlamydomonas. We show that a Gaussia luciferase gene variant, engineered to match the codon usage in the Chlamydomonas nuclear genome, serves as a highly sensitive reporter of gene expression from both constitutive and inducible algal promoters. Its bioluminescence signal intensity greatly surpasses previously developed reporters for Chlamydomonas nuclear gene expression and reaches values high enough for utilizing the reporter as a tool to monitor responses to environmental stresses in vivo and to conduct high-throughput screenings for signaling mutants in Chlamydomonas.
Collapse
Affiliation(s)
- Ning Shao
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
36
|
Shibagaki N, Grossman A. The State of Sulfur Metabolism in Algae: From Ecology to Genomics. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Cízková M, Pichová A, Vítová M, Hlavová M, Hendrychová J, Umysová D, Gálová E, Sevcovicová A, Zachleder V, Umen JG, Bisová K. CDKA and CDKB kinases from Chlamydomonas reinhardtii are able to complement cdc28 temperature-sensitive mutants of Saccharomyces cerevisiae. PROTOPLASMA 2008; 232:183-191. [PMID: 18421551 DOI: 10.1007/s00709-008-0285-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/26/2007] [Indexed: 05/26/2023]
Abstract
Cyclin-dependent kinases (CDK) play a key role in coordinating cell division in all eukaryotes. We investigated the capability of cyclin-dependent kinases CDKA and CDKB from the green alga Chlamydomonas reinhardtii to complement a Saccharomyces cerevisiae cdc28 temperature-sensitive mutant. The full-length coding regions of algal CDKA and CDKB cDNA were amplified by RT-PCR and cloned into the yeast expression vector pYES-DEST52, yielding pYD52-CDKA and pYD52-CDKB. The S. cerevisiae cdc28-1N strain transformed with these constructs exhibited growth at 36 degrees C in inducing (galactose) medium, but not in repressing (glucose) medium. Microscopic observation showed that the complemented cells had the irregular cylindrical shape typical for G2 phase-arrested cells when grown on glucose at 36 degrees C, but appeared as normal budded cells when grown on galactose at 36 degrees C. Sequence analysis and complementation tests proved that both CDKA and CDKB are functional CDC28/cdc2 homologs in C. reinhardtii. The complementation of the mitotic phenotype of the S. cerevisiae cdc28-1N mutant suggests a mitotic role for both of the kinases.
Collapse
Affiliation(s)
- M Cízková
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, Academy of Sciences of the Czech Republic, Trebon, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chankova SG, Dimova E, Dimitrova M, Bryant PE. Induction of DNA double-strand breaks by zeocin in Chlamydomonas reinhardtii and the role of increased DNA double-strand breaks rejoining in the formation of an adaptive response. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2007; 46:409-16. [PMID: 17639449 DOI: 10.1007/s00411-007-0123-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 06/26/2007] [Indexed: 05/02/2023]
Abstract
This study aimed to test the potential of the radiomimetic chemical zeocin to induce DNA double-strand breaks (DSB) and "adaptive response" (AR) in Chlamydomonas reinhardtii strain CW15 as a model system. The AR was measured as cell survival using a micro-colony assay, and by changes in rejoining of DSB DNA. The level of induced DSB was measured by constant field gel electrophoresis based on incorporation of cells into agarose blocks before cell lysis. This avoids the risk of accidental induction of DSB during the manipulation procedures. Our results showed that zeocin could induce DSB in C. reinhardtii strain CW15 in a linear dose-response fashion up to 100 microg ml(-1) which marked the beginning of a plateau. The level of DSB induced by 100 microg ml(-1) zeocin was similar to that induced by 250 Gy of gamma-ray irradiation. It was also found that, similar to gamma rays, zeocin could induce AR measured as DSB in C. reinhardtii CW15 and this AR involved acceleration of the rate of DSB rejoining, too. To our knowledge, this is the first demonstration that zeocin could induce AR in some low eukaryotes such as C. reinhardtii.
Collapse
Affiliation(s)
- S G Chankova
- Central Laboratory of General Ecology-BAS, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
39
|
Hema R, Senthil-Kumar M, Shivakumar S, Chandrasekhara Reddy P, Udayakumar M. Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes. PLANTA 2007; 226:655-70. [PMID: 17431668 DOI: 10.1007/s00425-007-0514-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 03/13/2007] [Indexed: 05/02/2023]
Abstract
Stress tolerance is a multigenic character and there are many stress responsive genes, which are stress specific. Although many of these have been cloned, their functional significance remains fragmentary. Hence it is important to identify the relevant stress genes involved in altering the metabolism for adaptation. Overexpression is one of the several approaches and Chlamydomonas is a suitable system to study the functional relevance of stress genes. Stress responses can only be assessed on prior exposure to sublethal induction stress. In this study the acclimation response of Chlamydomonas was assessed for different abiotic stresses using physiological screens like chlorophyll stability, membrane damage, cell viability, accumulation of free radicals, survival and recovery growth. We demonstrate that Chlamydomonas responds to diverse stresses and is a potential system to study the relevance of stress genes. The relevance of choline oxidase A (codA), a key enzyme in glycinebetaine biosynthesis, was examined by developing transformants expressing codA gene from Arthrobacter globiformis. Southern positive transformants showed enhanced accumulation of glycinebetaine. The transformants also showed enhanced growth under salinity, high light coupled with methylviologen-induced oxidative stress, high temperature and cold stress. However the transgenics were not tolerant to PEG-mediated simulated osmotic stress, LiCl, menadione and UV stress. Increased cell survival and decreased chlorophyll degradation in transformants under acclimated conditions further confirmed the relevance of codA in imparting stress tolerance. Our results indicated that the relevance of stress responsive genes can be efficiently validated for diverse abiotic stresses using Chlamydomonas system.
Collapse
Affiliation(s)
- R Hema
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560 065, India
| | | | | | | | | |
Collapse
|
40
|
Abstract
Recent work on the circadian clock of the unicellular green alga Chlamydomonas reinhardtii strengthens its standing as a convenient model system for circadian study. It was shown to be amenable to molecular engineering using a luciferase-based real-time reporter for circadian rhythms. Together with the completed draft genomic sequence, the new system opens the door for genome-scale forward and reverse genetic analysis.
Collapse
Affiliation(s)
- Ghislain Breton
- The Scripps Research Institute, Biochemistry Department, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Steve A Kay
- The Scripps Research Institute, Biochemistry Department, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
41
|
Popescu CE, Borza T, Bielawski JP, Lee RW. Evolutionary rates and expression level in Chlamydomonas. Genetics 2005; 172:1567-76. [PMID: 16361241 PMCID: PMC1456299 DOI: 10.1534/genetics.105.047399] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many biological systems, especially bacteria and unicellular eukaryotes, rates of synonymous and nonsynonymous nucleotide divergence are negatively correlated with the level of gene expression, a phenomenon that has been attributed to natural selection. Surprisingly, this relationship has not been examined in many important groups, including the unicellular model organism Chlamydomonas reinhardtii. Prior to this study, comparative data on protein-coding sequences from C. reinhardtii and its close noninterfertile relative C. incerta were very limited. We compiled and analyzed protein-coding sequences for 67 nuclear genes from these taxa; the sequences were mostly obtained from the C. reinhardtii EST database and our C. incerta EST data. Compositional and synonymous codon usage biases varied among genes within each species but were highly correlated between the orthologous genes of the two species. Relative rates of synonymous and nonsynonymous substitution across genes varied widely and showed a strong negative correlation with the level of gene expression estimated by the codon adaptation index. Our comparative analysis of substitution rates in introns of lowly and highly expressed genes suggests that natural selection has a larger contribution than mutation to the observed correlation between evolutionary rates and gene expression level in Chlamydomonas.
Collapse
Affiliation(s)
- Cristina E Popescu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada
| | | | | | | |
Collapse
|
42
|
Cruz JA, Kanazawa A, Treff N, Kramer DM. Storage of light-driven transthylakoid proton motive force as an electric field (Deltapsi) under steady-state conditions in intact cells of Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2005; 85:221-33. [PMID: 16075322 DOI: 10.1007/s11120-005-4731-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 03/29/2005] [Indexed: 05/03/2023]
Abstract
Proton motive force (pmf) is physiologically stored as either a DeltapH or a membrane potential (Deltapsi) across bacterial and mitochondrial energetic membranes. In the case of chloroplasts, previous work (Cruz et al. 2001, Biochemistry 40: 1226-1237) indicates that Deltapsi is a significant fraction of pmf, in vivo, and in vitro as long as the activities of counterions are relatively low. Kinetic analysis of light-induced changes in the electrochromic shift (ECS) in intact leaves was consistent with these observations. In this work, we took advantage of the spectroscopic properties of the green alga, Chlamydomonas reinhardtii, to demonstrate that light-driven Deltapsi was stored in vivo over the hours time scale. Analysis of the light-induced ECS kinetics suggested that the steady-state Deltapsi in 400 micromol photons m(-2) s(-1) red light was between 20 and 90 mV and that this represented about 60% of the light-induced increase in pmf. By extrapolation, it was surmised that about half of total (basal and light-induced) pmf is held as Deltapsi. It is hypothesized that Deltapsi is stabilized either by maintaining low chloroplast ionic strength or by active membrane ion transporters. In addition to the strong implications for regulation of photosynthesis by the xanthophyll cycle, these results imply that pmf partitioning is important across a wide range of species.
Collapse
Affiliation(s)
- Jeffrey A Cruz
- Institute of Biological Chemistry, Washington State University, Pullman, 99164-6340, USA.
| | | | | | | |
Collapse
|
43
|
Bothwell JHF, Ng CKY. The evolution of Ca2+ signalling in photosynthetic eukaryotes. THE NEW PHYTOLOGIST 2005; 166:21-38. [PMID: 15760348 DOI: 10.1111/j.1469-8137.2004.01312.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It is likely that cytosolic Ca2+ elevations have played a part in eukaryotic signal transduction for about the last 2 Gyr, being mediated by a group of molecules which are collectively known as the [Ca2+]cyt signalling toolkit. Different eukaryotes often display strikingly similar [Ca2+]cyt signalling elevations, which may reflect conservation of toolkit components (homology) or similar constraints acting on different toolkits (homoplasy). Certain toolkit components, which are presumably ancestral, are shared by plants and animals, but some components are unique to photosynthetic organisms. We propose that the structure of modern plant [Ca2+]cyt signalling toolkits may be explained by their modular adaptation from earlier pathways.
Collapse
Affiliation(s)
- John H F Bothwell
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.
| | | |
Collapse
|
44
|
Ball SG. Eukaryotic microalgae genomics. The essence of being a plant. PLANT PHYSIOLOGY 2005; 137:397-8. [PMID: 15710680 PMCID: PMC1065343 DOI: 10.1104/pp.104.900136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Steven G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576 du Centre National de la Recherche Scientifique/Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France
| |
Collapse
|
45
|
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution, Department of Plant Biology, Stanford, California 94305, USA.
| |
Collapse
|
46
|
Bisova K, Krylov DM, Umen JG. Genome-wide annotation and expression profiling of cell cycle regulatory genes in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2005; 137:475-91. [PMID: 15710686 PMCID: PMC1065349 DOI: 10.1104/pp.104.054155] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/23/2004] [Accepted: 11/25/2004] [Indexed: 05/17/2023]
Abstract
Eukaryotic cell cycles are driven by a set of regulators that have undergone lineage-specific gene loss, duplication, or divergence in different taxa. It is not known to what extent these genomic processes contribute to differences in cell cycle regulatory programs and cell division mechanisms among different taxonomic groups. We have undertaken a genome-wide characterization of the cell cycle genes encoded by Chlamydomonas reinhardtii, a unicellular eukaryote that is part of the green algal/land plant clade. Although Chlamydomonas cells divide by a noncanonical mechanism termed multiple fission, the cell cycle regulatory proteins from Chlamydomonas are remarkably similar to those found in higher plants and metazoans, including the proteins of the RB-E2F pathway that are absent in the fungal kingdom. Unlike in higher plants and vertebrates where cell cycle regulatory genes have undergone extensive duplication, most of the cell cycle regulators in Chlamydomonas have not. The relatively small number of cell cycle genes and growing molecular genetic toolkit position Chlamydomonas to become an important model for higher plant and metazoan cell cycles.
Collapse
Affiliation(s)
- Katerina Bisova
- The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
47
|
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK. Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2005; 137:545-56. [PMID: 15653810 PMCID: PMC1065355 DOI: 10.1104/pp.104.055244] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 11/11/2004] [Accepted: 11/12/2004] [Indexed: 05/18/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a widely used model organism for studies of oxygenic photosynthesis in eukaryotes. Here we describe the development of a resource for functional genomics of photosynthesis using insertional mutagenesis of the Chlamydomonas nuclear genome. Chlamydomonas cells were transformed with either of two plasmids conferring zeocin resistance, and insertional mutants were selected in the dark on acetate-containing medium to recover light-sensitive and nonphotosynthetic mutants. The population of insertional mutants was subjected to a battery of primary and secondary phenotypic screens to identify photosynthesis-related mutants that were pigment deficient, light sensitive, nonphotosynthetic, or hypersensitive to reactive oxygen species. Approximately 9% of the insertional mutants exhibited 1 or more of these phenotypes. Molecular analysis showed that each mutant line contains an average of 1.4 insertions, and genetic analysis indicated that approximately 50% of the mutations are tagged by the transforming DNA. Flanking DNA was isolated from the mutants, and sequence data for the insertion sites in 50 mutants are presented and discussed.
Collapse
Affiliation(s)
- Rachel M Dent
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | | | | | | | | |
Collapse
|
48
|
Lemaire SD, Quesada A, Merchan F, Corral JM, Igeno MI, Keryer E, Issakidis-Bourguet E, Hirasawa M, Knaff DB, Miginiac-Maslow M. NADP-malate dehydrogenase from unicellular green alga Chlamydomonas reinhardtii. A first step toward redox regulation? PLANT PHYSIOLOGY 2005; 137:514-21. [PMID: 15579663 PMCID: PMC1065352 DOI: 10.1104/pp.104.052670] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 10/20/2004] [Accepted: 10/20/2004] [Indexed: 05/20/2023]
Abstract
The determinants of the thioredoxin (TRX)-dependent redox regulation of the chloroplastic NADP-malate dehydrogenase (NADP-MDH) from the eukaryotic green alga Chlamydomonas reinhardtii have been investigated using site-directed mutagenesis. The results indicate that a single C-terminal disulfide is responsible for this regulation. The redox midpoint potential of this disulfide is less negative than that of the higher plant enzyme. The regulation is of an all-or-nothing type, lacking the fine-tuning provided by the second N-terminal disulfide found only in NADP-MDH from higher plants. The decreased stability of specific cysteine/alanine mutants is consistent with the presence of a structural disulfide formed by two cysteine residues that are not involved in regulation of activity. Measurements of the ability of C. reinhardtii thioredoxin f (TRX f) to activate wild-type and site-directed mutants of sorghum (Sorghum vulgare) NADP-MDH suggest that the algal TRX f has a redox midpoint potential that is less negative than most those of higher plant TRXs f. These results are discussed from an evolutionary point of view.
Collapse
Affiliation(s)
- Stéphane D Lemaire
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université Paris-Sud, 91405 Orsay cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|