1
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Wang C, Li X, Huang J, Ma H, Wang CJR, Wang Y. Isolation of Meiocytes and Cytological Analyses of Male Meiotic Chromosomes in Soybean, Lettuce, and Maize. Methods Mol Biol 2023; 2686:219-239. [PMID: 37540360 DOI: 10.1007/978-1-0716-3299-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Meiosis is a specialized cell division that halves the number of chromosomes following a single round of DNA replication, thus leading to the generation of haploid gametes. It is essential for sexual reproduction in eukaryotes. Over the past several decades, with the well-developed molecular and cytogenetic methods, there have been great advances in understanding meiosis in plants such as Arabidopsis thaliana and maize, providing excellent references to study meiosis in other plants. A chapter in the previous edition described molecular cytological methods for studying Arabidopsis meiosis in detail. In this chapter, we focus on methods for studying meiosis in soybean (Glycine max), lettuce (Lactuca sativa), and maize (Zea mays). Moreover, we include the method that was recently developed for examination of epigenetic modifications, such as DNA methylation and histone modifications on meiotic chromosomes in plants.
Collapse
Affiliation(s)
- Cong Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jiyue Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | - Yingxiang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
3
|
Desjardins SD, Simmonds J, Guterman I, Kanyuka K, Burridge AJ, Tock AJ, Sanchez-Moran E, Franklin FCH, Henderson IR, Edwards KJ, Uauy C, Higgins JD. FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis. Nat Commun 2022; 13:3644. [PMID: 35752733 PMCID: PMC9233680 DOI: 10.1038/s41467-022-31438-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
FANCM suppresses crossovers in plants by unwinding recombination intermediates. In wheat, crossovers are skewed toward the chromosome ends, thus limiting generation of novel allelic combinations. Here, we observe that FANCM maintains the obligate crossover in tetraploid and hexaploid wheat, thus ensuring that every chromosome pair exhibits at least one crossover, by localizing class I crossover protein HEI10 at pachytene. FANCM also suppresses class II crossovers that increased 2.6-fold in fancm msh5 quadruple mutants. These data are consistent with a role for FANCM in second-end capture of class I designated crossover sites, whilst FANCM is also required to promote formation of non-crossovers. In hexaploid wheat, genetic mapping reveals that crossovers increase by 31% in fancm compared to wild type, indicating that fancm could be an effective tool to accelerate breeding. Crossover rate differences in fancm correlate with wild type crossover distributions, suggesting that chromatin may influence the recombination landscape in similar ways in both wild type and fancm. The FANCM helicase functions in limiting crossovers (COs) by unwinding inter-homolog repair intermediates. Here, the authors generate null mutants of fancm in tetraploid and hexaploid wheat and show that FANCM promotes class I interfering COs and suppresses class II noninterfering COs in wheat meiosis.
Collapse
Affiliation(s)
- Stuart D Desjardins
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - James Simmonds
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH, UK
| | - Inna Guterman
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Kostya Kanyuka
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.,Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Amanda J Burridge
- Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Keith J Edwards
- Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH, UK
| | - James D Higgins
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
4
|
Tian S, Ge J, Ai G, Jiang J, Liu Q, Chen X, Liu M, Yang J, Zhang X, Yuan L. A 2.09 Mb fragment translocation on chromosome 6 causes abnormalities during meiosis and leads to less seed watermelon. HORTICULTURE RESEARCH 2021; 8:256. [PMID: 34848689 PMCID: PMC8633341 DOI: 10.1038/s41438-021-00687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Seedlessness is a valuable agronomic trait in watermelon (Citrullus lanatus) breeding. Conventional less seed watermelons are mainly triploid, which has many disadvantages due to unbalanced genome content. Less seed watermelon can be achieved at the diploid level when certain reproductive genes are mutated or by chromosome translocation, which leads to defects during meiosis. However, the formation mechanism of diploid less seed watermelons remains largely unknown. Here, we identified a spontaneous mutant line, watermelon line "148", which can set seeds normally when self-pollinated. A total of 148 × JM F1 hybrid plants exhibited seed number reductions to 50.3% and 47.3% of those of the two parental lines, respectively, which are considered to be less seed. Examination of pollen viability and hybridization experiments revealed that F1 hybrids produce semisterile pollen and ovules. Further cytological observations indicated that semisterility was a result of a reciprocal translocation of chromosomes, which exhibited one quadrivalent ring of four chromosomes at prometaphase I during meiosis. RT-qPCR analysis indirectly confirmed that the semisterile phenotype is caused by chromosome translocation rather than disruption of specific meiotic gene expression. F2 population genetic analysis indicated that the "148" watermelon line is a homozygous translocation and that the less seed phenotype of the F1 hybrid is prompted by one chromosome fragment translocation. The translocated fragment was further fine mapped to a 2.09 Mb region on chromosome 6 by whole-genome resequencing and genetic map cloning procedures. Our work revealed that a 2.09 Mb chromosome fragment translocation on chromosome 6, causing meiotic defects at metaphase I during meiosis, leads to diploid less seed watermelon. Our findings provide a new promising method for less seed watermelon breeding at the diploid level, as well as a fragment size reference for breeding less seed watermelon through artificially induced chromosome translocation.
Collapse
Affiliation(s)
- Shujuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Ge
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gongli Ai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiao Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiyan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiner Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Man Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianqiang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Sprink T, Hartung F. Heterologous Complementation of SPO11-1 and -2 Depends on the Splicing Pattern. Int J Mol Sci 2021; 22:ijms22179346. [PMID: 34502253 PMCID: PMC8430568 DOI: 10.3390/ijms22179346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
In the past, major findings in meiosis have been achieved, but questions towards the global understanding of meiosis remain concealed. In plants, one of these questions covers the need for two diverse meiotic active SPO11 proteins. In Arabidopsis and other plants, both meiotic SPO11 are indispensable in a functional form for double strand break induction during meiotic prophase I. This stands in contrast to mammals and fungi, where a single SPO11 is present and sufficient. We aimed to investigate the specific function and evolution of both meiotic SPO11 paralogs in land plants. By performing immunostaining of both SPO11-1 and -2, an investigation of the spatiotemporal localization of each SPO11 during meiosis was achieved. We further exchanged SPO11-1 and -2 in Arabidopsis and could show a species-specific function of the respective SPO11. By additional changes of regions between SPO11-1 and -2, a sequence-specific function for both the SPO11 proteins was revealed. Furthermore, the previous findings about the aberrant splicing of each SPO11 were refined by narrowing them down to a specific developmental phase. These findings let us suggest that the function of both SPO11 paralogs is highly sequence specific and that the orthologs are species specific.
Collapse
|
6
|
Ko SS, Li MJ, Ho YC, Yu CP, Yang TT, Lin YJ, Hsing HC, Chen TK, Jhong CM, Li WH, Sun-Ben Ku M. Rice transcription factor GAMYB modulates bHLH142 and is homeostatically regulated by TDR during anther tapetal and pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4888-4903. [PMID: 33940615 DOI: 10.1093/jxb/erab190] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
GIBBERELLIN MYB GENE (GAMYB), UNDEVELOPED TAPETUM1 (UDT1), TDR INTERACTING PROTEIN2 (TIP2/bHLH142), TAPETUM DEGENERATION RETARDATION (TDR), and ETERNAL TAPETUM 1/DELAYED TAPETUM DEGENERATION (EAT1/DTD) are important transcription factors that play a crucial role during pollen development in rice. This study demonstrates that bHLH142 acts downstream of UDT1 and GAMYB and works as a 'hub' in these two pollen pathways. We show that GAMYB modulates bHLH142 expression through specific binding to the MYB motif of the bHLH142 promoter during the early stage of pollen development, while TDR acts as a transcriptional repressor of the GAMYB modulation of bHLH142 by binding to the E-box close to the MYB motif on the promoter. Altered expression of these transcription factors highlights that a tight, precise, and coordinated regulation among them is essential for normal pollen development. Most notably, we show that the regulatory pathways of GAMYB and UDT1 rely on bHLH142 in a direct and indirect manner, respectively, and function in different tissues with distinct biological roles during pollen development. This study advances our understanding of the molecular mechanisms of rice pollen development.
Collapse
Affiliation(s)
- Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Min-Jeng Li
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Yi-Cheng Ho
- Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan
| | - Chun-Ping Yu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ting-Ting Yang
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Yi-Jyun Lin
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Hung-Chien Hsing
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Tien-Kuan Chen
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Chung-Min Jhong
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Maurice Sun-Ben Ku
- Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
7
|
Hernandez Sanchez-Rebato M, Bouatta AM, Gallego ME, White CI, Da Ines O. RAD54 is essential for RAD51-mediated repair of meiotic DSB in Arabidopsis. PLoS Genet 2021; 17:e1008919. [PMID: 34003859 PMCID: PMC8162660 DOI: 10.1371/journal.pgen.1008919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/28/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022] Open
Abstract
An essential component of the homologous recombination machinery in eukaryotes, the RAD54 protein is a member of the SWI2/SNF2 family of helicases with dsDNA-dependent ATPase, DNA translocase, DNA supercoiling and chromatin remodelling activities. It is a motor protein that translocates along dsDNA and performs multiple functions in homologous recombination. In particular, RAD54 is an essential cofactor for regulating RAD51 activity. It stabilizes the RAD51 nucleofilament, remodels nucleosomes, and stimulates the homology search and strand invasion activities of RAD51. Accordingly, deletion of RAD54 has dramatic consequences on DNA damage repair in mitotic cells. In contrast, its role in meiotic recombination is less clear. RAD54 is essential for meiotic recombination in Drosophila and C. elegans, but plays minor roles in yeast and mammals. We present here characterization of the roles of RAD54 in meiotic recombination in the model plant Arabidopsis thaliana. Absence of RAD54 has no detectable effect on meiotic recombination in otherwise wild-type plants but RAD54 becomes essential for meiotic DSB repair in absence of DMC1. In Arabidopsis, dmc1 mutants have an achiasmate meiosis, in which RAD51 repairs meiotic DSBs. Lack of RAD54 leads to meiotic chromosomal fragmentation in absence of DMC1. The action of RAD54 in meiotic RAD51 activity is thus mainly downstream of the role of RAD51 in supporting the activity of DMC1. Equivalent analyses show no effect on meiosis of combining dmc1 with the mutants of the RAD51-mediators RAD51B, RAD51D and XRCC2. RAD54 is thus required for repair of meiotic DSBs by RAD51 and the absence of meiotic phenotype in rad54 plants is a consequence of RAD51 playing a RAD54-independent supporting role to DMC1 in meiotic recombination. Homologous recombination is a universal pathway which repairs broken DNA molecules through the use of homologous DNA templates. It is both essential for maintenance of genome stability and for the generation of genetic diversity through sexual reproduction. A central step of the homologous recombination process is the search for and invasion of a homologous, intact DNA sequence that will be used as template. This key step is catalysed by the RAD51 recombinase in somatic cells and RAD51 and DMC1 in meiotic cells, assisted by a number of associated factors. Among these, the chromatin-remodelling protein RAD54 is a required cofactor for RAD51 in mitotic cells. Understanding of its role during meiotic recombination however remains elusive. We show here that RAD54 is required for repair of meiotic double strand breaks by RAD51 in the plant Arabidopsis thaliana, and this function is downstream of the meiotic role of RAD51 in supporting the activity of DMC1. These results provide new insights into the regulation of the central step of homologous recombination in plants and very probably also other multicellular eukaryotes.
Collapse
Affiliation(s)
- Miguel Hernandez Sanchez-Rebato
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Alida M Bouatta
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Maria E Gallego
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Charles I White
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| |
Collapse
|
8
|
Goffová I, Fajkus J. The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways. Int J Mol Sci 2021; 22:1302. [PMID: 33525595 PMCID: PMC7865372 DOI: 10.3390/ijms22031302] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
Genes encoding ribosomal RNA (rDNA) are essential for cell survival and are particularly sensitive to factors leading to genomic instability. Their repetitive character makes them prone to inappropriate recombinational events arising from collision of transcriptional and replication machineries, resulting in unstable rDNA copy numbers. In this review, we summarize current knowledge on the structure and organization of rDNA, its role in sensing changes in the genome, and its linkage to aging. We also review recent findings on the main factors involved in chromatin assembly and DNA repair in the maintenance of rDNA stability in the model plants Arabidopsis thaliana and the moss Physcomitrella patens, providing a view across the plant evolutionary tree.
Collapse
Affiliation(s)
- Ivana Goffová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
| |
Collapse
|
9
|
Balboni M, Yang C, Komaki S, Brun J, Schnittger A. COMET Functions as a PCH2 Cofactor in Regulating the HORMA Domain Protein ASY1. Curr Biol 2020; 30:4113-4127.e6. [DOI: 10.1016/j.cub.2020.07.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
|
10
|
ZmRAD51C is Essential for Double-Strand Break Repair and Homologous Recombination in Maize Meiosis. Int J Mol Sci 2019; 20:ijms20215513. [PMID: 31694261 PMCID: PMC6861927 DOI: 10.3390/ijms20215513] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 01/14/2023] Open
Abstract
Radiation sensitive 51 (RAD51) recombinases play crucial roles in meiotic double-strand break (DSB) repair mediated by homologous recombination (HR) to ensure the correct segregation of homologous chromosomes. In this study, we identified the meiotic functions of ZmRAD51C, the maize homolog of Arabidopsis and rice RAD51C. The Zmrad51c mutants exhibited regular vegetative growth but complete sterility for both male and female inflorescence. However, the mutants showed hypersensitivity to DNA damage by mitomycin C. Cytological analysis indicated that homologous chromosome pairing and synapsis were rigorously inhibited, and meiotic chromosomes were often entangled from diplotene to metaphase I, leading to chromosome fragmentation at anaphase I. Immunofluorescence analysis showed that although the signals of the axial element absence of first division (AFD1) and asynaptic1 (ASY1) were normal, the assembly of the central element zipper1 (ZYP1) was severely disrupted. The DSB formation was normal in Zmrad51c meiocytes, symbolized by the regular occurrence of γH2AX signals. However, RAD51 and disrupted meiotic cDNA 1 (DMC1) signals were never detected at the early stage of prophase I in the mutant. Taken together, our results indicate that ZmRAD51C functions crucially for both meiotic DSB repair and homologous recombination in maize.
Collapse
|
11
|
Choi SH, Ryu TH, Kim JI, Lee S, Lee SS, Kim JH. Mutation in DDM1 inhibits the homology directed repair of double strand breaks. PLoS One 2019; 14:e0211878. [PMID: 30742642 PMCID: PMC6370192 DOI: 10.1371/journal.pone.0211878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022] Open
Abstract
In all organisms, DNA damage must be repaired quickly and properly, as it can be lethal for cells. Because eukaryotic DNA is packaged into nucleosomes, the structural units of chromatin, chromatin modification is necessary during DNA damage repair and is achieved by histone modification and chromatin remodeling. Chromatin remodeling proteins therefore play important roles in the DNA damage response (DDR) by modifying the accessibility of DNA damage sites. Here, we show that mutation in a SWI2/SNF2 chromatin remodeling protein (DDM1) causes hypersensitivity in the DNA damage response via defects in single-strand annealing (SSA) repair of double-strand breaks (DSBs) as well as in the initial steps of homologous recombination (HR) repair. ddm1 mutants such as ddm1-1 and ddm1-2 exhibited increased root cell death and higher DSB frequency compared to the wild type after gamma irradiation. Although the DDM1 mutation did not affect the expression of most DDR genes, it did cause substantial decrease in the frequency of SSA as well as partial inhibition in the γ-H2AX and Rad51 induction, the initial steps of HR. Furthermore, global chromatin structure seemed to be affected by DDM1 mutations. These results suggest that DDM1 is involved in the homology directed repair such as SSA and HR, probably by modifying chromatin structure.
Collapse
Affiliation(s)
- Seung Hee Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Tae Ho Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
- Department of Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Il Kim
- Department of Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Sungbeom Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Zhang C, Yu D, Ke F, Zhu M, Xu J, Zhang M. Seedless mutant 'Wuzi Ougan' (Citrus suavissima Hort. ex Tanaka 'seedless') and the wild type were compared by iTRAQ-based quantitative proteomics and integratedly analyzed with transcriptome to improve understanding of male sterility. BMC Genet 2018; 19:106. [PMID: 30458706 PMCID: PMC6245639 DOI: 10.1186/s12863-018-0693-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Background Bud mutation is a vital method of citrus. ‘Wuzi Ougan’ (mutant type, MT) as a bud variant of ‘Ougan’ (wild type, WT) was first found in 1996 and has become popular because of its male sterility and seedless character. Previous analysis of its cytological sections and transcriptome revealed that the abnormal microsporogenesis that occurs before the tetrad stage of anther development might be the result of down-regulated oxidation-reduction biological processes in MT. To reveal the mechanism behind the male sterility in MT at the post-transcriptional stage, proteome profiling and integrative analysis on previously obtained transcriptome and proteome data were performed in two strains. Results The proteome profiling was performed by iTRAQ (isobaric Tags for relative and absolute quantitation) analysis and 6201 high-confidence proteins were identified, among which there were 487 differentially expressed proteins (DEPs) in one or more developmental stages of anthers between MT and WT. The main functional subcategories associated with the main category biological process into which the DEPs were classified were sporopollenin biosynthesis process and pollen exine formation. The enriched pathways were phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism. Moreover, there were eight pathways linked in terms of being related to phenylpropanoid metabolism. Eighteen important genes related to phenylpropanoid metabolism were also analysized by qRT-PCR (quantitative real time PCR). An integrative analysis of the fold change at the transcript (log2 FPKM ratios) and protein (log1.2 iTRAQ ratios) levels was performed to reveal the consistency of gene expression at transcriptional and proteomic level. In general, the expression of genes and proteins tended to be positively correlated, in which the correlation coefficients were 0.3414 (all genes and all proteins) and 0.5686 (DEPs and according genes). Conclusion This study is the first to offer a comprehensive understanding of the gene regulation in ‘Wuzi Ougan’ and its wild type, especially during the microsporocyte to meiosis stage. Specifically, the involved genes include those in phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism, as determined by integrative transcriptome and proteome analysis. Electronic supplementary material The online version of this article (10.1186/s12863-018-0693-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, No.666, WuSu Street, Hangzhou, Zhejiang province, People's Republic of China, 311300.,The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China
| | - Dihu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, No.666, WuSu Street, Hangzhou, Zhejiang province, People's Republic of China, 311300
| | - Fuzhi Ke
- Zhejiang Citrus Research Institute, Huangyan, 318020, China
| | - Mimi Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, No.666, WuSu Street, Hangzhou, Zhejiang province, People's Republic of China, 311300
| | - Jianguo Xu
- Zhejiang Citrus Research Institute, Huangyan, 318020, China
| | - Min Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, No.666, WuSu Street, Hangzhou, Zhejiang province, People's Republic of China, 311300. .,The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
13
|
Abstract
Meiosis halves diploid chromosome numbers to haploid levels that are essential for sexual reproduction in most eukaryotes. Meiotic recombination ensures the formation of bivalents between homologous chromosomes (homologs) and their subsequent proper segregation. It also results in genetic diversity among progeny that influences evolutionary responses to selection. Moreover, crop breeding depends upon the action of meiotic recombination to rearrange elite traits between parental chromosomes. An understanding of the molecular mechanisms that drive meiotic recombination is important for both fundamental research and practical applications. This review emphasizes advances made during the past 5 years, primarily in Arabidopsis and rice, by summarizing newly characterized genes and proteins and examining the regulatory mechanisms that modulate their action.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
14
|
Arabidopsis RAD51, RAD51C and XRCC3 proteins form a complex and facilitate RAD51 localization on chromosomes for meiotic recombination. PLoS Genet 2017; 13:e1006827. [PMID: 28562599 PMCID: PMC5470734 DOI: 10.1371/journal.pgen.1006827] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/14/2017] [Accepted: 05/17/2017] [Indexed: 11/22/2022] Open
Abstract
Meiotic recombination is required for proper homologous chromosome segregation in plants and other eukaryotes. The eukaryotic RAD51 gene family has seven ancient paralogs with important roles in mitotic and meiotic recombination. Mutations in mammalian RAD51 homologs RAD51C and XRCC3 lead to embryonic lethality. In the model plant Arabidopsis thaliana, RAD51C and XRCC3 homologs are not essential for vegetative development but are each required for somatic and meiotic recombination, but the mechanism of RAD51C and XRCC3 in meiotic recombination is unclear. The non-lethal Arabidopsis rad51c and xrcc3 null mutants provide an opportunity to study their meiotic functions. Here, we show that AtRAD51C and AtXRCC3 are components of the RAD51-dependent meiotic recombination pathway and required for normal AtRAD51 localization on meiotic chromosomes. In addition, AtRAD51C interacts with both AtRAD51 and AtXRCC3 in vitro and in vivo, suggesting that these proteins form a complex (es). Comparison of AtRAD51 foci in meiocytes from atrad51, atrad51c, and atxrcc3 single, double and triple heterozygous mutants further supports an interaction between AtRAD51C and AtXRCC3 that enhances AtRAD51 localization. Moreover, atrad51c-/+atxrcc3-/+ double and atrad51-/+atrad51c-/+atxrcc3-/+ triple heterozygous mutants have defects in meiotic recombination, suggesting the role of the AtRAD51C-AtXRCC3 complex in meiotic recombination is in part AtRAD51-dependent. Together, our results support a model in which direct interactions between the RAD51C-XRCC3 complex and RAD51 facilitate RAD51 localization on meiotic chromosomes and RAD51-dependent meiotic recombination. Finally, we hypothesize that maintenance of RAD51 function facilitated by the RAD51C-XRCC3 complex could be highly conserved in eukaryotes. Meiotic recombination and sister chromatid cohesion are important for maintaining the association between homologous chromosomes and ensuring their accurate segregation. Meiotic recombination starts with a set of programmed DNA double-strand breaks (DSBs), catalyzed by the SPO11 endonuclease. Processing of DSB ends produces 3′ single-stranded DNA tails, which form nucleoprotein filaments with RAD51 and DMC1, homologs of the prokaryotic RecA protein. The eukaryotic RAD51 gene family has seven ancient paralogs, in addition to RAD51 and DMC1, the other five members in mammals form two complexes: RAD51B-RAD51C-RAD51D- XRCC2 (BCDX2) and RAD51C-XRCC3 (CX3). To date, the molecular mechanism of CX3 in animal meiosis remains largely unknown due to the essential roles of these two proteins in embryo development. In Arabidopsis, RAD51C and XRCC3 are required for meiosis and fertility, but their specific mechanisms are unclear. Here we present strong evidence that Arabidopsis RAD51 forms a protein complex with AtRAD51C-AtXRCC3 in vivo. Our data also support the previous hypothesis that CX3 promotes RAD51-denpendet meiotic recombination by affecting its localization on chromosomes. Given that the RAD51, RAD51C and XRCC3 proteins are highly conserved in plants and vertebrates, the mechanism we present here could be important for the regulation of meiotic recombination in both plants and vertebrate animals.
Collapse
|
15
|
Biedermann S, Harashima H, Chen P, Heese M, Bouyer D, Sofroni K, Schnittger A. The retinoblastoma homolog RBR1 mediates localization of the repair protein RAD51 to DNA lesions in Arabidopsis. EMBO J 2017; 36:1279-1297. [PMID: 28320735 PMCID: PMC5412766 DOI: 10.15252/embj.201694571] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
The retinoblastoma protein (Rb), which typically functions as a transcriptional repressor of E2F‐regulated genes, represents a major control hub of the cell cycle. Here, we show that loss of the Arabidopsis Rb homolog RETINOBLASTOMA‐RELATED 1 (RBR1) leads to cell death, especially upon exposure to genotoxic drugs such as the environmental toxin aluminum. While cell death can be suppressed by reduced cell‐proliferation rates, rbr1 mutant cells exhibit elevated levels of DNA lesions, indicating a direct role of RBR1 in the DNA‐damage response (DDR). Consistent with its role as a transcriptional repressor, we find that RBR1 directly binds to and represses key DDR genes such as RADIATION SENSITIVE 51 (RAD51), leaving it unclear why rbr1 mutants are hypersensitive to DNA damage. However, we find that RBR1 is also required for RAD51 localization to DNA lesions. We further show that RBR1 is itself targeted to DNA break sites in a CDKB1 activity‐dependent manner and partially co‐localizes with RAD51 at damage sites. Taken together, these results implicate RBR1 in the assembly of DNA‐bound repair complexes, in addition to its canonical function as a transcriptional regulator.
Collapse
Affiliation(s)
- Sascha Biedermann
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France.,Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | | | - Poyu Chen
- Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | - Maren Heese
- Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | - Daniel Bouyer
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197-INSERM U 1024, Paris, France
| | - Kostika Sofroni
- Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France .,Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| |
Collapse
|
16
|
Zeng X, Yan X, Yuan R, Li K, Wu Y, Liu F, Luo J, Li J, Wu G. Identification and Analysis of MS5d: A Gene That Affects Double-Strand Break (DSB) Repair during Meiosis I in Brassica napus Microsporocytes. FRONTIERS IN PLANT SCIENCE 2017; 7:1966. [PMID: 28101089 PMCID: PMC5209369 DOI: 10.3389/fpls.2016.01966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/12/2016] [Indexed: 05/13/2023]
Abstract
Here, we report the identification of the Brassica-specific gene MS5d, which is responsible for male sterility in Brassica napus. The MS5d gene is highly expressed in the microsporocyte and encodes a protein that localizes to the nucleus. Light microscopy analyses have demonstrated that the MS5d gene affects microsporocyte meiosis in the thermosensitive genic male sterility line TE5A. Sequence comparisons and genetic complementation revealed a C-to-T transition in MS5d, encoding a Leu-to-Phe (L281F) substitution and causing abnormal male meiosis in TE5A. These findings suggest arrested meiotic chromosome dynamics at pachytene. Furthermore, immunofluorescence analyses showed that double-strand break (DSB) formation and axial elements were normal but that DSB repair and spindle behavior were aberrant in TE5A meiocytes. Collectively, our results indicate that MS5d likely encodes a protein required for chromosomal DSB repair at early stages of meiosis in B. napus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| |
Collapse
|
17
|
Zhang P, Zhang Y, Sun L, Sinumporn S, Yang Z, Sun B, Xuan D, Li Z, Yu P, Wu W, Wang K, Cao L, Cheng S. The Rice AAA-ATPase OsFIGNL1 Is Essential for Male Meiosis. FRONTIERS IN PLANT SCIENCE 2017; 8:1639. [PMID: 29021797 PMCID: PMC5624289 DOI: 10.3389/fpls.2017.01639] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/06/2017] [Indexed: 05/18/2023]
Abstract
Meiosis is crucial in reproduction of plants and ensuring genetic diversity. Although several genes involved in homologous recombination and DNA repair have been reported, their functions in rice (Oryza sativa) male meiosis remain poorly understood. Here, we isolated and characterized the rice OsFIGNL1 (OsFidgetin-like 1) gene, encoding a conserved AAA-ATPase, and explored its function and importance in male meiosis and pollen formation. The rice Osfignl1 mutant exhibited normal vegetative growth, but failed to produce seeds and displayed pollen abortion phenotype. Phenotypic comparisons between the wild-type and Osfignl1 mutant demonstrated that OsFIGNL1 is required for anther development, and that the recessive mutation of this gene causes male sterility in rice. Complementation and CRISPR/Cas9 experiments demonstrated that wild-type OsFIGNL1 is responsible for the male sterility phenotype. Subcellular localization showed that OsFIGNL1-green fluorescent protein was exclusively localized in the nucleus of rice protoplasts. Male meiosis in the Osfignl1 mutant exhibited abnormal chromosome behavior, including chromosome bridges and multivalent chromosomes at diakinesis, lagging chromosomes, and chromosome fragments during meiosis. Yeast two-hybrid assays demonstrated OsFIGNL1 could interact with RAD51A1, RAD51A2, DMC1A, DMC1B, and these physical interactions were further confirmed by BiFC assay. Taken together, our results suggest that OsFIGNL1 plays an important role in regulation of male meiosis and anther development.
Collapse
Affiliation(s)
- Peipei Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Sittipun Sinumporn
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Bin Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dandan Xuan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zihe Li
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Kejian Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Liyong Cao, Shihua Cheng,
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Liyong Cao, Shihua Cheng,
| |
Collapse
|
18
|
Weimer AK, Biedermann S, Harashima H, Roodbarkelari F, Takahashi N, Foreman J, Guan Y, Pochon G, Heese M, Van Damme D, Sugimoto K, Koncz C, Doerner P, Umeda M, Schnittger A. The plant-specific CDKB1-CYCB1 complex mediates homologous recombination repair in Arabidopsis. EMBO J 2016; 35:2068-2086. [PMID: 27497297 PMCID: PMC5048351 DOI: 10.15252/embj.201593083] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 07/14/2016] [Indexed: 01/30/2023] Open
Abstract
Upon DNA damage, cyclin‐dependent kinases (CDKs) are typically inhibited to block cell division. In many organisms, however, it has been found that CDK activity is required for DNA repair, especially for homology‐dependent repair (HR), resulting in the conundrum how mitotic arrest and repair can be reconciled. Here, we show that Arabidopsis thaliana solves this dilemma by a division of labor strategy. We identify the plant‐specific B1‐type CDKs (CDKB1s) and the class of B1‐type cyclins (CYCB1s) as major regulators of HR in plants. We find that RADIATION SENSITIVE 51 (RAD51), a core mediator of HR, is a substrate of CDKB1‐CYCB1 complexes. Conversely, mutants in CDKB1 and CYCB1 fail to recruit RAD51 to damaged DNA. CYCB1;1 is specifically activated after DNA damage and we show that this activation is directly controlled by SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a transcription factor that acts similarly to p53 in animals. Thus, while the major mitotic cell‐cycle activity is blocked after DNA damage, CDKB1‐CYCB1 complexes are specifically activated to mediate HR.
Collapse
Affiliation(s)
- Annika K Weimer
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, Université de Strasbourg, Strasbourg Cedex, France
| | - Sascha Biedermann
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, Université de Strasbourg, Strasbourg Cedex, France
| | | | | | - Naoki Takahashi
- Plant Growth Regulation Laboratory, Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, Japan
| | - Julia Foreman
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Yonsheng Guan
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, Université de Strasbourg, Strasbourg Cedex, France
| | - Gaëtan Pochon
- Department of Developmental Biology, Biozentrum Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Maren Heese
- Department of Developmental Biology, Biozentrum Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Daniël Van Damme
- Department of Plant Systems Biology, VIB, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Csaba Koncz
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln, Germany
| | - Peter Doerner
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Masaaki Umeda
- Plant Growth Regulation Laboratory, Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, Japan JST, CREST, Ikoma, Nara, Japan
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, Université de Strasbourg, Strasbourg Cedex, France Department of Developmental Biology, Biozentrum Klein Flottbek, University of Hamburg, Hamburg, Germany Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS, Strasbourg Cedex, France
| |
Collapse
|
19
|
Abstract
Production of gametes of halved ploidy for sexual reproduction requires a specialized cell division called meiosis. The fusion of two gametes restores the original ploidy in the new generation, and meiosis thus stabilizes ploidy across generations. To ensure balanced distribution of chromosomes, pairs of homologous chromosomes (homologs) must recognize each other and pair in the first meiotic division. Recombination plays a key role in this in most studied species, but it is not the only actor and particular chromosomal regions are known to facilitate the meiotic pairing of homologs. In this review, we focus on the roles of centromeres and in particular on the clustering and pairwise associations of nonhomologous centromeres that precede stable pairing between homologs. Although details vary from species to species, it is becoming increasingly clear that these associations play active roles in the meiotic chromosome pairing process, analogous to those of the telomere bouquet.
Collapse
Affiliation(s)
- Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France; ,
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France; ,
| |
Collapse
|
20
|
Zhang B, Wang M, Tang D, Li Y, Xu M, Gu M, Cheng Z, Yu H. XRCC3 is essential for proper double-strand break repair and homologous recombination in rice meiosis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5713-25. [PMID: 26034131 DOI: 10.1093/jxb/erv253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
RAD51 paralogues play important roles in the assembly and stabilization of RAD51 nucleoprotein filaments, which promote homologous pairing and strand exchange reactions in organisms ranging from yeast to vertebrates. XRCC3, a RAD51 paralogue, has been characterized in budding yeast, mouse, and Arabidopsis. In the present study, XRCC3 in rice was identified and characterized. The rice xrcc3 mutant exhibited normal vegetative growth but complete male and female sterility. Cytological investigations revealed that homologous pairing and synapsis were severely disrupted in the mutant. Meiotic chromosomes were frequently entangled from diplotene to metaphase I, resulting in chromosome fragmentation at anaphase I. The immunostaining signals from γH2AX were regular, implying that double-strand break (DSB) formation was normal in xrcc3 meiocytes. However, COM1 was not detected on early prophase I chromosomes, suggesting that the DSB end-processing system was destroyed in the mutant. Moreover, abnormal chromosome localization of RAD51C, DMC1, ZEP1, ZIP4, and MER3 was observed in xrcc3. Taken together, the results suggest that XRCC3 plays critical roles in both DSB repair and homologous chromosome recombination during rice meiosis.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
21
|
Muchová V, Amiard S, Mozgová I, Dvořáčková M, Gallego ME, White C, Fajkus J. Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:198-209. [PMID: 25359579 PMCID: PMC4309414 DOI: 10.1111/tpj.12718] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 05/19/2023]
Abstract
Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology-dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock-out mutants in RAD51B, one of the Rad51 paralogs of A. thaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B-dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double-stranded breaks (measured as γ-H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S-phase, and is ATM-independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non-transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double-stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single-stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability.
Collapse
Affiliation(s)
- Veronika Muchová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhao L, He J, Cai H, Lin H, Li Y, Liu R, Yang Z, Qin Y. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:615-28. [PMID: 25182975 PMCID: PMC7494246 DOI: 10.1111/tpj.12657] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 05/03/2023]
Abstract
Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis.
Collapse
Affiliation(s)
- Lihua Zhao
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiangman He
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hanyang Cai
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Haiyan Lin
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanqiang Li
- University of Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renyi Liu
- Department of Botany and Plant Science, University of California, Riverside, CA 92521, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Science, University of California, Riverside, CA 92521, USA
| | - Yuan Qin
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- For correspondence ()
| |
Collapse
|
23
|
Abstract
Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms.
Collapse
Affiliation(s)
- Alex Zelensky
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Charlot F, Chelysheva L, Kamisugi Y, Vrielynck N, Guyon A, Epert A, Le Guin S, Schaefer DG, Cuming AC, Grelon M, Nogué F. RAD51B plays an essential role during somatic and meiotic recombination in Physcomitrella. Nucleic Acids Res 2014; 42:11965-78. [PMID: 25260587 PMCID: PMC4231755 DOI: 10.1093/nar/gku890] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified in yeast (Rad55, Rad57 and Dmc1), plants and vertebrates (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1). RAD51 and DMC1 are the strand-exchange proteins forming a nucleofilament for strand invasion, however, the function of the paralogues in the process of homologous recombination is less clear. In yeast the two Rad51 paralogues, Rad55 and Rad57, have been shown to be involved in somatic and meiotic HR and they are essential to the formation of the Rad51/DNA nucleofilament counterbalancing the anti-recombinase activity of the SRS2 helicase. Here, we examined the role of RAD51B in the model bryophyte Physcomitrella patens. Mutant analysis shows that RAD51B is essential for the maintenance of genome integrity, for resistance to DNA damaging agents and for gene targeting. Furthermore, we set up methods to investigate meiosis in Physcomitrella and we demonstrate that the RAD51B protein is essential for meiotic homologous recombination. Finally, we show that all these functions are independent of the SRS2 anti-recombinase protein, which is in striking contrast to what is found in budding yeast where the RAD51 paralogues are fully dependent on the SRS2 anti-recombinase function.
Collapse
Affiliation(s)
- Florence Charlot
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Liudmila Chelysheva
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Yasuko Kamisugi
- Centre for Plant Sciences, Faculty of Biological Sciences, Leeds University, Leeds LS2 9JT, UK
| | - Nathalie Vrielynck
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Anouchka Guyon
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Aline Epert
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Sylvia Le Guin
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Didier G Schaefer
- Laboratoire de Biologie Moleculaire et Cellulaire, Institut de Biologie, Universite de Neuchatel, rue Emile-Argand 11, CH-2007 Neuchatel, Switzerland
| | - Andrew C Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, Leeds University, Leeds LS2 9JT, UK
| | - Mathilde Grelon
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Fabien Nogué
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| |
Collapse
|
25
|
Girard C, Crismani W, Froger N, Mazel J, Lemhemdi A, Horlow C, Mercier R. FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res 2014; 42:9087-95. [PMID: 25038251 PMCID: PMC4132730 DOI: 10.1093/nar/gku614] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genetic recombination is important for generating diversity and to ensure faithful segregation of chromosomes at meiosis. However, few crossovers (COs) are formed per meiosis despite an excess of DNA double-strand break precursors. This reflects the existence of active mechanisms that limit CO formation. We previously showed that AtFANCM is a meiotic anti-CO factor. The same genetic screen now identified AtMHF2 as another player of the same anti-CO pathway. FANCM and MHF2 are both Fanconi Anemia (FA) associated proteins, prompting us to test the other FA genes conserved in Arabidopsis for a role in CO control at meiosis. This revealed that among the FA proteins tested, only FANCM and its two DNA-binding co-factors MHF1 and MHF2 limit CO formation at meiosis.
Collapse
Affiliation(s)
- Chloe Girard
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Wayne Crismani
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Nicole Froger
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Julien Mazel
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Afef Lemhemdi
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Christine Horlow
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Raphael Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| |
Collapse
|
26
|
Byun MY, Kim WT. Suppression of OsRAD51D results in defects in reproductive development in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:256-269. [PMID: 24840804 DOI: 10.1111/tpj.12558] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/14/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
The cellular roles of RAD51 paralogs in somatic and reproductive growth have been extensively described in a wide range of animal systems and, to a lesser extent, in Arabidopsis, a dicot model plant. Here, the OsRAD51D gene was identified and characterized in rice (Oryza sativa L.), a monocot model crop. In the rice genome, three alternative OsRAD51D mRNA splicing variants, OsRAD51D.1, OsRAD51D.2, and OsRAD51D.3, were predicted. Yeast two-hybrid studies, however, showed that only OsRAD51D.1 interacted with OsRAD51B and OsRAD51C paralogs, suggesting that OsRAD51D.1 is a functional OsRAD51D protein in rice. Loss-of-function osrad51d mutant rice plants displayed normal vegetative growth. However, the mutant plants were defective in reproductive growth, resulting in sterile flowers. Homozygous osrad51d mutant flowers exhibited impaired development of lemma and palea and contained unusual numbers of stamens and stigmas. During early meiosis, osrad51d pollen mother cells (PMCs) failed to form normal homologous chromosome pairings. In subsequent meiotic progression, mutant PMCs represented fragmented chromosomes. The osrad51d pollen cells contained numerous abnormal micro-nuclei that resulted in malfunctioning pollen. The abnormalities of heterozygous mutant and T2 Ubi:RNAi-OsRAD51D RNAi-knock-down transgenic plants were intermediate between those of wild type and homozygous mutant plants. The osrad51d and Ubi:RNAi-OsRAD51D plants contained longer telomeres compared with wild type plants, indicating that OsRAD51D is a negative factor for telomere lengthening. Overall, these results suggest that OsRAD51D plays a critical role in reproductive growth in rice. This essential function of OsRAD51D is distinct from Arabidopsis, in which AtRAD51D is not an essential factor for meiosis or reproductive development.
Collapse
Affiliation(s)
- Mi Young Byun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | | |
Collapse
|
27
|
Che L, Wang K, Tang D, Liu Q, Chen X, Li Y, Hu Q, Shen Y, Yu H, Gu M, Cheng Z. OsHUS1 facilitates accurate meiotic recombination in rice. PLoS Genet 2014; 10:e1004405. [PMID: 24901798 PMCID: PMC4046934 DOI: 10.1371/journal.pgen.1004405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 04/15/2014] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination normally takes place between allelic sequences on homologs. This process can also occur between non-allelic homologous sequences. Such ectopic interaction events can lead to chromosome rearrangements and are normally avoided. However, much remains unknown about how these ectopic interaction events are sensed and eliminated. In this study, using a screen in rice, we characterized a homolog of HUS1 and explored its function in meiotic recombination. In Oshus1 mutants, in conjunction with nearly normal homologous pairing and synapsis, vigorous, aberrant ectopic interactions occurred between nonhomologous chromosomes, leading to multivalent formation and subsequent chromosome fragmentation. These ectopic interactions relied on programed meiotic double strand breaks and were formed in a manner independent of the OsMER3-mediated interference-sensitive crossover pathway. Although early homologous recombination events occurred normally, the number of interference-sensitive crossovers was reduced in the absence of OsHUS1. Together, our results indicate that OsHUS1 might be involved in regulating ectopic interactions during meiosis, probably by forming the canonical RAD9-RAD1-HUS1 (9-1-1) complex. Meiosis is a special type of cell division that generates gametes for sexual reproduction. During meiosis, recombination not only occurs between allelic sequences on homologs, but also between non-allelic homologous sequences at dispersed loci. Such ectopic recombination is the main cause of chromosomal alterations and accounts for numerous genomic disorders in humans. To ensure genomic integrity, those ectopic recombinations must be quickly resolved. Despite the importance of ectopic recombination suppression, the mechanism underlying this process still remains largely unknown. Here, using rice as a model system, we identified the rice HUS1 homolog, a member of the RAD9-RAD1-HUS1 (9-1-1) complex, and elucidated its roles in meiotic recombination. In Oshus1, vigorous ectopic interactions occur between nonhomologous chromosomes, and the number of crossovers is reduced. We suspect that OsHUS1 participates in regulating ectopic interactions during meiosis, probably by forming the canonical RAD9-RAD1-HUS1 (9-1-1) complex.
Collapse
Affiliation(s)
- Lixiao Che
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiaojun Chen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qing Hu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hengxiu Yu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Minghong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Da Ines O, Gallego ME, White CI. Recombination-independent mechanisms and pairing of homologous chromosomes during meiosis in plants. MOLECULAR PLANT 2014; 7:492-501. [PMID: 24375719 DOI: 10.1093/mp/sst172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Meiosis is the specialized eukaryotic cell division that permits the halving of ploidy necessary for gametogenesis in sexually reproducing organisms. This involves a single round of DNA replication followed by two successive divisions. To ensure balanced segregation, homologous chromosome pairs must migrate to opposite poles at the first meiotic division and this means that they must recognize and pair with each other beforehand. Although understanding of the mechanisms by which meiotic chromosomes find and pair with their homologs has greatly advanced, it remains far from being fully understood. With some notable exceptions such as male Drosophila, the recognition and physical linkage of homologs at the first meiotic division involves homologous recombination. However, in addition to this, it is clear that many organisms, including plants, have also evolved a series of recombination-independent mechanisms to facilitate homolog recognition and pairing. These implicate chromosome structure and dynamics, telomeres, centromeres, and, most recently, small RNAs. With a particular focus on plants, we present here an overview of understanding of these early, recombination-independent events that act in the pairing of homologous chromosomes during the first meiotic division.
Collapse
Affiliation(s)
- Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63171 Aubière, France
| | | | | |
Collapse
|
29
|
Pradillo M, Varas J, Oliver C, Santos JL. On the role of AtDMC1, AtRAD51 and its paralogs during Arabidopsis meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:23. [PMID: 24596572 PMCID: PMC3925842 DOI: 10.3389/fpls.2014.00023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/20/2014] [Indexed: 05/02/2023]
Abstract
Meiotic recombination plays a critical role in achieving accurate chromosome segregation and increasing genetic diversity. Many studies, mostly in yeast, have provided important insights into the coordination and interplay between the proteins involved in the homologous recombination pathway, especially the recombinase RAD51 and the meiosis-specific DMC1. Here we summarize the current progresses on the function of both recombinases and the CX3 complex encoded by AtRAD51 paralogs, in the plant model species Arabidopsis thaliana. Similarities and differences respect to the function of these proteins in other organisms are also indicated.
Collapse
Affiliation(s)
- Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | | | | | | |
Collapse
|
30
|
Wellmer F, Bowman JL, Davies B, Ferrándiz C, Fletcher JC, Franks RG, Graciet E, Gregis V, Ito T, Jack TP, Jiao Y, Kater MM, Ma H, Meyerowitz EM, Prunet N, Riechmann JL. Flower development: open questions and future directions. Methods Mol Biol 2014; 1110:103-24. [PMID: 24395254 DOI: 10.1007/978-1-4614-9408-9_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Almost three decades of genetic and molecular analyses have resulted in detailed insights into many of the processes that take place during flower development and in the identification of a large number of key regulatory genes that control these processes. Despite this impressive progress, many questions about how flower development is controlled in different angiosperm species remain unanswered. In this chapter, we discuss some of these open questions and the experimental strategies with which they could be addressed. Specifically, we focus on the areas of floral meristem development and patterning, floral organ specification and differentiation, as well as on the molecular mechanisms underlying the evolutionary changes that have led to the astounding variations in flower size and architecture among extant and extinct angiosperms.
Collapse
Affiliation(s)
- Frank Wellmer
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang Y, Xiao R, Wang H, Cheng Z, Li W, Zhu G, Wang Y, Ma H. The Arabidopsis RAD51 paralogs RAD51B, RAD51D and XRCC2 play partially redundant roles in somatic DNA repair and gene regulation. THE NEW PHYTOLOGIST 2014; 201:292-304. [PMID: 24102485 DOI: 10.1111/nph.12498] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 08/14/2013] [Indexed: 05/12/2023]
Abstract
The eukaryotic RAD51 gene family has seven ancient paralogs conserved between plants and animals. Among these, RAD51, DMC1, RAD51C and XRCC3 are important for homologous recombination and/or DNA repair, whereas single mutants in RAD51B, RAD51D or XRCC2 show normal meiosis, and the lineages they represent diverged from each other evolutionarily later than the other four paralogs, suggesting possible functional redundancy. The function of Arabidopsis RAD51B, RAD51D and XRCC2 genes in mitotic DNA repair and meiosis was analyzed using molecular genetic, cytological and transcriptomic approaches. The relevant double and triple mutants displayed normal vegetative and reproductive growth. However, the triple mutant showed greater sensitivity than single or double mutants to DNA damage by bleomycin. RNA-Seq transcriptome analysis supported the idea that the triple mutant showed DNA damage similar to that caused by bleomycin. On bleomycin treatment, many genes were altered in the wild-type but not in the triple mutant, suggesting that the RAD51 paralogs have roles in the regulation of gene transcription, providing an explanation for the hypersensitive phenotype of the triple mutant to bleomycin. Our results provide strong evidence that Arabidopsis XRCC2, RAD51B and RAD51D have complex functions in somatic DNA repair and gene regulation, arguing for further studies of these ancient genes that have been maintained in both plants and animals during their long evolutionary history.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Rong Xiao
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Haifeng Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhihao Cheng
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wuxing Li
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Genfeng Zhu
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
32
|
Molecular cell biology of male meiotic chromosomes and isolation of male meiocytes in Arabidopsis thaliana. Methods Mol Biol 2014; 1110:217-30. [PMID: 24395259 DOI: 10.1007/978-1-4614-9408-9_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants typically produce numerous flowers whose meiotic chromosomes are relatively easy to observe, making them excellent structures for studying the cellular processes underlying meiosis. In recent years, breakthroughs in light and electron microscopic technologies for small chromosomes, combined with molecular genetic methods, have resulted in major advances in the understanding of meiosis in the model plant Arabidopsis thaliana. In this chapter, we summarize protocols for basic cytology, fluorescence in situ hybridization, immunofluorescence, electron microscopy, and isolation of male meiocytes for the analysis of Arabidopsis meiosis.
Collapse
|
33
|
Tang D, Miao C, Li Y, Wang H, Liu X, Yu H, Cheng Z. OsRAD51C is essential for double-strand break repair in rice meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:167. [PMID: 24847337 PMCID: PMC4019848 DOI: 10.3389/fpls.2014.00167] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/08/2014] [Indexed: 05/18/2023]
Abstract
RAD51C is one of the RAD51 paralogs that plays an important role in DNA double-strand break repair by homologous recombination. Here, we identified and characterized OsRAD51C, the rice homolog of human RAD51C. The Osrad51c mutant plant is normal in vegetative growth but exhibits complete male and female sterility. Cytological investigation revealed that homologous pairing and synapsis were severely disrupted. Massive chromosome fragmentation occurred during metaphase I in Osrad51c meiocytes, and was fully suppressed by the CRC1 mutation. Immunofluorescence analysis showed that OsRAD51C localized onto the chromosomes from leptotene to early pachytene during prophase I, and that normal loading of OsRAD51C was dependent on OsREC8, PAIR2, and PAIR3. Additionally, ZEP1 did not localize properly in Osrad51c, indicating that OsRAD51C is required for synaptonemal complex assembly. Our study also provided evidence in support of a functional divergence in RAD51C among organisms.
Collapse
Affiliation(s)
- Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Chunbo Miao
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Hongjun Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xiaofei Liu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Zhukuan Cheng, State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang Distict, Beijing 100101, China e-mail:
| |
Collapse
|
34
|
Roles of XRCC2, RAD51B and RAD51D in RAD51-independent SSA recombination. PLoS Genet 2013; 9:e1003971. [PMID: 24278037 PMCID: PMC3836719 DOI: 10.1371/journal.pgen.1003971] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/07/2013] [Indexed: 11/19/2022] Open
Abstract
The repair of DNA double-strand breaks by recombination is key to the maintenance of genome integrity in all living organisms. Recombination can however generate mutations and chromosomal rearrangements, making the regulation and the choice of specific pathways of great importance. In addition to end-joining through non-homologous recombination pathways, DNA breaks are repaired by two homology-dependent pathways that can be distinguished by their dependence or not on strand invasion catalysed by the RAD51 recombinase. Working with the plant Arabidopsis thaliana, we present here an unexpected role in recombination for the Arabidopsis RAD51 paralogues XRCC2, RAD51B and RAD51D in the RAD51-independent single-strand annealing pathway. The roles of these proteins are seen in spontaneous and in DSB-induced recombination at a tandem direct repeat recombination tester locus, both of which are unaffected by the absence of RAD51. Individual roles of these proteins are suggested by the strikingly different severities of the phenotypes of the individual mutants, with the xrcc2 mutant being the most affected, and this is confirmed by epistasis analyses using multiple knockouts. Notwithstanding their clearly established importance for RAD51-dependent homologous recombination, XRCC2, RAD51B and RAD51D thus also participate in Single-Strand Annealing recombination.
Collapse
|
35
|
Da Ines O, Degroote F, Amiard S, Goubely C, Gallego ME, White CI. Effects of XRCC2 and RAD51B mutations on somatic and meiotic recombination in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:959-70. [PMID: 23521529 DOI: 10.1111/tpj.12182] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 05/12/2023]
Abstract
Homologous recombination is key to the maintenance of genome integrity and the creation of genetic diversity. At the mechanistic level, recombination involves the invasion of a homologous DNA template by broken DNA ends, repair of the break and exchange of genetic information between the two DNA molecules. Invasion of the template in eukaryotic cells is catalysed by the RAD51 and DMC1 recombinases, assisted by a number of accessory proteins, including the RAD51 paralogues. Eukaryotic genomes encode a variable number of RAD51 paralogues, ranging from two in yeast to five in animals and plants. The RAD51 paralogues form at least two distinct protein complexes, believed to play roles in the assembly and stabilization of the RAD51-DNA nucleofilament. Somatic recombination assays and immunocytology confirm that the three 'non-meiotic' paralogues of Arabidopsis, RAD51B, RAD51D and XRCC2, are involved in somatic homologous recombination, and that they are not required for the formation of radioinduced RAD51 foci. Given the presence of all five proteins in meiotic cells, the apparent absence of a meiotic role for RAD51B, RAD51D and XRCC2 is surprising, and perhaps simply the result of a more subtle meiotic phenotype in the mutants. Analysis of meiotic recombination confirms this, showing that the absence of XRCC2, and to a lesser extent RAD51B, but not RAD51D, increases rates of meiotic crossing over. The roles of RAD51B and XRCC2 in recombination are thus not limited to mitotic cells.
Collapse
Affiliation(s)
- Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63171, Aubière, France
| | | | | | | | | | | |
Collapse
|
36
|
Yao Y, Bilichak A, Titov V, Golubov A, Kovalchuk I. Genome stability of Arabidopsis atm, ku80 and rad51b mutants: somatic and transgenerational responses to stress. PLANT & CELL PHYSIOLOGY 2013; 54:982-9. [PMID: 23574700 DOI: 10.1093/pcp/pct051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA double-strand breaks (DSBs) can be repaired via two main mechanisms: non-homologous end joining (NHEJ) and homologous recombination (HR). Our previous work showed that exposure to abiotic stresses resulted in an increase in point mutation frequency (PMF) and homologous recombination frequency (HRF), and these changes were heritable. We hypothesized that mutants impaired in DSB recognition and repair would also be deficient in somatic and transgenerational changes in PMF and HRF. To test this hypothesis, we analyzed the genome stability of the Arabidopsis thaliana mutants deficient in ATM (communication between DNA strand break recognition and the repair machinery), KU80 (deficient in NHEJ) and RAD51B (deficient in HR repair) genes. We found that all three mutants exhibited higher levels of DSBs. Plants impaired in ATM had a lower spontaneous PMF and HRF, whereas ku80 plants had higher frequencies. Plants impaired in RAD51B had a lower HRF. HRF in wild-type, atm and rad51b plants increased in response to several abiotic stressors, whereas it did not increase in ku80 plants. The progeny of stressed wild-type and ku80 plants exhibited an increase in HRF in response to all stresses, and the increase was higher in ku80 plants. The progeny of atm plants showed an increase in HRF only when the parental generation was exposed to cold or flood, whereas the progeny of rad51b plants completely lacked a transgenerational increase in HRF. Our experiments showed that mutants impaired in the recognition and repair of DSBs exhibited changes in the efficiency of DNA repair as reflected by changes in strand breaks, point mutation and HRF. They also showed that the HR RAD51B protein and the protein ATM that recognized damaged DNA might play an important role in transgenerational changes in HRF.
Collapse
Affiliation(s)
- Youli Yao
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | | | | | | | | |
Collapse
|
37
|
Kou Y, Chang Y, Li X, Xiao J, Wang S. The rice RAD51C gene is required for the meiosis of both female and male gametocytes and the DNA repair of somatic cells. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5323-35. [PMID: 22859673 PMCID: PMC3431001 DOI: 10.1093/jxb/ers190] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The RecA/RAD51 family of rice (Oryza sativa) consists of at least 13 members. However, the functions of most of these members are unknown. Here the functional characterization of one member of this family, RAD51C, is reported. Knockout (KO) of RAD51C resulted in both female and male sterility in rice. Transferring RAD51C to the RAD51C-KO line restored fertility. Cytological analyses showed that the sterility of RAD51C-KO plants was associated with abnormal early meiotic processes in both megasporocytes and pollen mother cells (PMCs). PMCs had an absence of normal pachytene chromosomes and had abnormal chromosome fragments. The RAD51C-KO line showed no obvious difference from wild-type plants in mitosis in the anther wall cells, which was consistent with the observation that the RAD51C-KO line did not have obviously abnormal morphology during vegetative development. However, the RAD51C-KO line was sensitive to different DNA-damaging agents. These results suggest that RAD51C is essential for reproductive development by regulating meiosis as well as for DNA damage repair in somatic cells.
Collapse
MESH Headings
- Agrobacterium/genetics
- Chromosomes, Plant/drug effects
- Chromosomes, Plant/metabolism
- Chromosomes, Plant/radiation effects
- DNA Fragmentation/drug effects
- DNA Fragmentation/radiation effects
- DNA Repair/drug effects
- DNA Repair/radiation effects
- DNA, Bacterial/genetics
- Gene Knockout Techniques
- Genes, Plant
- Genetic Complementation Test
- Germ Cells, Plant/drug effects
- Germ Cells, Plant/growth & development
- Germ Cells, Plant/radiation effects
- Meiosis/drug effects
- Meiosis/radiation effects
- Mitosis/drug effects
- Mitosis/radiation effects
- Molecular Sequence Data
- Mutagens/pharmacology
- Oryza/cytology
- Oryza/drug effects
- Oryza/genetics
- Oryza/growth & development
- Phylogeny
- Plant Infertility
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Pollen/drug effects
- Pollen/growth & development
- Pollen/radiation effects
- Rad51 Recombinase/genetics
- Rad51 Recombinase/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Yanjun Kou
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan 430070China
| | - Yuxiao Chang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan 430070China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan 430070China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan 430070China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan 430070China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Abstract
Repair of meiotic double-strand breaks (DSBs) uses the homolog and recombination to yield crossovers while alternative pathways such as nonhomologous end joining (NHEJ) are suppressed. Our results indicate that NHEJ is blocked at two steps of DSB repair during meiotic prophase: first by the activity of the MCM-like protein MEI-218, which is required for crossover formation, and, second, by Rad51-related proteins SPN-B (XRCC3) and SPN-D (RAD51C), which physically interact and promote homologous recombination (HR). We further show that the MCM-like proteins also promote the activity of the DSB repair checkpoint pathway, indicating an early requirement for these proteins in DSB processing. We propose that when a meiotic DSB is formed in the absence of both MEI-218 and SPN-B or SPN-D, a DSB substrate is generated that can enter the NHEJ repair pathway. Indeed, due to its high error rate, multiple barriers may have evolved to prevent NHEJ activity during meiosis.
Collapse
|
39
|
Da Ines O, Abe K, Goubely C, Gallego ME, White CI. Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana. PLoS Genet 2012; 8:e1002636. [PMID: 22532804 PMCID: PMC3330102 DOI: 10.1371/journal.pgen.1002636] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/21/2012] [Indexed: 11/18/2022] Open
Abstract
During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains. Meiosis is a specialised cell division that acts to halve the chromosome complement, or ploidy, in the production of gametes for sexual reproduction in eukaryotes. To ensure that each gamete has a full complement of the genetic material, homologous chromosomes must pair and then separate in a coordinated manner during meiosis, and this is mediated by recombination in the majority of studied eukaryotes. To better understand the relationship between recombination and meiotic homologue pairing, we have analysed meiotic chromosome pairing in plant mutants lacking key recombination proteins. This work provides new insights into the homologous chromosome pairing mechanisms occurring in meiotic prophase of Arabidopsis thaliana: heterochromatic centromeres and 5S rDNA regions pair early, and their pairing has different requirements for recombination proteins than does that of the chromosome arms. These data raise a number of questions concerning the specificities and roles of recombination at different chromosome and/or chromatin regions in the synapsis of homologous chromosomes at meiosis.
Collapse
Affiliation(s)
| | | | | | | | - Charles I. White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France
- * E-mail:
| |
Collapse
|
40
|
Wang X, Singer SD, Liu Z. Silencing of meiosis-critical genes for engineering male sterility in plants. PLANT CELL REPORTS 2012; 31:747-56. [PMID: 22120011 DOI: 10.1007/s00299-011-1193-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/07/2011] [Accepted: 11/14/2011] [Indexed: 05/20/2023]
Abstract
The potential for pollen-mediated transgene flow into wild or closely related species has provoked unease in terms of transgenic modification of agricultural plant species. One approach to remedy this situation in species whose seeds and fruits are not of particular value is to engineer male sterility into the transgenic lines. In this study, three meiosis-critical genes, namely AHP2, AtRAD51C and SWITCH1 (SWI), were chosen as silencing targets to test the feasibility of incorporating sterility into plants using an RNAi-based approach. Our results indicated that the silencing of each of these genes via hairpin RNA (termed AHPi, RAD51Ci and SWIi lines) in Arabidopsis thaliana yielded a proportion of transgenic plants exhibiting a similar 'partially sterile' phenotype in which less than 50% of pollen was viable. In addition, a 'sterile' phenotype was also evident in a minority of RAD51Ci and SWIi, but not AHPi, lines in which plants yielded no seeds and either produced inviable pollen (RAD51Ci lines) or displayed a complete absence of pollen (SWIi lines). This suggests that AtRAD51C and SWI may function at distinct stages of meiosis. Further analyses of SWIi lines demonstrated that the 'sterile' phenotype was associated with a substantial reduction in the level of targeted gene transcript in floral tissues and resulted from sterility of the male, but not female gametes. This work demonstrates that generating male sterility through the silencing of key genes involved in the regulation of meiosis is feasible, and its advantages and potential applications for transgene containment are discussed.
Collapse
Affiliation(s)
- Xiping Wang
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | | | | |
Collapse
|
41
|
Rodrigue A, Coulombe Y, Jacquet K, Gagné JP, Roques C, Gobeil S, Poirier G, Masson JY. The RAD51 paralogs ensure cellular protection against mitotic defects and aneuploidy. J Cell Sci 2012; 126:348-59. [DOI: 10.1242/jcs.114595] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interplay between homologous DNA recombination and mitotic progression is poorly understood. The five RAD51 paralogs (RAD51B, -C, -D, XRCC2, XRCC3) are key enzymes for DNA double-strand break repair. In our search for specific functions of the various RAD51 paralogs, we found that inhibition of XRCC3 elicits checkpoint defects, while inhibition of RAD51B and RAD51C induces G2/M cell cycle arrest in Hela cells. Using live-cell microscopy we show that XRCC3-knockdown cells displayed persistent spindle assembly checkpoint and a higher frequency of chromosome misalignments, anaphase bridges, and aneuploidy. We observed centrosome defects in the absence of XRCC3. While RAD51B and RAD51C act early in HR, XRCC3 functions jointly with GEN1 later in the pathway at the stage of Holliday junction resolution. Our data demonstrate that Holliday junction resolution has critical functions for preventing aberrant mitosis and aneuploidy in mitotic cells.
Collapse
|
42
|
Seeliger K, Dukowic-Schulze S, Wurz-Wildersinn R, Pacher M, Puchta H. BRCA2 is a mediator of RAD51- and DMC1-facilitated homologous recombination in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 193:364-75. [PMID: 22077663 DOI: 10.1111/j.1469-8137.2011.03947.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Mutations in the breast cancer susceptibility gene 2 (BRCA2) are correlated with hereditary breast cancer in humans. Studies have revealed that mammalian BRCA2 plays crucial roles in DNA repair. Therefore, we wished to define the role of the BRCA2 homologs in Arabidopsis in detail. • As Arabidopsis contains two functional BRCA2 homologs, an Atbrca2 double mutant was generated and analyzed with respect to hypersensitivity to genotoxic agents and recombination frequencies. Cytological studies addressing male and female meiosis were also conducted, and immunolocalization was performed in male meiotic prophase I. • The Atbrca2 double mutant showed hypersensitivity to the cross-linking agent mitomycin C and displayed a dramatic reduction in somatic homologous recombination frequency, especially after double-strand break induction. The loss of AtBRCA2 also led to severe defects in male meiosis and development of the female gametophyte and impeded proper localization of the synaptonemal complex protein AtZYP1 and the recombinases AtRAD51 and AtDMC1. • The results demonstrate that AtBRCA2 is important for both somatic and meiotic homologous recombination. We further show that AtBRCA2 is required for proper meiotic synapsis and mediates the recruitment of AtRAD51 and AtDMC1. Our results suggest that BRCA2 controls single-strand invasion steps during homologous recombination in plants.
Collapse
Affiliation(s)
- Katharina Seeliger
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
43
|
Eme L, Trilles A, Moreira D, Brochier-Armanet C. The phylogenomic analysis of the anaphase promoting complex and its targets points to complex and modern-like control of the cell cycle in the last common ancestor of eukaryotes. BMC Evol Biol 2011; 11:265. [PMID: 21943402 PMCID: PMC3195147 DOI: 10.1186/1471-2148-11-265] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 09/23/2011] [Indexed: 11/10/2022] Open
Abstract
Background The Anaphase Promoting Complex or Cyclosome (APC/C) is the largest member of the ubiquitin ligase [E3] family. It plays a crucial role in the control of the cell cycle and cell proliferation by mediating the proteolysis of key components by the proteasome. APC/C is made of a dozen subunits that assemble into a large complex of ~1.5 MDa, which interacts with various cofactors and targets. Results Using comparative genomic and phylogenetic approaches, we showed that 24 out of 37 known APC/C subunits, adaptors/co-activators and main targets, were already present in the Last Eukaryotic Common Ancestor (LECA) and were well conserved to a few exceptions in all present-day eukaryotic lineages. The phylogenetic analysis of the 24 components inferred to be present in LECA showed that they contain a reliable phylogenetic signal to reconstruct the phylogeny of the domain Eucarya. Conclusions Taken together our analyses indicated that LECA had a complex and highly controlled modern-like cell cycle. Moreover, we showed that, despite what is generally assumed, proteins involved in housekeeping cellular functions may be a good complement to informational genes to study the phylogeny of eukaryotes.
Collapse
Affiliation(s)
- Laura Eme
- Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UPR CNRS, Marseille, France
| | | | | | | |
Collapse
|
44
|
An XJ, Deng ZY, Wang T. OsSpo11-4, a rice homologue of the archaeal TopVIA protein, mediates double-strand DNA cleavage and interacts with OsTopVIB. PLoS One 2011; 6:e20327. [PMID: 21637817 PMCID: PMC3102714 DOI: 10.1371/journal.pone.0020327] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/21/2011] [Indexed: 11/17/2022] Open
Abstract
DNA topoisomerase VI from Archaea, a heterotetrameric complex composed of two TopVIA and two TopVIB subunits, is involved in altering DNA topology during replication, transcription and chromosome segregation by catalyzing DNA strand transfer through transient double-strand breaks. The sequenced yeast and animal genomes encode only one homologue of the archaeal TopVIA subunit, namely Spo11, and no homologue of the archaeal TopVIB subunit. In yeast, Spo11 is essential for initiating meiotic recombination and this function appears conserved among other eukaryotes. In contrast to yeast and animals, studies in Arabidopsis and rice have identified three Spo11/TopVIA homologues and one TopVIB homologue in plants. Here, we further identified two novel Spo11/TopVIA homologues (named OsSpo11-4 and OsSpo11-5, respectively) that exist just in the monocot model plant Oryza sativa, indicating that at least five Spo11/TopVIA homologues are present in the rice genome. To reveal the biochemical function of the two novel Spo11/TopVIA homologues, we first examined the interactions among OsSpo11-1, OsSpo11-4, OsSpo11-5, and OsTopVIB by yeast two-hybrid assay. The results showed that OsSpo11-4 and OsTopVIB can self-interact strongly and among the 3 examined OsSpo11 proteins, only OsSpo11-4 interacted with OsTopVIB. Pull-down assay confirmed the interaction between OsSpo11-4 and OsTopVIB, which indicates that OsSpo11-4 may interact with OsTopVIB in vivo. Further in vitro enzymatic analysis revealed that among the above 4 proteins, only OsSpo11-4 exhibited double-strand DNA cleavage activity and its enzymatic activity appears dependent on Mg2+ and independent of OsTopVIB, despite its interaction with OsTopVIB. We further analyzed the biological function of OsSpo11-4 by RNA interference and found that down-regulated expression of OsSpo11-4 led to defects in male meiosis, indicating OsSpo11-4 is required for meiosis.
Collapse
Affiliation(s)
- Xiao Jing An
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
45
|
Osman K, Higgins JD, Sanchez-Moran E, Armstrong SJ, Franklin FCH. Pathways to meiotic recombination in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2011; 190:523-44. [PMID: 21366595 DOI: 10.1111/j.1469-8137.2011.03665.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Meiosis is a central feature of sexual reproduction. Studies in plants have made and continue to make an important contribution to fundamental research aimed at the understanding of this complex process. Moreover, homologous recombination during meiosis provides the basis for plant breeders to create new varieties of crops. The increasing global demand for food, combined with the challenges from climate change, will require sustained efforts in crop improvement. An understanding of the factors that control meiotic recombination has the potential to make an important contribution to this challenge by providing the breeder with the means to make fuller use of the genetic variability that is available within crop species. Cytogenetic studies in plants have provided considerable insights into chromosome organization and behaviour during meiosis. More recently, studies, predominantly in Arabidopsis thaliana, are providing important insights into the genes and proteins that are required for crossover formation during plant meiosis. As a result, substantial progress in the understanding of the molecular mechanisms that underpin meiosis in plants has begun to emerge. This article summarizes current progress in the understanding of meiotic recombination and its control in Arabidopsis. We also assess the relationship between meiotic recombination in Arabidopsis and other eukaryotes, highlighting areas of close similarity and apparent differences.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
46
|
Chen C, Farmer AD, Langley RJ, Mudge J, Crow JA, May GD, Huntley J, Smith AG, Retzel EF. Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes. BMC PLANT BIOLOGY 2010; 10:280. [PMID: 21167045 PMCID: PMC3018465 DOI: 10.1186/1471-2229-10-280] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/17/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., Saccharomyces cerevisiae and Drosophila melanogaster), the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes. RESULTS A high-throughput approach to identify meiosis-specific genes by combining isolated meiocytes, RNA-Seq, bioinformatic and statistical analysis pipelines was developed. By analyzing the studied genes that have a meiosis function, a pipeline for identifying meiosis-specific genes has been defined. More than 1,000 genes that are specifically or preferentially expressed in meiocytes have been identified as candidate meiosis-specific genes. A group of 55 genes that have mitochondrial genome origins and a significant number of transposable element (TE) genes (1,036) were also found to have up-regulated expression levels in meiocytes. CONCLUSION These findings advance our understanding of meiotic genes, gene expression and regulation, especially the transcript profiles of MGI genes and TE genes, and provide a framework for functional analysis of genes in meiosis.
Collapse
Affiliation(s)
- Changbin Chen
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN 55108, USA
| | - Andrew D Farmer
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - Raymond J Langley
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
- Immunology, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA
| | - Joann Mudge
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - John A Crow
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - Gregory D May
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - James Huntley
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
- Illumina Inc., Hayward, California 94545, USA
| | - Alan G Smith
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN 55108, USA
| | - Ernest F Retzel
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| |
Collapse
|
47
|
Chittela RK, Sainis JK. Plant DNA recombinases: a long way to go. J Nucleic Acids 2009; 2010. [PMID: 20798837 PMCID: PMC2925088 DOI: 10.4061/2010/646109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/08/2009] [Indexed: 01/12/2023] Open
Abstract
DNA homologous recombination is fundamental process by which two homologous DNA molecules exchange the genetic information for the generation of genetic diversity and maintain the genomic integrity. DNA recombinases, a special group of proteins bind to single stranded DNA (ssDNA) nonspecifically and search the double stranded DNA (dsDNA) molecule for a stretch of DNA that is homologous with the bound ssDNA. Recombinase A (RecA) has been well characterized at genetic, biochemical, as well as structural level from prokaryotes. Two homologues of RecA called Rad51 and Dmc1 have been detected in yeast and higher eukaryotes and are known to mediate the homologous recombination in eukaryotes. The biochemistry and mechanism of action of recombinase is important in understanding the process of homologous recombination. Even though considerable progress has been made in yeast and human recombinases, understanding of the plant recombination and recombinases is at nascent stage. Since crop plants are subjected to different breeding techniques, it is important to know the homologous recombination process. This paper focuses on the properties of eukaryotes recombinases and recent developments in the field of plant recombinases Dmc1 and Rad51.
Collapse
Affiliation(s)
- Rajani Kant Chittela
- Plant Biochemistry Section, Molecular Biology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, India
| | | |
Collapse
|
48
|
Chang Y, Gong L, Yuan W, Li X, Chen G, Li X, Zhang Q, Wu C. Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice. PLANT PHYSIOLOGY 2009. [PMID: 19812186 DOI: 10.2307/40537649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Replication protein A (RPA), a highly conserved single-stranded DNA-binding protein in eukaryotes, is a stable complex comprising three subunits termed RPA1, RPA2, and RPA3. RPA is required for multiple processes in DNA metabolism such as replication, repair, and homologous recombination in yeast (Saccharomyces cerevisiae) and human. Most eukaryotic organisms, including fungi, insects, and vertebrates, have only a single RPA gene that encodes each RPA subunit. Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), however, possess multiple copies of an RPA gene. Rice has three paralogs each of RPA1 and RPA2, and one for RPA3. Previous studies have established their biochemical interactions in vitro and in vivo, but little is known about their exact function in rice. We examined the function of OsRPA1a in rice using a T-DNA insertional mutant. The osrpa1a mutants had a normal phenotype during vegetative growth but were sterile at the reproductive stage. Cytological examination confirmed that no embryo sac formed in female meiocytes and that abnormal chromosomal fragmentation occurred in male meiocytes after anaphase I. Compared with wild type, the osrpa1a mutant showed no visible defects in mitosis and chromosome pairing and synapsis during meiosis. In addition, the osrpa1a mutant was hypersensitive to ultraviolet-C irradiation and the DNA-damaging agents mitomycin C and methyl methanesulfonate. Thus, our data suggest that OsRPA1a plays an essential role in DNA repair but may not participate in, or at least is dispensable for, DNA replication and homologous recombination in rice.
Collapse
MESH Headings
- Chromosomes, Plant/drug effects
- Chromosomes, Plant/metabolism
- Chromosomes, Plant/radiation effects
- DNA Fragmentation/drug effects
- DNA Fragmentation/radiation effects
- DNA Repair/drug effects
- DNA Repair/radiation effects
- DNA Replication/drug effects
- DNA Replication/radiation effects
- DNA, Bacterial/genetics
- Genes, Plant/genetics
- Genetic Complementation Test
- Germ Cells, Plant/drug effects
- Germ Cells, Plant/growth & development
- Germ Cells, Plant/radiation effects
- Meiosis/drug effects
- Meiosis/radiation effects
- Methyl Methanesulfonate/pharmacology
- Mitomycin/pharmacology
- Mitosis/drug effects
- Mitosis/radiation effects
- Mutagens/pharmacology
- Mutation/genetics
- Oryza/cytology
- Oryza/drug effects
- Oryza/embryology
- Oryza/genetics
- Phenotype
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Pollen/cytology
- Pollen/drug effects
- Pollen/radiation effects
- RNA Interference/drug effects
- RNA Interference/radiation effects
- Recombination, Genetic/drug effects
- Recombination, Genetic/radiation effects
- Replication Protein A/metabolism
- Ultraviolet Rays
Collapse
Affiliation(s)
- Yuxiao Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chang Y, Gong L, Yuan W, Li X, Chen G, Li X, Zhang Q, Wu C. Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice. PLANT PHYSIOLOGY 2009; 151:2162-73. [PMID: 19812186 PMCID: PMC2785997 DOI: 10.1104/pp.109.142877] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/29/2009] [Indexed: 05/18/2023]
Abstract
Replication protein A (RPA), a highly conserved single-stranded DNA-binding protein in eukaryotes, is a stable complex comprising three subunits termed RPA1, RPA2, and RPA3. RPA is required for multiple processes in DNA metabolism such as replication, repair, and homologous recombination in yeast (Saccharomyces cerevisiae) and human. Most eukaryotic organisms, including fungi, insects, and vertebrates, have only a single RPA gene that encodes each RPA subunit. Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), however, possess multiple copies of an RPA gene. Rice has three paralogs each of RPA1 and RPA2, and one for RPA3. Previous studies have established their biochemical interactions in vitro and in vivo, but little is known about their exact function in rice. We examined the function of OsRPA1a in rice using a T-DNA insertional mutant. The osrpa1a mutants had a normal phenotype during vegetative growth but were sterile at the reproductive stage. Cytological examination confirmed that no embryo sac formed in female meiocytes and that abnormal chromosomal fragmentation occurred in male meiocytes after anaphase I. Compared with wild type, the osrpa1a mutant showed no visible defects in mitosis and chromosome pairing and synapsis during meiosis. In addition, the osrpa1a mutant was hypersensitive to ultraviolet-C irradiation and the DNA-damaging agents mitomycin C and methyl methanesulfonate. Thus, our data suggest that OsRPA1a plays an essential role in DNA repair but may not participate in, or at least is dispensable for, DNA replication and homologous recombination in rice.
Collapse
MESH Headings
- Chromosomes, Plant/drug effects
- Chromosomes, Plant/metabolism
- Chromosomes, Plant/radiation effects
- DNA Fragmentation/drug effects
- DNA Fragmentation/radiation effects
- DNA Repair/drug effects
- DNA Repair/radiation effects
- DNA Replication/drug effects
- DNA Replication/radiation effects
- DNA, Bacterial/genetics
- Genes, Plant/genetics
- Genetic Complementation Test
- Germ Cells, Plant/drug effects
- Germ Cells, Plant/growth & development
- Germ Cells, Plant/radiation effects
- Meiosis/drug effects
- Meiosis/radiation effects
- Methyl Methanesulfonate/pharmacology
- Mitomycin/pharmacology
- Mitosis/drug effects
- Mitosis/radiation effects
- Mutagens/pharmacology
- Mutation/genetics
- Oryza/cytology
- Oryza/drug effects
- Oryza/embryology
- Oryza/genetics
- Phenotype
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Pollen/cytology
- Pollen/drug effects
- Pollen/radiation effects
- RNA Interference/drug effects
- RNA Interference/radiation effects
- Recombination, Genetic/drug effects
- Recombination, Genetic/radiation effects
- Replication Protein A/metabolism
- Ultraviolet Rays
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
50
|
Sebastian J, Ravi M, Andreuzza S, Panoli AP, Marimuthu MPA, Siddiqi I. The plant adherin AtSCC2 is required for embryogenesis and sister-chromatid cohesion during meiosis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:1-13. [PMID: 19228337 DOI: 10.1111/j.1365-313x.2009.03845.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Adherin plays an important role in loading the cohesin complex onto chromosomes, and is essential for the establishment of sister-chromatid cohesion. We have identified and analyzed the Arabidopsis adherin homolog AtSCC2. Interestingly, the sequence analysis of AtSCC2 and of other putative plant adherin homologs revealed the presence of a PHD finger, which is not found in their fungal and animal counterparts. AtSCC2 is identical to EMB2773, and mutants show early embryo lethality and formation of giant endosperm nuclei. A role for AtSCC2 in sister-chromatid cohesion was established by using conditional RNAi and examining meiotic chromosome organization. AtSCC2-RNAi lines showed sterility, arising from the following defects in meiotic chromosome organization: failure of homologous pairing, loss of sister-chromatid cohesion, mixed segregation of chromosomes and chromosome fragmentation. The mutant phenotype, which included defects in chromosome organization and cohesion in prophase I, is distinct from that of the Arabidopsis cohesin mutant Atrec8, which retains centromere cohesion up to anaphase I. Immunostaining experiments revealed the aberrant distribution of the cohesin subunit AtSCC3 on chromosomes, and defects in chromosomal axis formation, in the meiocytes of AtSCC2-RNAi lines. These results demonstrate a role for AtSCC2 in sister-chromatid cohesion and centromere organization, and show that the machinery responsible for the establishment of cohesion is conserved in plants.
Collapse
Affiliation(s)
- Jose Sebastian
- Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | | | | | | | | | |
Collapse
|