1
|
Hao Y, Luo H, Wang Z, Lu C, Ye X, Wang H, Miao L. Research progress on the mechanisms of fruit glossiness in cucumber. Gene 2024; 927:148626. [PMID: 38830516 DOI: 10.1016/j.gene.2024.148626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Cucumber (Cucumis sativus L.) is an important horticultural crop in China. Consumer requirements for aesthetically pleasing appearances of horticultural crops are gradually increasing, and cucumbers having a good visual appearance, as well as flavor, are important for breeding and industry development. The gloss of cucumber fruit epidermis is an important component of its appeal, and the wax layer on the fruit surface plays important roles in plant growth and forms a powerful barrier against external biotic and abiotic stresses. The wax of the cucumber epidermis is mainly composed of alkanes, and the luster of cucumber fruit is mainly determined by the alkane and silicon contents of the epidermis. Several genes, transcription factors, and transporters affect the synthesis of ultra-long-chain fatty acids and change the silicon content, further altering the gloss of the epidermis. However, the specific regulatory mechanisms are not clear. Here, progress in research on the luster of cucumber fruit epidermis from physiological, biochemical, and molecular regulatory perspectives are reviewed. Additionally, future research avenues in the field are discussed.
Collapse
Affiliation(s)
- Yiyang Hao
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Haiyan Luo
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zhiyi Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chuanlong Lu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiaolong Ye
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Huasen Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China.
| | - Li Miao
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
2
|
Sandor A, Samalova M, Brandizzi F, Kriechbaumer V, Moore I, Fricker MD, Sweetlove LJ. Characterization of intracellular membrane structures derived from a massive expansion of endoplasmic reticulum (ER) membrane due to synthetic ER-membrane-resident polyproteins. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:45-59. [PMID: 37715992 PMCID: PMC10735356 DOI: 10.1093/jxb/erad364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is amenable to major restructuring. Introduction of recombinant ER-membrane-resident proteins that form homo oligomers is a known method of inducing ER proliferation: interaction of the proteins with each other alters the local structure of the ER network, leading to the formation large aggregations of expanded ER, sometimes leading to the formation of organized smooth endoplasmic reticulum (OSER). However, these membrane structures formed by ER proliferation are poorly characterized and this hampers their potential development for plant synthetic biology. Here, we characterize a range of ER-derived membranous compartments in tobacco and show how the nature of the polyproteins introduced into the ER membrane affect the morphology of the final compartment. We show that a cytosol-facing oligomerization domain is an essential component for compartment formation. Using fluorescence recovery after photobleaching, we demonstrate that although the compartment retains a connection to the ER, a diffusional barrier exists to both the ER and the cytosol associated with the compartment. Using quantitative image analysis, we also show that the presence of the compartment does not disrupt the rest of the ER network. Moreover, we demonstrate that it is possible to recruit a heterologous, bacterial enzyme to the compartment, and for the enzyme to accumulate to high levels. Finally, transgenic Arabidopsis constitutively expressing the compartment-forming polyproteins grew and developed normally under standard conditions.
Collapse
Affiliation(s)
- Andras Sandor
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Marketa Samalova
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Ian Moore
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Mark D Fricker
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
3
|
Mano S, Hayashi Y, Hikino K, Otomo M, Kanai M, Nishimura M. Ubiquitin-conjugating activity by PEX4 is required for efficient protein transport to peroxisomes in Arabidopsis thaliana. J Biol Chem 2022; 298:102038. [PMID: 35595097 PMCID: PMC9190015 DOI: 10.1016/j.jbc.2022.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022] Open
Abstract
Protein transport to peroxisomes requires various proteins, such as receptors in the cytosol and components of the transport machinery on peroxisomal membranes. The Arabidopsis apem (aberrant peroxisome morphology) mutant apem7 shows decreased efficiency of peroxisome targeting signal 1–dependent protein transport to peroxisomes. In apem7 mutants, peroxisome targeting signal 2–dependent protein transport is also disturbed, and plant growth is repressed. The APEM7 gene encodes a protein homologous to peroxin 4 (PEX4), which belongs to the ubiquitin-conjugating (UBC) protein family; however, the UBC activity of Arabidopsis PEX4 remains to be investigated. Here, we show using electron microscopy and immunoblot analysis using specific PEX4 antibodies and in vitro transcription/translation assay that PEX4 localizes to peroxisomal membranes and possesses UBC activity. We found that the substitution of proline with leucine by apem7 mutation alters ubiquitination of PEX4. Furthermore, substitution of the active-site cysteine residue at position 90 in PEX4, which was predicted to be a ubiquitin-conjugation site, with alanine did not restore the apem7 phenotype. Taken together, these findings indicate that abnormal ubiquitination in the apem7 mutant alters ubiquitin signaling during the process of protein transport, suggesting that the UBC activity of PEX4 is indispensable for efficient protein transport to peroxisomes.
Collapse
Affiliation(s)
- Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Japan.
| | - Yasuko Hayashi
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Kazumi Hikino
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| | - Masayoshi Otomo
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| |
Collapse
|
4
|
Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M. Quantitative analysis of plant ER architecture and dynamics. Nat Commun 2019; 10:984. [PMID: 30816109 PMCID: PMC6395764 DOI: 10.1038/s41467-019-08893-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is a highly dynamic polygonal membrane network composed of interconnected tubules and sheets (cisternae) that forms the first compartment in the secretory pathway involved in protein translocation, folding, glycosylation, quality control, lipid synthesis, calcium signalling, and metabolon formation. Despite its central role in this plethora of biosynthetic, metabolic and physiological processes, there is little quantitative information on ER structure, morphology or dynamics. Here we describe a software package (AnalyzER) to automatically extract ER tubules and cisternae from multi-dimensional fluorescence images of plant ER. The structure, topology, protein-localisation patterns, and dynamics are automatically quantified using spatial, intensity and graph-theoretic metrics. We validate the method against manually-traced ground-truth networks, and calibrate the sub-resolution width estimates against ER profiles identified in serial block-face SEM images. We apply the approach to quantify the effects on ER morphology of drug treatments, abiotic stress and over-expression of ER tubule-shaping and cisternal-modifying proteins.
Collapse
Affiliation(s)
- Charlotte Pain
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Mark Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
5
|
Su T, Li W, Wang P, Ma C. Dynamics of Peroxisome Homeostasis and Its Role in Stress Response and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:705. [PMID: 31214223 PMCID: PMC6557986 DOI: 10.3389/fpls.2019.00705] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
Peroxisomes play vital roles in plant growth, development, and environmental stress response. During plant development and in response to environmental stresses, the number and morphology of peroxisomes are dynamically regulated to maintain peroxisome homeostasis in cells. To execute their various functions in the cell, peroxisomes associate and communicate with other organelles. Under stress conditions, reactive oxygen species (ROS) produced in peroxisomes and other organelles activate signal transduction pathways, in a process known as retrograde signaling, to synergistically regulate defense systems. In this review, we focus on the recent advances in the plant peroxisome field to provide an overview of peroxisome biogenesis, degradation, crosstalk with other organelles, and their role in response to environmental stresses.
Collapse
|
6
|
Jiménez-López D, Muñóz-Belman F, González-Prieto JM, Aguilar-Hernández V, Guzmán P. Repertoire of plant RING E3 ubiquitin ligases revisited: New groups counting gene families and single genes. PLoS One 2018; 13:e0203442. [PMID: 30169501 PMCID: PMC6118397 DOI: 10.1371/journal.pone.0203442] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/21/2018] [Indexed: 01/12/2023] Open
Abstract
E3 ubiquitin ligases of the ubiquitin proteasome system (UPS) mediate recognition of substrates and later transfer the ubiquitin (Ub). They are the most expanded components of the system. The Really Interesting New Gene (RING) domain contains 40-60 residues that are highly represented among E3 ubiquitin ligases. The Arabidopsis thaliana E3 ubiquitin ligases with a RING finger primarily contain RING-HC or RING-H2 type domains or less frequently RING-v, RING-C2, RING-D, RING-S/T and RING-G type domains. Our previous work on three E3 ubiquitin ligase families with a RING-H2 type domain, ATL, BTL, and CTL, suggested that a phylogenetic distribution based on the RING domain allowed for the creation a catalog of known domains or unknown conserved motifs. This work provided a useful and comprehensive view of particular families of RING E3 ubiquitin ligases. We updated the annotation of A. thaliana RING proteins and surveyed RING proteins from 30 species across eukaryotes. Based on domain architecture profile of the A. thaliana proteins, we catalogued 4711 RING finger proteins into 107 groups, including 66 previously described gene families or single genes and 36 novel families or undescribed genes. Forty-four groups were specific to a plant lineage while 41 groups consisted of proteins found in all eukaryotic species. Our present study updates the current classification of plant RING finger proteins and reiterates the importance of these proteins in plant growth and adaptation.
Collapse
Affiliation(s)
- Domingo Jiménez-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto., México
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Francisco Muñóz-Belman
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto., México
| | - Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Col. Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto., México
| |
Collapse
|
7
|
Abstract
A large amount of ultrastructural, biochemical and molecular analysis indicates that peroxisomes and mitochondria not only share the same subcellular space but also maintain considerable overlap in their proteins, responses and functions. Recent approaches using imaging of fluorescent proteins targeted to both organelles in living plant cells are beginning to show the dynamic nature of their interactivity. Based on the observations of living cells, mitochondria respond rapidly to stress by undergoing fission. Mitochondrial fission is suggested to release key membrane-interacting members of the FISSION1 and DYNAMIN RELATED PROTEIN3 families and appears to be followed by the formation of thin peroxisomal extensions called peroxules. In a model we present the peroxules as an intermediate state prior to the formation of tubular peroxisomes, which, in turn are acted upon by the constriction-related proteins released by mitochondria and undergo rapid constriction and fission to increase the number of peroxisomes in a cell. The fluorescent protein aided imaging of peroxisome-mitochondria interaction provides visual evidence for their cooperation in maintenance of cellular homeostasis in plants.
Collapse
Affiliation(s)
- Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada.
| | - Aymen Shaikh
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada
| | - Neeta Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada
| |
Collapse
|
8
|
Multiple PPR protein interactions are involved in the RNA editing system in Arabidopsis mitochondria and plastids. Proc Natl Acad Sci U S A 2017; 114:8883-8888. [PMID: 28761003 DOI: 10.1073/pnas.1705815114] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent identification of several different types of RNA editing factors in plant organelles suggests complex RNA editosomes within which each factor has a different task. However, the precise protein interactions between the different editing factors are still poorly understood. In this paper, we show that the E+-type pentatricopeptide repeat (PPR) protein SLO2, which lacks a C-terminal cytidine deaminase-like DYW domain, interacts in vivo with the DYW-type PPR protein DYW2 and the P-type PPR protein NUWA in mitochondria, and that the latter enhances the interaction of the former ones. These results may reflect a protein scaffold or complex stabilization role of NUWA between E+-type PPR and DYW2 proteins. Interestingly, DYW2 and NUWA also interact in chloroplasts, and DYW2-GFP overexpressing lines show broad editing defects in both organelles, with predominant specificity for sites edited by E+-type PPR proteins. The latter suggests a coordinated regulation of organellar multiple site editing through DYW2, which probably provides the deaminase activity to E+ editosomes.
Collapse
|
9
|
Fahy D, Sanad MNME, Duscha K, Lyons M, Liu F, Bozhkov P, Kunz HH, Hu J, Neuhaus HE, Steel PG, Smertenko A. Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY. Sci Rep 2017; 7:39069. [PMID: 28145408 PMCID: PMC5286434 DOI: 10.1038/srep39069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022] Open
Abstract
Plant peroxisomes maintain a plethora of key life processes including fatty acid β-oxidation, photorespiration, synthesis of hormones, and homeostasis of reactive oxygen species (ROS). Abundance of peroxisomes in cells is dynamic; however mechanisms controlling peroxisome proliferation remain poorly understood because measuring peroxisome abundance is technically challenging. Counting peroxisomes in individual cells of complex organs by electron or fluorescence microscopy is expensive and time consuming. Here we present a simple technique for quantifying peroxisome abundance using the small probe Nitro-BODIPY, which in vivo fluoresces selectively inside peroxisomes. The physiological relevance of our technique was demonstrated using salinity as a known inducer of peroxisome proliferation. While significant peroxisome proliferation was observed in wild-type Arabidopsis leaves following 5-hour exposure to NaCl, no proliferation was detected in the salt-susceptible mutants fry1-6, sos1-14, and sos1-15. We also found that N-BODIPY detects aggregation of peroxisomes during final stages of programmed cell death and can be used as a marker of this stage. Furthermore, accumulation of peroxisomes in an autophagy-deficient Arabidopsis mutant atg5 correlated with N-BODIPY labeling. In conclusion, the technique reported here enables quantification of peroxisomes in plant material at various physiological settings. Its potential applications encompass identification of genes controlling peroxisome homeostasis and capturing stress-tolerant genotypes.
Collapse
Affiliation(s)
- Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Marwa N M E Sanad
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
- Department of Genetics and Cytology, National Research Center, Giza, Egypt
| | - Kerstin Duscha
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, Kaiserslautern, D-67653, Germany
| | - Madison Lyons
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Fuquan Liu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Peter Bozhkov
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala, SE-75007, Sweden
| | - Hans-Henning Kunz
- School of Biological Sciences, Washington State University, Pullman, 99164, WA, USA
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, 48824, MI, USA
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, Kaiserslautern, D-67653, Germany
| | - Patrick G Steel
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA.
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK.
| |
Collapse
|
10
|
Kao YT, Fleming WA, Ventura MJ, Bartel B. Genetic Interactions between PEROXIN12 and Other Peroxisome-Associated Ubiquitination Components. PLANT PHYSIOLOGY 2016; 172:1643-1656. [PMID: 27650450 PMCID: PMC5100787 DOI: 10.1104/pp.16.01211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/15/2016] [Indexed: 05/28/2023]
Abstract
Most eukaryotic cells require peroxisomes, organelles housing fatty acid β-oxidation and other critical metabolic reactions. Peroxisomal matrix proteins carry peroxisome-targeting signals that are recognized by one of two receptors, PEX5 or PEX7, in the cytosol. After delivering the matrix proteins to the organelle, these receptors are removed from the peroxisomal membrane or matrix. Receptor retrotranslocation not only facilitates further rounds of matrix protein import but also prevents deleterious PEX5 retention in the membrane. Three peroxisome-associated ubiquitin-protein ligases in the Really Interesting New Gene (RING) family, PEX2, PEX10, and PEX12, facilitate PEX5 retrotranslocation. However, the detailed mechanism of receptor retrotranslocation remains unclear in plants. We identified an Arabidopsis (Arabidopsis thaliana) pex12 Glu-to-Lys missense allele that conferred severe peroxisomal defects, including impaired β-oxidation, inefficient matrix protein import, and decreased growth. We compared this pex12-1 mutant to other peroxisome-associated ubiquitination-related mutants and found that RING peroxin mutants displayed elevated PEX5 and PEX7 levels, supporting the involvement of RING peroxins in receptor ubiquitination in Arabidopsis. Also, we observed that disruption of any Arabidopsis RING peroxin led to decreased PEX10 levels, as seen in yeast and mammals. Peroxisomal defects were exacerbated in RING peroxin double mutants, suggesting distinct roles of individual RING peroxins. Finally, reducing function of the peroxisome-associated ubiquitin-conjugating enzyme PEX4 restored PEX10 levels and partially ameliorated the other molecular and physiological defects of the pex12-1 mutant. Future biochemical analyses will be needed to determine whether destabilization of the RING peroxin complex observed in pex12-1 stems from PEX4-dependent ubiquitination on the pex12-1 ectopic Lys residue.
Collapse
Affiliation(s)
- Yun-Ting Kao
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, Texas 77005 (Y.-T.K., W.A.F., M.J.V., B.B.)
| | - Wendell A Fleming
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, Texas 77005 (Y.-T.K., W.A.F., M.J.V., B.B.)
| | - Meredith J Ventura
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, Texas 77005 (Y.-T.K., W.A.F., M.J.V., B.B.)
| | - Bonnie Bartel
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, Texas 77005 (Y.-T.K., W.A.F., M.J.V., B.B.)
| |
Collapse
|
11
|
Reumann S, Chowdhary G, Lingner T. Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s). BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:790-803. [PMID: 26772785 DOI: 10.1016/j.bbamcr.2016.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 12/22/2022]
Abstract
Our knowledge of the proteome of plant peroxisomes and their functional plasticity is far from being complete, primarily due to major technical challenges in experimental proteome research of the fragile cell organelle. Several unexpected novel plant peroxisome functions, for instance in biotin and phylloquinone biosynthesis, have been uncovered recently. Nevertheless, very few regulatory and membrane proteins of plant peroxisomes have been identified and functionally described up to now. To define the matrix proteome of plant peroxisomes, computational methods have emerged as important powerful tools. Novel prediction approaches of high sensitivity and specificity have been developed for peroxisome targeting signals type 1 (PTS1) and have been validated by in vivo subcellular targeting analyses and thermodynamic binding studies with the cytosolic receptor, PEX5. Accordingly, the algorithms allow the correct prediction of many novel peroxisome-targeted proteins from plant genome sequences and the discovery of additional organelle functions. In this review, we provide an overview of methodologies, capabilities and accuracies of available prediction algorithms for PTS1 carrying proteins. We also summarize and discuss recent quantitative, structural and mechanistic information of the interaction of PEX5 with PTS1 carrying proteins in relation to in vivo import efficiency. With this knowledge, we develop a model of how proteins likely evolved peroxisomal targeting signals in the past and still nowadays, in which order the two import pathways might have evolved in the ancient eukaryotic cell, and how the secondary loss of the PTS2 pathway probably happened in specific organismal groups.
Collapse
Affiliation(s)
- S Reumann
- Department of Plant Biochemistry and Infection Biology, Biocentre Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany; Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway.
| | - G Chowdhary
- Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway; KIIT School of Biotechnology, Campus XI, KIIT University, I-751024 Bhubaneswar, India.
| | - T Lingner
- Department of Bioinformatics, Institute for Microbiology and Genetics, D-37077 Goettingen, Germany.
| |
Collapse
|
12
|
Agrawal G, Subramani S. De novo peroxisome biogenesis: Evolving concepts and conundrums. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:892-901. [PMID: 26381541 PMCID: PMC4791208 DOI: 10.1016/j.bbamcr.2015.09.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Peroxisomes proliferate by growth and division of pre-existing peroxisomes or could arise de novo. Though the de novo pathway of peroxisome biogenesis is a more recent discovery, several studies have highlighted key mechanistic details of the pathway. The endoplasmic reticulum (ER) is the primary source of lipids and proteins for the newly-formed peroxisomes. More recently, an intricate sorting process functioning at the ER has been proposed, that segregates specific PMPs first to peroxisome-specific ER domains (pER) and then assembles PMPs selectively into distinct pre-peroxisomal vesicles (ppVs) that later fuse to form import-competent peroxisomes. In addition, plausible roles of the three key peroxins Pex3, Pex16 and Pex19, which are also central to the growth and division pathway, have been suggested in the de novo process. In this review, we discuss key developments and highlight the unexplored avenues in de novo peroxisome biogenesis.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA.
| |
Collapse
|
13
|
Cross LL, Ebeed HT, Baker A. Peroxisome biogenesis, protein targeting mechanisms and PEX gene functions in plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:850-62. [DOI: 10.1016/j.bbamcr.2015.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022]
|
14
|
Kamisugi Y, Mitsuya S, El‐Shami M, Knight CD, Cuming AC, Baker A. Giant peroxisomes in a moss (Physcomitrella patens) peroxisomal biogenesis factor 11 mutant. THE NEW PHYTOLOGIST 2016; 209:576-89. [PMID: 26542980 PMCID: PMC4738463 DOI: 10.1111/nph.13739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/01/2015] [Indexed: 05/22/2023]
Abstract
Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and plants, and play a role in peroxisome morphology and regulation of peroxisome division. The moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to those found in monocots and dicots. We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the morphological and cellular phenotypes of the wild-type and mutant strains. The mutant grew more slowly and the development of gametophores was retarded. Mutant chloronemal filaments contained large cellular structures which excluded all other cellular organelles. Expression of fluorescent reporter proteins revealed that the mutant strain had greatly enlarged peroxisomes up to 10 μm in diameter. Expression of a vacuolar membrane marker confirmed that the enlarged structures were not vacuoles, or peroxisomes sequestered within vacuoles as a result of pexophagy. Phypa_PEX11 targeted to peroxisome membranes could rescue the knock out phenotype and interacted with Fission1 on the peroxisome membrane. Moss PEX11 functions in peroxisome division similar to PEX11 in other organisms but the mutant phenotype is more extreme and environmentally determined, making P. patens a powerful system in which to address mechanisms of peroxisome proliferation and division.
Collapse
Affiliation(s)
- Yasuko Kamisugi
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Shiro Mitsuya
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Mahmoud El‐Shami
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Celia D. Knight
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Andrew C. Cuming
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Alison Baker
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
15
|
Hawes C, Kiviniemi P, Kriechbaumer V. The endoplasmic reticulum: a dynamic and well-connected organelle. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:50-62. [PMID: 25319240 DOI: 10.1111/jipb.12297] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
The endoplasmic reticulum forms the first compartment in a series of organelles which comprise the secretory pathway. It takes the form of an extremely dynamic and pleomorphic membrane-bounded network of tubules and cisternae which have numerous different cellular functions. In this review, we discuss the nature of endoplasmic reticulum structure and dynamics, its relationship with closely associated organelles, and its possible function as a highway for the distribution and delivery of a diverse range of structures from metabolic complexes to viral particles.
Collapse
Affiliation(s)
- Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | | |
Collapse
|
16
|
Burkhart SE, Kao YT, Bartel B. Peroxisomal ubiquitin-protein ligases peroxin2 and peroxin10 have distinct but synergistic roles in matrix protein import and peroxin5 retrotranslocation in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1329-44. [PMID: 25214533 PMCID: PMC4226347 DOI: 10.1104/pp.114.247148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/11/2014] [Indexed: 05/20/2023]
Abstract
Peroxisomal matrix proteins carry peroxisomal targeting signals (PTSs), PTS1 or PTS2, and are imported into the organelle with the assistance of peroxin (PEX) proteins. From a microscopy-based screen to identify Arabidopsis (Arabidopsis thaliana) mutants defective in matrix protein degradation, we isolated unique mutations in PEX2 and PEX10, which encode ubiquitin-protein ligases anchored in the peroxisomal membrane. In yeast (Saccharomyces cerevisiae), PEX2, PEX10, and a third ligase, PEX12, ubiquitinate a peroxisome matrix protein receptor, PEX5, allowing the PEX1 and PEX6 ATP-hydrolyzing enzymes to retrotranslocate PEX5 out of the membrane after cargo delivery. We found that the pex2-1 and pex10-2 Arabidopsis mutants exhibited defects in peroxisomal physiology and matrix protein import. Moreover, the pex2-1 pex10-2 double mutant exhibited severely impaired growth and synergistic physiological defects, suggesting that PEX2 and PEX10 function cooperatively in the wild type. The pex2-1 lesion restored the unusually low PEX5 levels in the pex6-1 mutant, implicating PEX2 in PEX5 degradation when retrotranslocation is impaired. PEX5 overexpression altered pex10-2 but not pex2-1 defects, suggesting that PEX10 facilitates PEX5 retrotranslocation from the peroxisomal membrane. Although the pex2-1 pex10-2 double mutant displayed severe import defects of both PTS1 and PTS2 proteins into peroxisomes, both pex2-1 and pex10-2 single mutants exhibited clear import defects of PTS1 proteins but apparently normal PTS2 import. A similar PTS1-specific pattern was observed in the pex4-1 ubiquitin-conjugating enzyme mutant. Our results indicate that Arabidopsis PEX2 and PEX10 cooperate to support import of matrix proteins into plant peroxisomes and suggest that some PTS2 import can still occur when PEX5 retrotranslocation is slowed.
Collapse
Affiliation(s)
- Sarah E Burkhart
- Department of BioSciences, Rice University, Houston, Texas 77005
| | - Yun-Ting Kao
- Department of BioSciences, Rice University, Houston, Texas 77005
| | - Bonnie Bartel
- Department of BioSciences, Rice University, Houston, Texas 77005
| |
Collapse
|
17
|
Griffing LR, Gao HT, Sparkes I. ER network dynamics are differentially controlled by myosins XI-K, XI-C, XI-E, XI-I, XI-1, and XI-2. FRONTIERS IN PLANT SCIENCE 2014; 5:218. [PMID: 24904614 PMCID: PMC4033215 DOI: 10.3389/fpls.2014.00218] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 05/01/2014] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) of higher plants is a complex network of tubules and cisternae. Some of the tubules and cisternae are relatively persistent, while others are dynamically moving and remodeling through growth and shrinkage, cycles of tubule elongation and retraction, and cisternal expansion and diminution. Previous work showed that transient expression in tobacco leaves of the motor-less, truncated tail of myosin XI-K increases the relative area of both persistent cisternae and tubules in the ER. Likewise, transient expression of XI-K tail diminishes the movement of organelles such as Golgi and peroxisomes. To examine whether other class XI myosins are involved in the remodeling and movement of the ER, other myosin XIs implicated in organelle movement, XI-1 (MYA1),XI-2 (MYA2), XI-C, XI-E, XI-I, and one not, XI-A, were expressed as motor-less tail constructs and their effect on ER persistent structures determined. Here, we indicate a differential effect on ER dynamics whereby certain class XI myosins may have more influence over controlling cisternalization rather than tubulation.
Collapse
Affiliation(s)
| | - Hongbo T. Gao
- Biosciences, College of Life and Environmental Sciences, Exeter UniversityExeter, UK
| | - Imogen Sparkes
- Biosciences, College of Life and Environmental Sciences, Exeter UniversityExeter, UK
| |
Collapse
|
18
|
Abstract
PMPs (peroxisome membrane proteins) play essential roles in organelle biogenesis and in co-ordinating peroxisomal metabolism with pathways in other subcellular compartments through transport of metabolites and the operation of redox shuttles. Although the import of soluble proteins into the peroxisome matrix has been well studied, much less is known about the trafficking of PMPs. Pex3 and Pex19 (and Pex16 in mammals) were identified over a decade ago as critical components of PMP import; however, it has proved surprisingly difficult to produce a unified model for their function in PMP import and peroxisome biogenesis. It has become apparent that each of these peroxins has multiple functions and in the present review we focus on both the classical and the more recently identified roles of Pex19 and Pex3 as informed by structural, biochemical and live cell imaging studies. We consider the different models proposed for peroxisome biogenesis and the role of PMP import within them, and propose that the differences may be more perceived than real and may reflect the highly dynamic nature of peroxisomes.
Collapse
|
19
|
Burén S, Ortega-Villasante C, Otvös K, Samuelsson G, Bakó L, Villarejo A. Use of the foot-and-mouth disease virus 2A peptide co-expression system to study intracellular protein trafficking in Arabidopsis. PLoS One 2012; 7:e51973. [PMID: 23251667 PMCID: PMC3522588 DOI: 10.1371/journal.pone.0051973] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 11/09/2012] [Indexed: 12/11/2022] Open
Abstract
Background A tool for stoichiometric co-expression of effector and target proteins to study intracellular protein trafficking processes has been provided by the so called 2A peptide technology. In this system, the 16–20 amino acid 2A peptide from RNA viruses allows synthesis of multiple gene products from single transcripts. However, so far the use of the 2A technology in plant systems has been limited. Methodology/Principal Findings The aim of this work was to assess the suitability of the 2A peptide technology to study the effects exerted by dominant mutant forms of three small GTPase proteins, RABD2a, SAR1, and ARF1 on intracellular protein trafficking in plant cells. Special emphasis was given to CAH1 protein from Arabidopsis, which is trafficking to the chloroplast via a poorly characterized endoplasmic reticulum-to-Golgi pathway. Dominant negative mutants for these GTPases were co-expressed with fluorescent marker proteins as polyproteins separated by a 20 residue self-cleaving 2A peptide. Cleavage efficiency analysis of the generated polyproteins showed that functionality of the 2A peptide was influenced by several factors. This enabled us to design constructs with greatly increased cleavage efficiency compared to previous studies. The dominant negative GTPase variants resulting from cleavage of these 2A peptide constructs were found to be stable and active, and were successfully used to study the inhibitory effect on trafficking of the N-glycosylated CAH1 protein through the endomembrane system. Conclusions/Significance We demonstrate that the 2A peptide is a suitable tool when studying plant intracellular protein trafficking and that transient protoplast and in planta expression of mutant forms of SAR1 and RABD2a disrupts CAH1 trafficking. Similarly, expression of dominant ARF1 mutants also caused inhibition of CAH1 trafficking to a different extent. These results indicate that early trafficking of the plastid glycoprotein CAH1 depends on canonical vesicular transport mechanisms operating between the endoplasmic reticulum and Golgi apparatus.
Collapse
Affiliation(s)
- Stefan Burén
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK. Plant peroxisomes: biogenesis and function. THE PLANT CELL 2012; 24:2279-303. [PMID: 22669882 PMCID: PMC3406917 DOI: 10.1105/tpc.112.096586] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Peroxisomes are eukaryotic organelles that are highly dynamic both in morphology and metabolism. Plant peroxisomes are involved in numerous processes, including primary and secondary metabolism, development, and responses to abiotic and biotic stresses. Considerable progress has been made in the identification of factors involved in peroxisomal biogenesis, revealing mechanisms that are both shared with and diverged from non-plant systems. Furthermore, recent advances have begun to reveal an unexpectedly large plant peroxisomal proteome and have increased our understanding of metabolic pathways in peroxisomes. Coordination of the biosynthesis, import, biochemical activity, and degradation of peroxisomal proteins allows for highly dynamic responses of peroxisomal metabolism to meet the needs of a plant. Knowledge gained from plant peroxisomal research will be instrumental to fully understanding the organelle's dynamic behavior and defining peroxisomal metabolic networks, thus allowing the development of molecular strategies for rational engineering of plant metabolism, biomass production, stress tolerance, and pathogen defense.
Collapse
Affiliation(s)
- Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Martín JF, Ullán RV, García-Estrada C. Role of peroxisomes in the biosynthesis and secretion of β-lactams and other secondary metabolites. J Ind Microbiol Biotechnol 2011; 39:367-82. [PMID: 22160272 DOI: 10.1007/s10295-011-1063-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/16/2011] [Indexed: 12/01/2022]
Abstract
Peroxisomes are eukaryotic organelles surrounded by a single bilayer membrane, containing a variety of proteins depending on the organism; they mainly perform degradation reactions of toxic metabolites (detoxification), catabolism of linear and branched-chain fatty acids, and removal of H(2)O(2) (formed in some oxidative processes) by catalase. Proteins named peroxins are involved in recruiting, transporting, and introducing the peroxisomal matrix proteins into the peroxisomes. The matrix proteins contain the peroxisomal targeting signals PTS1 and/or PTS2 that are recognized by the peroxins Pex5 and Pex7, respectively. Initial evidence indicated that the penicillin biosynthetic enzyme isopenicillin N acyltransferase (IAT) of Penicillium chrysogenum is located inside peroxisomes. There is now solid evidence (based on electron microscopy and/or biochemical data) confirming that IAT and the phenylacetic acid- and fatty acid-activating enzymes are also located in peroxisomes. Similarly, the Acremonium chrysogenum CefD1 and CefD2 proteins that perform the central reactions (activation and epimerization of isopenicillin N) of the cephalosporin pathway are targeted to peroxisomes. Growing evidence supports the conclusion that some enzymes involved in the biosynthesis of mycotoxins (e.g., AK-toxin), and the biosynthesis of signaling molecules in plants (e.g., jasmonic acid or auxins) occur in peroxisomes. The high concentration of substrates (in many cases toxic to the cytoplasm) and enzymes inside the peroxisomes allows efficient synthesis of metabolites with interesting biological or pharmacological activities. This compartmentalization poses additional challenges to the cell due to the need to import the substrates into the peroxisomes and to export the final products; the transporters involved in these processes are still very poorly known. This article focuses on new aspects of the metabolic processes occurring in peroxisomes, namely the degradation and detoxification processes that lead to the biosynthesis and secretion of secondary metabolites.
Collapse
Affiliation(s)
- Juan-Francisco Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain.
| | | | | |
Collapse
|
23
|
Zhang X, De Marcos Lousa C, Schutte-Lensink N, Ofman R, Wanders RJ, Baldwin SA, Baker A, Kemp S, Theodoulou FL. Conservation of targeting but divergence in function and quality control of peroxisomal ABC transporters: an analysis using cross-kingdom expression. Biochem J 2011; 436:547-57. [PMID: 21476988 DOI: 10.1042/bj20110249] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
ABC (ATP-binding cassette) subfamily D transporters are found in all eukaryotic kingdoms and are known to play essential roles in mammals and plants; however, their number, organization and physiological contexts differ. Via cross-kingdom expression experiments, we have explored the conservation of targeting, protein stability and function between mammalian and plant ABCD transporters. When expressed in tobacco epidermal cells, the mammalian ABCD proteins ALDP (adrenoleukodystrophy protein), ALDR (adrenoleukodystrophy-related protein) and PMP70 (70 kDa peroxisomal membrane protein) targeted faithfully to peroxisomes and P70R (PMP70-related protein) targeted to the ER (endoplasmic reticulum), as in the native host. The Arabidopsis thaliana peroxin AtPex19_1 interacted with human peroxisomal ABC transporters both in vivo and in vitro, providing an explanation for the fidelity of targeting. The fate of X-linked adrenoleukodystrophy disease-related mutants differed between fibroblasts and plant cells. In fibroblasts, levels of ALDP in some 'protein-absent' mutants were increased by low-temperature culture, in some cases restoring function. In contrast, all mutant ALDP proteins examined were stable and correctly targeted in plant cells, regardless of their fate in fibroblasts. ALDR complemented the seed germination defect of the Arabidopsis cts-1 mutant which lacks the peroxisomal ABCD transporter CTS (Comatose), but neither ALDR nor ALDP was able to rescue the defect in fatty acid β-oxidation in establishing seedlings. Taken together, our results indicate that the mechanism for trafficking of peroxisomal membrane proteins is shared between plants and mammals, but suggest differences in the sensing and turnover of mutant ABC transporter proteins and differences in substrate specificity and/or function.
Collapse
Affiliation(s)
- Xuebin Zhang
- Biological Chemistry Department, Rothamsted Research, Harpenden, Herts. AL5 2JQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brown LA, O'Leary-Steele C, Brookes P, Armitage L, Kepinski S, Warriner SL, Baker A. A small molecule with differential effects on the PTS1 and PTS2 peroxisome matrix import pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:980-90. [PMID: 21323771 DOI: 10.1111/j.1365-313x.2010.04473.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The use of small molecules has great power to dissect biological processes. This study presents the identification and characterisation of an inhibitor of peroxisome matrix protein import. A mini-screen was carried out to identify molecules that cause alteration in peroxisome morphology, or mislocalization of a peroxisome targeted fluorescent reporter protein. A benzimidazole lead compound (LDS-003655) was identified that resulted in reduced GFP fluorescence in peroxisomes and cytosolic GFP accumulation. The effect of the compound was specific to peroxisomes as Golgi bodies, endoplasmic reticulum and the actin cytoskeleton were unaffected even at 25 μM, whereas peroxisome import via the PTS1 pathway was compromised at 100 nM. When seedlings were grown on 25 μM LDS-003655 they displayed morphology typical of seedlings grown in the presence of auxin, and expression of the auxin reporter DR5::GFP was induced. Analysis of a focussed library of LDS-003655 derivatives in comparison with known auxins led to the conclusion that the auxin-like activity of LDS-003655 is attributable to its in situ hydrolysis giving rise to 2,5-dichlorobenzoic acid, whereas the import inhibiting activity of LDS-003655 requires the whole molecule. None of the auxins tested had any effect on peroxisome protein import. Matrix import by the PTS2 import pathway was relatively insensitive to LDS-003655 and its active analogues, with effects only seen after prolonged incubation on high concentrations. Steady-state protein levels of PEX5, the PTS1 import pathway receptor, were reduced in the presence of 100 nM LDS-003655, suggesting a possible mechanism for the import inhibition.
Collapse
Affiliation(s)
- Laura-Anne Brown
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS29JT, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Kaur N, Hu J. Defining the plant peroxisomal proteome: from Arabidopsis to rice. FRONTIERS IN PLANT SCIENCE 2011; 2:103. [PMID: 22645559 PMCID: PMC3355810 DOI: 10.3389/fpls.2011.00103] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/08/2011] [Indexed: 05/08/2023]
Abstract
Peroxisomes are small subcellular organelles mediating a multitude of processes in plants. Proteomics studies over the last several years have yielded much needed information on the composition of plant peroxisomes. In this review, the status of peroxisome proteomics studies in Arabidopsis and other plant species and the cumulative advances made through these studies are summarized. A reference Arabidopsis peroxisome proteome is generated, and some unique aspects of Arabidopsis peroxisomes that were uncovered through proteomics studies and hint at unanticipated peroxisomal functions are also highlighted. Knowledge gained from Arabidopsis was utilized to compile a tentative list of peroxisome proteins for the model monocot plant, rice. Differences in the peroxisomal proteome between these two model plants were drawn, and novel facets in rice were expounded upon. Finally, we discuss about the current limitations of experimental proteomics in decoding the complete and dynamic makeup of peroxisomes, and complementary and integrated approaches that would be beneficial to defining the peroxisomal metabolic and regulatory roadmaps. The synteny of genomes in the grass family makes rice an ideal model to study peroxisomes in cereal crops, in which these organelles have received much less attention, with the ultimate goal to improve crop yield.
Collapse
Affiliation(s)
- Navneet Kaur
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
- Plant Biology Department, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Jianping Hu, MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA. e-mail:
| |
Collapse
|
26
|
Abstract
Plant peroxisomes are extremely dynamic, moving and undergoing changes of shape in response to metabolic and environmental signals. Matrix proteins are imported via one of two import pathways, depending on the targeting signal within the protein. Each pathway has a specific receptor but utilizes common membrane-bound translocation machinery. Current models invoke receptor recycling, which may involve cycles of ubiquitination. Some components of the import machinery may also play a role in proteolytic turnover of matrix proteins, prompting parallels with the endoplasmic-reticulum-associated degradation pathway. Peroxisome membrane proteins, some of which are imported post-translationally, others of which may traffic to peroxisomes via the endoplasmic reticulum, use distinct proteinaceous machinery. The isolation of mutants defective in peroxisome biogenesis has served to emphasize the important role of peroxisomes at all stages of the plant life cycle.
Collapse
|
27
|
Landrum M, Smertenko A, Edwards R, Hussey PJ, Steel PG. BODIPY probes to study peroxisome dynamics in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:529-38. [PMID: 20113442 DOI: 10.1111/j.1365-313x.2010.04153.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a continuing need for bioprobes that are target-specific and combine speed of delivery with maintenance of normal cell behaviour. Towards this end, we are developing small pro-fluorescent molecules that provide such specificity through chemical activation by biomolecules. We have generated a set of BODIPY (boron dipyrromethane) fluorophores, including one that is intrinsically non-fluorescent but on incubation with cells becomes fluorescent at its target site. Addition of these BODIPY probes to plant cells identifies peroxisomes, as verified by co-localization with an SKL-FP construct. Interestingly, in mammalian cells, co-localization with the mammalian peroxisomal marker SelectFX(TM) was not observed. These data suggest fundamental differences in peroxisome composition, development or function between plant and animal cells.
Collapse
Affiliation(s)
- Marie Landrum
- Centre for Bioactive Chemistry, Department of Chemistry, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, UK
| | | | | | | | | |
Collapse
|
28
|
Sparkes I, Tolley N, Aller I, Svozil J, Osterrieder A, Botchway S, Mueller C, Frigerio L, Hawes C. Five Arabidopsis reticulon isoforms share endoplasmic reticulum location, topology, and membrane-shaping properties. THE PLANT CELL 2010; 22:1333-43. [PMID: 20424177 PMCID: PMC2879755 DOI: 10.1105/tpc.110.074385] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/25/2010] [Accepted: 04/03/2010] [Indexed: 05/20/2023]
Abstract
The cortical endoplasmic reticulum (ER) in tobacco (Nicotiana tabacum) epidermal cells is a network of tubules and cisternae undergoing dramatic rearrangements. Reticulons are integral membrane proteins involved in shaping ER tubules. Here, we characterized the localization, topology, effect, and interactions of five Arabidopsis thaliana reticulons (RTNs), isoforms 1-4 and 13, in the cortical ER. Our results indicate that RTNLB13 and RTNLB1-4 colocate to and constrict the tubular ER membrane. All five RTNs preferentially accumulate on ER tubules and are excluded from ER cisternae. All isoforms share the same transmembrane topology, with N and C termini facing the cytosol and four transmembrane domains. We show by Förster resonance energy transfer and fluorescence lifetime imaging microscopy that several RTNs have the capacity to interact with themselves and each other, and we suggest that oligomerization is responsible for their residence in the ER membrane. We also show that a complete reticulon homology domain is required for both RTN residence in high-curvature ER membranes and ER tubule constriction, yet it is not necessary for homotypic interactions.
Collapse
Affiliation(s)
- Imogen Sparkes
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Nicholas Tolley
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Isabel Aller
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
- Institute for Plant Sciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Julia Svozil
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
- Institute of Plant, Animal, and Agroecosystem Sciences, ETH (Swiss Federal Institute of Technology) Zurich, 8092 Zurich, Switzerland
| | - Anne Osterrieder
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Stanley Botchway
- Central Laser Facility, Science and Technology Facilities Council Harwell Science Innovation Campus, Didcot, Oxon OX11 0QX, United Kingdom
| | - Christopher Mueller
- Institute for Plant Sciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Lorenzo Frigerio
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Chris Hawes
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
29
|
Genovés A, Navarro JA, Pallás V. The Intra- and intercellular movement of Melon necrotic spot virus (MNSV) depends on an active secretory pathway. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:263-72. [PMID: 20121448 DOI: 10.1094/mpmi-23-3-0263] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant viruses hijack endogenous host transport machinery to aid their intracellular spread. Here, we study the localization of the p7B, the membrane-associated viral movement protein (MP) of the Melon necrotic spot virus (MNSV), and also the potential involvement of the secretory pathway on the p7B targeting and intra- and intercellular virus movements. p7B fused to fluorescent proteins was located throughout the endoplasmic reticulum (ER) at motile Golgi apparatus (GA) stacks that actively tracked the actin microfilaments, and at the plasmodesmata (PD). Hence, the secretory pathway inhibitor, Brefeldin A (BFA), and the overexpression of the GTPase-defective mutant of Sar1p, Sar1[H74L], fully retained the p7B within the ER, revealing that the protein is delivered to PD in a BFA-sensitive and COPII-dependent manner. Disruption of the actin cytoskeleton with latrunculin B led to the accumulation of p7B in the ER, which strongly suggests that p7B is also targeted to the cell periphery in an actin-dependent manner. Remarkably, the local spread of the viral infection was significantly restricted either with the presence of BFA or under the overexpression of Sar1[H74L], thus revealing the involvement of an active secretory pathway in the intracellular movement of MNSV. Overall, these findings support a novel route for the intracellular transport of a plant virus led by the GA.
Collapse
Affiliation(s)
- Ainhoa Genovés
- Instituto Biologia Molecular y Celular de Plantas, Universidad Politécnica, Universidad Politécnica de Valencia-CSIC, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | | | | |
Collapse
|
30
|
Mitsuya S, El-Shami M, Sparkes IA, Charlton WL, De Marcos Lousa C, Johnson B, Baker A. Salt stress causes peroxisome proliferation, but inducing peroxisome proliferation does not improve NaCl tolerance in Arabidopsis thaliana. PLoS One 2010; 5:e9408. [PMID: 20195524 PMCID: PMC2827565 DOI: 10.1371/journal.pone.0009408] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/03/2010] [Indexed: 11/18/2022] Open
Abstract
The PEX11 family of peroxisome membrane proteins have been shown to be involved in regulation of peroxisome size and number in plant, animals, and yeast cells. We and others have previously suggested that peroxisome proliferation as a result of abiotic stress may be important in plant stress responses, and recently it was reported that several rice PEX11 genes were up regulated in response to abiotic stress. We sought to test the hypothesis that promoting peroxisome proliferation in Arabidopsis thaliana by over expression of one PEX11 family member, PEX11e, would give increased resistance to salt stress. We could demonstrate up regulation of PEX11e by salt stress and increased peroxisome number by both PEX11e over expression and salt stress, however our experiments failed to find a correlation between PEX11e over expression and increased peroxisome metabolic activity or resistance to salt stress. This suggests that although peroxisome proliferation may be a consequence of salt stress, it does not affect the ability of Arabidopsis plants to tolerate saline conditions.
Collapse
Affiliation(s)
- Shiro Mitsuya
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Mahmoud El-Shami
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Imogen A. Sparkes
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Wayne L. Charlton
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Barbara Johnson
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Alison Baker
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
31
|
Graumann K, Runions J, Evans DE. Characterization of SUN-domain proteins at the higher plant nuclear envelope. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:134-44. [PMID: 19807882 DOI: 10.1111/j.1365-313x.2009.04038.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sad1/UNC-84 (SUN)-domain proteins are inner nuclear membrane (INM) proteins that are part of bridging complexes linking cytoskeletal elements with the nucleoskeleton, and have been shown to be conserved in non-plant systems. In this paper, we report the presence of members of this family in the plant kingdom, and investigate the two Arabidopsis SUN-domain proteins, AtSUN1 and AtSUN2. Our results indicate they contain the highly conserved C-terminal SUN domain, and share similar structural features with animal and fungal SUN-domain proteins including a functional coiled-coil domain and nuclear localization signal. Both are expressed in various tissues with AtSUN2 expression levels relatively low but upregulated in proliferating tissues. Further, we found AtSUN1 and AtSUN2 expressed as fluorescent protein fusions, to localize to and show low mobility in the nuclear envelope (NE), particularly in the INM. Deletion of various functional domains including the N terminus and coiled-coil domain affect the localization and increase the mobility of AtSUN1 and AtSUN2. Finally, we present evidence that AtSUN1 and AtSUN2 are present as homomers and heteromers in vivo, and that the coiled-coil domains are required for this. The study provides evidence suggesting the existence of cytoskeletal-nucleoskeletal bridging complexes at the plant NE.
Collapse
Affiliation(s)
- Katja Graumann
- School of Life Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | | | | |
Collapse
|
32
|
Rodríguez-Serrano M, Romero-Puertas MC, Sparkes I, Hawes C, del Río LA, Sandalio LM. Peroxisome dynamics in Arabidopsis plants under oxidative stress induced by cadmium. Free Radic Biol Med 2009; 47:1632-9. [PMID: 19765646 DOI: 10.1016/j.freeradbiomed.2009.09.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 08/12/2009] [Accepted: 09/09/2009] [Indexed: 11/26/2022]
Abstract
Peroxisomes are organelles with an essentially oxidative metabolism that are involved in various metabolic pathways such as fatty acid beta-oxidation, photorespiration, and metabolism of reactive oxygen species (ROS) and reactive nitrogen species. These organelles are highly dynamic but there is little information about the regulation of, and the effects of environment on, peroxisome movement. In this work a stable Arabidopsis line expressing the GFP-SKL peptide targeted to peroxisomes was characterized. Peroxisome-associated fluorescence was observed in all tissues, including leaves (mesophyll and epidermal cells, trichomes, and stomata) and roots. The dynamics of peroxisomes in epidermal cells was examined by confocal laser microscope, and various types of movement were observed. The speed of movement differed depending on the plant age. Treatment of plants with CdCl(2) (100 microM) produced a significant increase in speed, which was dependent on endogenous ROS and Ca(2+), but was not related to actin cytoskeleton modifications. In light of the results obtained, it is proposed that the increase in peroxisomal motility observed in Arabidopsis plants could be a cellular mechanism of protection against the Cd-imposed oxidative stress. Other possible roles for the enhanced peroxisome movement in plant cell physiology are discussed.
Collapse
Affiliation(s)
- María Rodríguez-Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, 18080 Granada, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Kamigaki A, Kondo M, Mano S, Hayashi M, Nishimura M. Suppression of peroxisome biogenesis factor 10 reduces cuticular wax accumulation by disrupting the ER network in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2009; 50:2034-46. [PMID: 19892830 DOI: 10.1093/pcp/pcp152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peroxisome biogenesis factor 10 (PEX10) is a component of the peroxisomal matrix protein import machinery. To analyze the physiological function of PEX10, we used transgenic AtPEX10i Arabidopsis plants that had suppressed expression of the PEX10 gene due to RNA interference. AtPEX10i plants had patches of paleness on leaves, and abnormal floral organs that were typical of cuticular wax-deficient mutants. Quantitative analysis of cuticular wax revealed that the amount of wax in AtPEX10i plants was indeed lower than that in control plants. This result was confirmed by toluidine blue staining and scanning electron microscopic analysis of AtPEX10i. The CER1, CER4, WAX2 and SHN1 genes are known to be responsible for wax biosynthesis in Arabidopsis. Of these, CER1, CER4 and WAX2 were found to be localized on the endoplasmic reticulum (ER). In AtPEX10i plants, the expression of these genes was down-regulated, and CER1, CER4 and WAX2 were mislocalized to the cytosol. We also found that AtPEX10i plants had defects in ER morphology. Based on these results, we propose that PEX10 is essential for the maintenance of ER morphology and for the expression of CER1, CER4, WAX2 and SHN1 genes, which contribute to the biosynthesis of cuticular wax.
Collapse
Affiliation(s)
- Akane Kamigaki
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | | | | | | | | |
Collapse
|
34
|
Sparkes I, Runions J, Hawes C, Griffing L. Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves. THE PLANT CELL 2009; 21:3937-49. [PMID: 20040535 PMCID: PMC2814503 DOI: 10.1105/tpc.109.072249] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/19/2009] [Accepted: 12/07/2009] [Indexed: 05/18/2023]
Abstract
Using a novel analytical tool, this study investigates the relative roles of actin, microtubules, myosin, and Golgi bodies on form and movement of the endoplasmic reticulum (ER) in tobacco (Nicotiana tabacum) leaf epidermal cells. Expression of a subset of truncated class XI myosins, which interfere with the activity of native class XI myosins, and drug-induced actin depolymerization produce a more persistent network of ER tubules and larger persistent cisternae. The treatments differentially affect two persistent size classes of cortical ER cisternae, those >0.3 microm(2) and those smaller, called punctae. The punctae are not Golgi, and ER remodeling occurs in the absence of Golgi bodies. The treatments diminish the mobile fraction of ER membrane proteins but not the diffusive flow of mobile membrane proteins. The results support a model whereby ER network remodeling is coupled to the directionality but not the magnitude of membrane surface flow, and the punctae are network nodes that act as foci of actin polymerization, regulating network remodeling through exploratory tubule growth and myosin-mediated shrinkage.
Collapse
Affiliation(s)
- I. Sparkes
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - J. Runions
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - C. Hawes
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - L. Griffing
- Biology Department, Texas A&M University, College Station, Texas 77843-3258
| |
Collapse
|
35
|
Osterrieder A, Hummel E, Carvalho CM, Hawes C. Golgi membrane dynamics after induction of a dominant-negative mutant Sar1 GTPase in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:405-22. [PMID: 19861656 DOI: 10.1093/jxb/erp315] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An inducible system has been established in Nicotiana tabacum plants allowing controlled expression of Sar1-GTP and thus the investigation of protein dynamics after inhibition of endoplasmic reticulum (ER) to Golgi transport. Complete Golgi disassembly and redistribution of Golgi markers into the ER was observed within 18-24h after induction. At the ultrastructural level Sar1-GTP expression led to a decrease in Golgi stack size followed by Golgi fragmentation and accumulation of vesicle remnants. Induction of Sar1-GTP resulted in redistribution of the green fluorescent protein (GFP)-tagged Arabidopsis golgins AtCASP and GC1 (golgin candidate 1, an Arabidopsis golgin 84 isoform) into the ER or cytoplasm, respectively. Additionally, both fusion proteins were observed in punctate structures, which co-located with a yellow fluorescent protein (YFP)-tagged version of Sar1-GTP. The Sar1-GTP-inducible system is compared with constitutive Sar1-GTP expression and brefeldin A treatment, and its potential for the study of the composition of ER exit sites and early cis-Golgi structures is discussed.
Collapse
Affiliation(s)
- Anne Osterrieder
- School of Life Sciences, Oxford Brookes University, Headington, Oxford, UK
| | | | | | | |
Collapse
|
36
|
Abstract
The ER (endoplasmic reticulum) in higher plants forms a pleomorphic web of membrane tubules and small cisternae that pervade the cytoplasm, but in particular form a polygonal network at the cortex of the cell which may be anchored to the plasma membrane. The network is associated with the actin cytoskeleton and demonstrates extensive mobility, which is most likely to be dependent on myosin motors. The ER is characterized by a number of domains which may be associated with specific functions such as protein storage, or with direct interaction with other organelles such as the Golgi apparatus, peroxisomes and plastids. In the present review we discuss the nature of the network, the role of shape-forming molecules such as the recently described reticulon family of proteins and the function of some of the major domains within the ER network.
Collapse
|
37
|
Zehmer JK, Bartz R, Bisel B, Liu P, Seemann J, Anderson RGW. Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets. J Cell Sci 2009; 122:3694-702. [PMID: 19773358 DOI: 10.1242/jcs.054700] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid droplets are sites of neutral lipid storage thought to be actively involved in lipid homeostasis. A popular model proposes that droplets are formed in the endoplasmic reticulum (ER) by a process that begins with the deposition of neutral lipids between the membrane bilayer. As the droplet grows, it becomes surrounded by a monolayer of phospholipid derived from the outer half of the ER membrane, which contains integral membrane proteins anchored by hydrophobic regions. This model predicts that for an integral droplet protein inserted into the outer half of the ER membrane to reach the forming droplet, it must migrate in the plane of the membrane to sites of lipid accumulation. Here, we report the results of experiments that directly test this hypothesis. Using two integral droplet proteins that contain unique hydrophobic targeting sequences (AAM-B and UBXD8), we present evidence that both proteins migrate from their site of insertion in the ER to droplets that are forming in response to fatty acid supplementation. Migration to droplets occurs even when further protein synthesis is inhibited or dominant-negative Sar1 blocks transport to the Golgi complex. Surprisingly, when droplets are induced to disappear from the cell, both proteins return to the ER as the level of neutral lipid declines. These data suggest that integral droplet proteins form from and regress to the ER as part of a cyclic process that does not involve traffic through the secretory pathway.
Collapse
Affiliation(s)
- John K Zehmer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
38
|
Avisar D, Abu-Abied M, Belausov E, Sadot E, Hawes C, Sparkes IA. A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. PLANT PHYSIOLOGY 2009; 150:700-9. [PMID: 19369591 PMCID: PMC2689979 DOI: 10.1104/pp.109.136853] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 04/08/2009] [Indexed: 05/17/2023]
Abstract
Gene families with multiple members are predicted to have individuals with overlapping functions. We examined all of the Arabidopsis (Arabidopsis thaliana) myosin family members for their involvement in Golgi and other organelle motility. Truncated fragments of all 17 annotated Arabidopsis myosins containing either the IQ tail or tail domains only were fused to fluorescent markers and coexpressed with a Golgi marker in two different plants. We tracked and calculated Golgi body displacement rate in the presence of all myosin truncations and found that tail fragments of myosins MYA1, MYA2, XI-C, XI-E, XI-I, and XI-K were the best inhibitors of Golgi body movement in the two plants. Tail fragments of myosins XI-B, XI-F, XI-H, and ATM1 had an inhibitory effect on Golgi bodies only in Nicotiana tabacum, while tail fragments of myosins XI-G and ATM2 had a slight effect on Golgi body motility only in Nicotiana benthamiana. The best myosin inhibitors of Golgi body motility were able to arrest mitochondrial movement too. No exclusive colocalization was found between these myosins and Golgi bodies in our system, although the excess of cytosolic signal observed could mask myosin molecules bound to the surface of the organelle. From the preserved actin filaments found in the presence of enhanced green fluorescent protein fusions of truncated myosins and the motility of myosin punctae, we conclude that global arrest of actomyosin-derived cytoplasmic streaming had not occurred. Taken together, our data suggest that the above myosins are involved, directly or indirectly, in the movement of Golgi and mitochondria in plant cells.
Collapse
Affiliation(s)
- Dror Avisar
- Institute of Plant Sciences, Volcani Center, Bet-Dagan 50250, Israel
| | | | | | | | | | | |
Collapse
|
39
|
Johansen JN, Chow CM, Moore I, Hawes C. AtRAB-H1b and AtRAB-H1c GTPases, homologues of the yeast Ypt6, target reporter proteins to the Golgi when expressed in Nicotiana tabacum and Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3179-93. [PMID: 19454595 DOI: 10.1093/jxb/erp153] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Ypt/Rab GTPases act as key regulators of intracellular traffic through the conformational differences exhibited by their GTP or GDP-bound forms. In this paper, two Arabidopsis Ypt6 homologues, AtRAB-H1(b) and AtRAB-H1(c) were characterized and compared. Using a live cell imaging approach, it is shown that yellow fluorescent protein-fusions (YFP) of AtRAB-H1(b) and AtRAB-H1(c) locate to the Golgi and to the cytosol in both Nicotiana tabacum and in Arabidopsis thaliana. In addition, YFP-AtRAB-H1(b) targets an as yet unknown compartment not labelled by YFP-AtRAB-H1(c) or Golgi markers. It is also shown that the subcellular location of YFP-AtRAB-H1(b) and YFP-AtRAB-H1(c) is affected by the state of GTP-binding and that expression of a GTP-deficient mutant results in increased apoplastic fluorescence of a secretory form of YFP.
Collapse
|
40
|
Woollard AAD, Moore I. The functions of Rab GTPases in plant membrane traffic. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:610-9. [PMID: 18952493 DOI: 10.1016/j.pbi.2008.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/02/2008] [Accepted: 09/11/2008] [Indexed: 05/08/2023]
Abstract
Rab GTPases are important determinants of membrane identity and membrane targeting. Higher plants have evolved a unique set of Rab GTPases that presumably reflects the specific demands of plant cell trafficking. In recent years, significant progress has been made in identifying Rab GTPases involved in endosome organisation, cytokinesis and in post-Golgi traffic to the plasma membrane and vacuoles. These include members of the Rab-F1, Rab-F2, Rab-A1, Rab-A2 and Rab-A4 subclasses. Some important regulators or effectors have also been identified for Rab-F, Rab-A1 and Rab-A4 proteins. However, uncertainties remain about the trafficking pathways that connect the compartments in the trans-Golgi/prevacuolar/endosomal system and there is still little or no insight into the functions of several major subclasses within the Rab GTPase family.
Collapse
Affiliation(s)
- Astrid A D Woollard
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
41
|
Eubel H, Meyer EH, Taylor NL, Bussell JD, O'Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH. Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. PLANT PHYSIOLOGY 2008; 148:1809-29. [PMID: 18931141 PMCID: PMC2593673 DOI: 10.1104/pp.108.129999] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/10/2008] [Indexed: 05/17/2023]
Abstract
Peroxisomes play key roles in energy metabolism, cell signaling, and plant development. A better understanding of these important functions will be achieved with a more complete definition of the peroxisome proteome. The isolation of peroxisomes and their separation from mitochondria and other major membrane systems have been significant challenges in the Arabidopsis (Arabidopsis thaliana) model system. In this study, we present new data on the Arabidopsis peroxisome proteome obtained using two new technical advances that have not previously been applied to studies of plant peroxisomes. First, we followed density gradient centrifugation with free-flow electrophoresis to improve the separation of peroxisomes from mitochondria. Second, we used quantitative proteomics to identify proteins enriched in the peroxisome fractions relative to mitochondrial fractions. We provide evidence for peroxisomal localization of 89 proteins, 36 of which have not previously been identified in other analyses of Arabidopsis peroxisomes. Chimeric green fluorescent protein constructs of 35 proteins have been used to confirm their localization in peroxisomes or to identify endoplasmic reticulum contaminants. The distribution of many of these peroxisomal proteins between soluble, membrane-associated, and integral membrane locations has also been determined. This core peroxisomal proteome from nonphotosynthetic cultured cells contains a proportion of proteins that cannot be predicted to be peroxisomal due to the lack of recognizable peroxisomal targeting sequence 1 (PTS1) or PTS2 signals. Proteins identified are likely to be components in peroxisome biogenesis, beta-oxidation for fatty acid degradation and hormone biosynthesis, photorespiration, and metabolite transport. A considerable number of the proteins found in peroxisomes have no known function, and potential roles of these proteins in peroxisomal metabolism are discussed. This is aided by a metabolic network analysis that reveals a tight integration of functions and highlights specific metabolite nodes that most probably represent entry and exit metabolites that could require transport across the peroxisomal membrane.
Collapse
Affiliation(s)
- Holger Eubel
- Australian Research Council Centre of Excellence in Plant Energy Biology, M316 , University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Arai Y, Hayashi M, Nishimura M. Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid beta-oxidation in soybean and Arabidopsis. THE PLANT CELL 2008; 20:3227-40. [PMID: 19073762 PMCID: PMC2630451 DOI: 10.1105/tpc.108.062877] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/05/2008] [Accepted: 11/18/2008] [Indexed: 05/17/2023]
Abstract
We have identified the novel protein Glycine max PEROXISOMAL ADENINE NUCLEOTIDE CARRIER (Gm PNC1) by proteomic analyses of peroxisomal membrane proteins using a blue native/SDS-PAGE technique combined with peptide mass fingerprinting. Gm PNC1, and the Arabidopsis thaliana orthologs At PNC1 and At PNC2, were targeted to peroxisomes. Functional integration of Gm PNC1 and At PNC2 into the cytoplasmic membranes of intact Escherichia coli cells revealed ATP and ADP import activities. The amount of Gm PNC1 in cotyledons increased until 5 d after germination under constant darkness and then decreased very rapidly in response to illumination. We investigated the physiological functions of PNC1 in peroxisomal metabolism by analyzing a transgenic Arabidopsis plant in which At PNC1 and At PNC2 expression was suppressed using RNA interference. The pnc1/2i mutant required sucrose for germination and suppressed the degradation of storage lipids during postgerminative growth. These results suggest that PNC1 contributes to the transport of adenine nucleotides that are consumed by reactions that generate acyl-CoA for peroxisomal fatty acid beta-oxidation during postgerminative growth.
Collapse
Affiliation(s)
- Yuko Arai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Japan
| | | | | |
Collapse
|
43
|
Dietrich D, Schmuths H, De Marcos Lousa C, Baldwin JM, Baldwin SA, Baker A, Theodoulou FL, Holdsworth MJ. Mutations in the Arabidopsis peroxisomal ABC transporter COMATOSE allow differentiation between multiple functions in planta: insights from an allelic series. Mol Biol Cell 2008; 20:530-43. [PMID: 19019987 DOI: 10.1091/mbc.e08-07-0745] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
COMATOSE (CTS), the Arabidopsis homologue of human Adrenoleukodystrophy protein (ALDP), is required for import of substrates for peroxisomal beta-oxidation. A new allelic series and a homology model based on the bacterial ABC transporter, Sav1866, provide novel insights into structure-function relations of ABC subfamily D proteins. In contrast to ALDP, where the majority of mutations result in protein absence from the peroxisomal membrane, all CTS mutants produced stable protein. Mutation of conserved residues in the Walker A and B motifs in CTS nucleotide-binding domain (NBD) 1 resulted in a null phenotype but had little effect in NBD2, indicating that the NBDs are functionally distinct in vivo. Two alleles containing mutations in NBD1 outside the Walker motifs (E617K and C631Y) exhibited resistance to auxin precursors 2,4-dichlorophenoxybutyric acid (2,4-DB) and indole butyric acid (IBA) but were wild type in all other tests. The homology model predicted that the transmission interfaces are domain-swapped in CTS, and the differential effects of mutations in the conserved "EAA motif" of coupling helix 2 supported this prediction, consistent with distinct roles for each NBD. Our findings demonstrate that CTS functions can be separated by mutagenesis and the structural model provides a framework for interpretation of phenotypic data.
Collapse
Affiliation(s)
- Daniela Dietrich
- Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sparkes IA, Teanby NA, Hawes C. Truncated myosin XI tail fusions inhibit peroxisome, Golgi, and mitochondrial movement in tobacco leaf epidermal cells: a genetic tool for the next generation. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2499-512. [PMID: 18503043 PMCID: PMC2423659 DOI: 10.1093/jxb/ern114] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/11/2008] [Accepted: 03/28/2008] [Indexed: 05/18/2023]
Abstract
Although organelle movement in higher plants is predominantly actin-based, potential roles for the 17 predicted Arabidopsis myosins in motility are only just emerging. It is shown here that two Arabidopsis myosins from class XI, XIE, and XIK, are involved in Golgi, peroxisome, and mitochondrial movement. Expression of dominant negative forms of the myosin lacking the actin binding domain at the amino terminus perturb organelle motility, but do not completely inhibit movement. Latrunculin B, an actin destabilizing drug, inhibits organelle movement to a greater extent compared to the effects of AtXIE-T/XIK-T expression. Amino terminal YFP fusions to XIE-T and XIK-T are dispersed throughout the cytosol and do not completely decorate the organelles whose motility they affect. XIE-T and XIK-T do not affect the global actin architecture, but their movement and location is actin-dependent. The potential role of these truncated myosins as genetically encoded inhibitors of organelle movement is discussed.
Collapse
Affiliation(s)
- Imogen A Sparkes
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK.
| | | | | |
Collapse
|
45
|
Werner AK, Sparkes IA, Romeis T, Witte CP. Identification, biochemical characterization, and subcellular localization of allantoate amidohydrolases from Arabidopsis and soybean. PLANT PHYSIOLOGY 2008; 146:418-30. [PMID: 18065556 PMCID: PMC2245841 DOI: 10.1104/pp.107.110809] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 11/26/2007] [Indexed: 05/18/2023]
Abstract
Allantoate amidohydrolases (AAHs) hydrolize the ureide allantoate to ureidoglycolate, CO(2), and two molecules of ammonium. Allantoate degradation is required to recycle purine-ring nitrogen in all plants. Tropical legumes additionally transport fixed nitrogen via allantoin and allantoate into the shoot, where it serves as a general nitrogen source. AAHs from Arabidopsis (Arabidopsis thaliana; AtAAH) and from soybean (Glycine max; GmAAH) were cloned, expressed in planta as StrepII-tagged variants, and highly purified from leaf extracts. Both proteins form homodimers and release 2 mol ammonium/mol allantoate. Therefore, they can truly be classified as AAHs. The kinetic constants determined and the half-maximal activation by 2 to 3 microm manganese are consistent with allantoate being the in vivo substrate of manganese-loaded AAHs. The enzymes were strongly inhibited by micromolar concentrations of fluoride as well as by borate, and by millimolar concentrations of L-asparagine and L-aspartate but not D-asparagine. L-Asparagine likely functions as competitive inhibitor. An Ataah T-DNA mutant, unable to grow on allantoin as sole nitrogen source, is rescued by the expression of StrepII-tagged variants of AtAAH and GmAAH, demonstrating that both proteins are functional in vivo. Similarly, an allantoinase (aln) mutant is rescued by a tagged AtAln variant. Fluorescent fusion proteins of allantoinase and both AAHs localize to the endoplasmic reticulum after transient expression and in transgenic plants. These findings demonstrate that after the generation of allantoin in the peroxisome, plant purine degradation continues in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Andrea K Werner
- Freie Universität Berlin, Institut für Biologie, Abteilung Biochemie der Pflanzen, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
46
|
Scott I, Sparkes IA, Logan DC. The missing link: inter-organellar connections in mitochondria and peroxisomes? TRENDS IN PLANT SCIENCE 2007; 12:380-1; author reply 381-3. [PMID: 17765598 DOI: 10.1016/j.tplants.2007.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 07/12/2007] [Accepted: 08/14/2007] [Indexed: 05/17/2023]
|
47
|
Mullen RT, Trelease RN. The ER-peroxisome connection in plants: Development of the “ER semi-autonomous peroxisome maturation and replication” model for plant peroxisome biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1655-68. [PMID: 17049631 DOI: 10.1016/j.bbamcr.2006.09.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 08/25/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
The perceived role of the ER in the biogenesis of plant peroxisomes has evolved significantly from the original "ER vesiculation" model, which portrayed co-translational import of proteins into peroxisomes originating from the ER, to the "ER semi-autonomous peroxisome" model wherein membrane lipids and post-translationally acquired peroxisomal membrane proteins (PMPs) were derived from the ER. Results from more recent studies of various plant PMPs including ascorbate peroxidase, PEX10 and PEX16, as well as a viral replication protein, have since led to the formulation of a more elaborate "ER semi-autonomous peroxisome maturation and replication" model. Herein we review these results in the context of this newly proposed model and its predecessor models. We discuss also key distinct features of the new model pertaining to its central premise that the ER defines the semi-autonomous maturation (maintenance/assembly/differentiation) and duplication (division) features of specialized classes of pre-existing plant peroxisomes. This model also includes a novel peroxisome-to-ER retrograde sorting pathway that may serve as a constitutive protein retrieval/regulatory system. In addition, new plant peroxisomes are envisaged to arise primarily by duplication of the pre-existing peroxisomes that receive essential membrane components from the ER.
Collapse
Affiliation(s)
- Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | | |
Collapse
|
48
|
Matheson LA, Hanton SL, Brandizzi F. Traffic between the plant endoplasmic reticulum and Golgi apparatus: to the Golgi and beyond. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:601-9. [PMID: 17010656 DOI: 10.1016/j.pbi.2006.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 09/20/2006] [Indexed: 05/12/2023]
Abstract
Significant advances have been made in recent years that have increased our understanding of the trafficking to and from membranes that are functionally linked to the Golgi apparatus in plants. New routes from the Golgi to organelles outside the secretory pathway are now being identified, revealing the importance of the Golgi apparatus as a major sorting station in the plant cell. This review discusses our current perception of Golgi structure and organization as well as the molecular mechanisms that direct traffic in and out of the Golgi.
Collapse
Affiliation(s)
- Loren A Matheson
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | | | | |
Collapse
|
49
|
Fujiki Y, Matsuzono Y, Matsuzaki T, Fransen M. Import of peroxisomal membrane proteins: The interplay of Pex3p- and Pex19p-mediated interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1639-46. [PMID: 17069900 DOI: 10.1016/j.bbamcr.2006.09.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/07/2006] [Accepted: 09/20/2006] [Indexed: 02/01/2023]
Abstract
In contrast to the molecular mechanisms underlying import of peroxisomal matrix proteins, those involving the transport of membrane proteins remain rather elusive. At present, two targeting routes for peroxisomal membrane proteins (PMPs) have been depicted: class I PMPs are targeted from the cytoplasm directly to the peroxisome membrane, and class II PMPs are sorted indirectly to peroxisomes via the endoplasmic reticulum (ER). In addition, three peroxins--Pex3p, Pex16p, and Pex19p - have been identified as essential factors for PMP assembly in several species including humans: Pex19p is a predominantly cytoplasmic protein that shows a broad PMP-binding specificity; Pex3p serves as the membrane-anchoring site for Pex19p; and Pex16p - a protein absent in most yeasts--is thought to provide the initial scaffold for recruiting the protein import machinery required for peroxisome membrane biogenesis. Remarkably, the function of Pex16p does not appear to be conserved between different species. In addition, significant disagreement exists about whether Pex19p has a chaperone-like role in the cytosol or at the peroxisome membrane and/or functions as a cycling import receptor for newly synthesized PMPs. Here we review the recent progress made in our understanding of the role of two key players in PMP biogenesis, Pex3p and Pex19p.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
50
|
Van Ael E, Fransen M. Targeting signals in peroxisomal membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1629-38. [PMID: 17020786 DOI: 10.1016/j.bbamcr.2006.08.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 08/17/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
Peroxisomal membrane proteins (PMPs) are encoded by the nuclear genome and translated on cytoplasmic ribosomes. Newly synthesized PMPs can be targeted directly from the cytoplasm to peroxisomes or travel to peroxisomes via the endoplasmic reticulum (ER). The mechanisms responsible for the targeting of these proteins to the peroxisomal membrane are still rather poorly understood. However, it is clear that the trafficking of PMPs to peroxisomes depends on the presence of cis-acting targeting signals, called mPTSs. These mPTSs show great variability both in the identity and number of requisite residues. An emerging view is that mPTSs consist of at least two functionally distinct domains: a targeting element, which directs the newly synthesized PMP from the cytoplasm to its target membrane, and a membrane-anchoring sequence, which is required for the permanent insertion of the protein into the peroxisomal membrane. In this review, we summarize our knowledge of the mPTSs currently identified.
Collapse
Affiliation(s)
- Elke Van Ael
- Katholieke Universiteit Leuven, Faculty of Medicine, Department of Molecular Cell Biology, Division of Pharmacology, Campus Gasthuisberg, Herestraat 49 bus 601, 3000 Leuven, Belgium
| | | |
Collapse
|