1
|
Du C, Liu M, Yan Y, Guo X, Cao X, Jiao Y, Zheng J, Ma Y, Xie Y, Li H, Yang C, Gao C, Zhao Q, Zhang Z. The U-box E3 ubiquitin ligase PUB35 negatively regulates ABA signaling through AFP1-mediated degradation of ABI5. THE PLANT CELL 2024; 36:3277-3297. [PMID: 38924024 PMCID: PMC11371175 DOI: 10.1093/plcell/koae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Abscisic acid (ABA) signaling is crucial for plant responses to various abiotic stresses. The Arabidopsis (Arabidopsis thaliana) transcription factor ABA INSENSITIVE 5 (ABI5) is a central regulator of ABA signaling. ABI5 BINDING PROTEIN 1 (AFP1) interacts with ABI5 and facilitates its 26S-proteasome-mediated degradation, although the detailed mechanism has remained unclear. Here, we report that an ABA-responsive U-box E3 ubiquitin ligase, PLANT U-BOX 35 (PUB35), physically interacts with AFP1 and ABI5. PUB35 directly ubiquitinated ABI5 in a bacterially reconstituted ubiquitination system and promoted ABI5 protein degradation in vivo. ABI5 degradation was enhanced by AFP1 in response to ABA treatment. Phosphorylation of the T201 and T206 residues in ABI5 disrupted the ABI5-AFP1 interaction and affected the ABI5-PUB35 interaction and PUB35-mediated degradation of ABI5 in vivo. Genetic analysis of seed germination and seedling growth showed that pub35 mutants were hypersensitive to ABA as well as to salinity and osmotic stresses, whereas PUB35 overexpression lines were hyposensitive. Moreover, abi5 was epistatic to pub35, whereas the pub35-2 afp1-1 double mutant showed a similar ABA response to the two single mutants. Together, our results reveal a PUB35-AFP1 module involved in fine-tuning ABA signaling through ubiquitination and 26S-proteasome-mediated degradation of ABI5 during seed germination and seedling growth.
Collapse
Affiliation(s)
- Chang Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Meng Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yujie Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xiaoyu Guo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xiuping Cao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuzhe Jiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiexuan Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yanchun Ma
- College of Life Sciences, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Yuting Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qingzhen Zhao
- College of Life Sciences, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
2
|
Zheng M, Song Y, Wang L, Yang D, Yan J, Sun Y, Hsu YF. CaRH57, a RNA helicase, contributes pepper tolerance to heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108202. [PMID: 37995575 DOI: 10.1016/j.plaphy.2023.108202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
RNA helicases (RHs) are required for most aspects of RNA metabolism and play an important role in plant stress tolerance. Heat stress (HS) causes the deleterious effects on plant cells, such as membrane disruption and protein misfolding, which results in the inhibition of plant growth and development. In this study, CaRH57 was identified from pepper (Capsicum annuum) and encodes a DEAD-box RH. CaRH57 was induced by HS, and overexpression of CaRH57 in Atrh57-1 rescued the glucose-sensitive phenotype of Atrh57-1, suggesting the functional replacement of CaRH57 to AtRH57. The nucleolus-localized CaRH57 possessed a RH activity in vitro. CaRH57 knockdown impaired pepper heat tolerance, showing severe necrosis and enhanced ROS accumulation in the region of the shoot tip. Additionally, accumulation of aberrant-spliced CaHSFA1d and CaHSFA9d was enhanced, and the corresponding mature mRNA levels were reduced in the TRV2 (Tobacco rattle virus)-CaRH57-infected plants compared with the control plants under HS. Overall, these results suggested that CaRH57 acted as a RH to confer pepper heat tolerance and was required for the proper pre-mRNA splicing of some HS-related genes.
Collapse
Affiliation(s)
- Min Zheng
- School of Life Sciences, Southwest University, Chongqing, China.
| | - Yu Song
- School of Life Sciences, Southwest University, Chongqing, China
| | - Lingyu Wang
- School of Life Sciences, Southwest University, Chongqing, China
| | - Dandan Yang
- School of Life Sciences, Southwest University, Chongqing, China
| | - Jiawen Yan
- School of Life Sciences, Southwest University, Chongqing, China
| | - Yutao Sun
- School of Life Sciences, Southwest University, Chongqing, China
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Liu S, Lenoir CJG, Amaro TMMM, Rodriguez PA, Huitema E, Bos JIB. Virulence strategies of an insect herbivore and oomycete plant pathogen converge on host E3 SUMO ligase SIZ1. THE NEW PHYTOLOGIST 2022; 235:1599-1614. [PMID: 35491752 PMCID: PMC9545238 DOI: 10.1111/nph.18184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Pathogens and pests secrete proteins (effectors) to interfere with plant immunity through modification of host target functions and disruption of immune signalling networks. The extent of convergence between pathogen and herbivorous insect virulence strategies is largely unexplored. We found that effectors from the oomycete pathogen, Phytophthora capsici, and the major aphid pest, Myzus persicae target the host immune regulator SIZ1, an E3 SUMO ligase. We used transient expression assays in Nicotiana benthamiana as well as Arabidopsis mutants to further characterize biological role of effector-SIZ1 interactions in planta. We show that the oomycete and aphid effector, which both contribute to virulence, feature different activities towards SIZ1. While M. persicae effector Mp64 increases SIZ1 protein levels in transient assays, P. capsici effector CRN83_152 enhances SIZ1-E3 SUMO ligase activity in vivo. SIZ1 contributes to host susceptibility to aphids and an oomycete pathogen. Knockout of SIZ1 in Arabidopsis decreased susceptibility to aphids, independent of SNC1, PAD4 and EDS1. Similarly SIZ1 knockdown in N. benthamiana led to reduced P. capsici infection. Our results suggest convergence of distinct pathogen and pest virulence strategies on an E3 SUMO ligase to enhance host susceptibility.
Collapse
Affiliation(s)
- Shan Liu
- Division of Plant SciencesSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Camille J. G. Lenoir
- Division of Plant SciencesSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Tiago M. M. M. Amaro
- Division of Plant SciencesSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | | | - Edgar Huitema
- Division of Plant SciencesSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Jorunn I. B. Bos
- Division of Plant SciencesSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| |
Collapse
|
4
|
Wang Y, Wang G, Bai J, Zhang Y, Wang Y, Wen S, Li L, Yang Z, Hong N. A novel Actinidia cytorhabdovirus characterized using genomic and viral protein interaction features. MOLECULAR PLANT PATHOLOGY 2021; 22:1271-1287. [PMID: 34288324 PMCID: PMC8435229 DOI: 10.1111/mpp.13110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A novel cytorhabdovirus, tentatively named Actinidia virus D (AcVD), was identified from kiwifruit (Actinidia chinensis) in China using high-throughput sequencing technology. The genome of AcVD consists of 13,589 nucleotides and is organized into seven open reading frames (ORFs) in its antisense strand, coding for proteins in the order N-P-P3-M-G-P6-L. The ORFs were flanked by a 3' leader sequence and a 5' trailer sequence and are separated by conserved intergenic junctions. The genome sequence of AcVD was 44.6%-51.5% identical to those of reported cytorhabdoviruses. The proteins encoded by AcVD shared the highest sequence identities, ranging from 27.3% (P6) to 44.5% (L), with the respective proteins encoded by reported cytorhabdoviruses. Phylogenetic analysis revealed that AcVD clustered together with the cytorhabdovirus Wuhan insect virus 4. The subcellular locations of the viral proteins N, P, P3, M, G, and P6 in epidermal cells of Nicotiana benthamiana leaves were determined. The M protein of AcVD uniquely formed filament structures and was associated with microtubules. Bimolecular fluorescence complementation assays showed that three proteins, N, P, and M, self-interact, protein N plays a role in the formation of cytoplasm viroplasm, and protein M recruits N, P, P3, and G to microtubules. In addition, numerous paired proteins interact in the nucleus. This study presents the first evidence of a cytorhabdovirus infecting kiwifruit plants and full location and interaction maps to gain insight into viral protein functions.
Collapse
Affiliation(s)
- Yanxiang Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Guoping Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Jianyu Bai
- Laboratory of Fruit Trees DiseaseInstitute of Economic ForestryXinjiang Academy of Forestry SciencesUrumqiChina
| | - Yongle Zhang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ying Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shaohua Wen
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Liu Li
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zuokun Yang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ni Hong
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
5
|
Sun Y, Zhang L, Folimonova SY. Citrus miraculin-like protein hijacks a viral movement-related p33 protein and induces cellular oxidative stress in defence against Citrus tristeza virus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:977-991. [PMID: 33283396 PMCID: PMC8131049 DOI: 10.1111/pbi.13523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/26/2020] [Accepted: 11/30/2020] [Indexed: 05/16/2023]
Abstract
To defend against pathogens, plants have developed a complex immune system, which recognizes the pathogen effectors and mounts defence responses. In this study, the p33 protein of Citrus tristeza virus (CTV), a viral membrane-associated effector, was used as a molecular bait to explore virus interactions with host immunity. We discovered that Citrus macrophylla miraculin-like protein 2 (CmMLP2), a member of the soybean Kunitz-type trypsin inhibitor family, targets the viral p33 protein. The expression of CmMLP2 was up-regulated by p33 in the citrus phloem-associated cells. Knock-down of the MLP2 expression in citrus plants resulted in a higher virus accumulation, while the overexpression of CmMLP2 reduced the infectivity of CTV in the plant hosts. Further investigation revealed that, on the one hand, binding of CmMLP2 interrupts the cellular distribution of p33 whose proper function is necessary for the effective virus movement throughout the host. On the other hand, the ability of CmMLP2 to reorganize the endomembrane system, amalgamating the endoplasmic reticulum and the Golgi apparatus, induces cellular stress and accumulation of the reactive oxygen species, which inhibits the replication of CTV. Altogether, our data suggest that CmMLP2 employs a two-way strategy in defence against CTV infection.
Collapse
Affiliation(s)
- Yong‐Duo Sun
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
| | - Lei Zhang
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA
- Present address:
College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhot010018China
| | - Svetlana Y. Folimonova
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
6
|
Chen J, Liu X, Liu S, Fan X, Zhao L, Song M, Fan X, Xu G. Co-Overexpression of OsNAR2.1 and OsNRT2.3a Increased Agronomic Nitrogen Use Efficiency in Transgenic Rice Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1245. [PMID: 32903417 PMCID: PMC7434940 DOI: 10.3389/fpls.2020.01245] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/29/2020] [Indexed: 05/20/2023]
Abstract
The NO3 - transporter plays an important role in rice nitrogen acquisition and nitrogen-use efficiency. Our previous studies have shown that the high affinity systems for nitrate uptake in rice is mediated by a two-component NRT2/NAR2 transport system. In this study, transgenic plants were successful developed by overexpression of OsNAR2.1 alone, OsNRT2.3a alone and co-overexpression of OsNAR2.1 and OsNRT2.3a. Our field experiments indicated that transgenic lines expressing p35S:OsNAR2.1 or p35S:OsNAR2.1-p35S:OsNRT2.3a constructs exhibited increased grain yields of approximately 14.1% and 24.6% compared with wild-type (cv. Wuyunjing 7, WT) plants, and the agricultural nitrogen use efficiency increased by 15.8% and 28.6%, respectively. Compared with WT, the 15N influx in roots of p35S:OsNAR2.1 and p35S: OsNAR2.1-p35S:OsNRT2.3a lines increased 18.9%‑27.8% in response to 0.2 mM, 2.5 mM 15NO3 -, and 1.25 mM 15NH4 15NO3, while there was no significant difference between p35S:OsNAR2.1 and p35S:OsNAR2.1-p35S:OsNRT2.3a lines; only the 15N distribution ratio of shoot to root for p35S:OsNAR2.1-p35S:OsNRT2.3a lines increased significantly. However, there were no significant differences in nitrogen use efficiency, 15N influx in roots and the yield between the p35S:NRT2.3a transgenic lines and WT. This study indicated that co-overexpression of OsNAR2.1 and OsNRT2.3a could increase rice yield and nitrogen use efficiency.
Collapse
Affiliation(s)
- Jingguang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoqin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Shuhua Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Xiaoru Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Limei Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Miaoquan Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Wang S, McLellan H, Bukharova T, He Q, Murphy F, Shi J, Sun S, van Weymers P, Ren Y, Thilliez G, Wang H, Chen X, Engelhardt S, Vleeshouwers V, Gilroy EM, Whisson SC, Hein I, Wang X, Tian Z, Birch PRJ, Boevink PC. Phytophthora infestans RXLR effectors act in concert at diverse subcellular locations to enhance host colonization. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:343-356. [PMID: 30329083 PMCID: PMC6305197 DOI: 10.1093/jxb/ery360] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 05/23/2023]
Abstract
Oomycetes such as the potato blight pathogen Phytophthora infestans deliver RXLR effectors into plant cells to manipulate host processes and promote disease. Knowledge of where they localize inside host cells is important in understanding their function. Fifty-two P. infestans RXLR effectors (PiRXLRs) up-regulated during early stages of infection were expressed as fluorescent protein (FP) fusions inside cells of the model host Nicotiana benthamiana. FP-PiRXLR fusions were predominantly nucleo-cytoplasmic, nuclear, or plasma membrane-associated. Some also localized to the endoplasmic reticulum, mitochondria, peroxisomes, or microtubules, suggesting diverse sites of subcellular activity. Seven of the 25 PiRXLRs examined during infection accumulated at sites of haustorium penetration, probably due to co-localization with host target processes; Pi16663 (Avr1), for example, localized to Sec5-associated mobile bodies which showed perihaustorial accumulation. Forty-five FP-RXLR fusions enhanced pathogen leaf colonization when expressed in Nicotiana benthamiana, revealing that their presence was beneficial to infection. Co-expression of PiRXLRs that target and suppress different immune pathways resulted in an additive enhancement of colonization, indicating the potential to study effector combinations using transient expression assays. We provide a broad platform of high confidence P. infestans effector candidates from which to investigate the mechanisms, singly and in combination, by which this pathogen causes disease.
Collapse
Affiliation(s)
- Shumei Wang
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Hazel McLellan
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Tatyana Bukharova
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Qin He
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Fraser Murphy
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Jiayang Shi
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Shaohui Sun
- Heilongjiang Bayi Agricultural University, Daqing, China
- Virus-free Seedling Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Pauline van Weymers
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Yajuan Ren
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Gaetan Thilliez
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Haixia Wang
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xinwei Chen
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Stefan Engelhardt
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | | | - Eleanor M Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Stephen C Whisson
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Ingo Hein
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Xiaodan Wang
- Virus-free Seedling Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhendong Tian
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Paul R J Birch
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| |
Collapse
|
8
|
Cowan GH, Roberts AG, Jones S, Kumar P, Kalyandurg PB, Gil JF, Savenkov EI, Hemsley PA, Torrance L. Potato Mop-Top Virus Co-Opts the Stress Sensor HIPP26 for Long-Distance Movement. PLANT PHYSIOLOGY 2018; 176:2052-2070. [PMID: 29374107 PMCID: PMC5841704 DOI: 10.1104/pp.17.01698] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/12/2018] [Indexed: 05/03/2023]
Abstract
Virus movement proteins facilitate virus entry into the vascular system to initiate systemic infection. The potato mop-top virus (PMTV) movement protein, TGB1, is involved in long-distance movement of both viral ribonucleoprotein complexes and virions. Here, our analysis of TGB1 interactions with host Nicotiana benthamiana proteins revealed an interaction with a member of the heavy metal-associated isoprenylated plant protein family, HIPP26, which acts as a plasma membrane-to-nucleus signal during abiotic stress. We found that knockdown of NbHIPP26 expression inhibited virus long-distance movement but did not affect cell-to-cell movement. Drought and PMTV infection up-regulated NbHIPP26 gene expression, and PMTV infection protected plants from drought. In addition, NbHIPP26 promoter-reporter fusions revealed vascular tissue-specific expression. Mutational and biochemical analyses indicated that NbHIPP26 subcellular localization at the plasma membrane and plasmodesmata was mediated by lipidation (S-acylation and prenylation), as nonlipidated NbHIPP26 was predominantly in the nucleus. Notably, coexpression of NbHIPP26 with TGB1 resulted in a similar nuclear accumulation of NbHIPP26. TGB1 interacted with the carboxyl-terminal CVVM (prenyl) domain of NbHIPP26, and bimolecular fluorescence complementation revealed that the TGB1-HIPP26 complex localized to microtubules and accumulated in the nucleolus, with little signal at the plasma membrane or plasmodesmata. These data support a mechanism where interaction with TGB1 negates or reverses NbHIPP26 lipidation, thus releasing membrane-associated NbHIPP26 and redirecting it via microtubules to the nucleus, thereby activating the drought stress response and facilitating virus long-distance movement.
Collapse
Affiliation(s)
- Graham H Cowan
- James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
| | | | - Susan Jones
- James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
| | - Pankaj Kumar
- School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Pruthvi B Kalyandurg
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Jose F Gil
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Eugene I Savenkov
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Piers A Hemsley
- James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
| | - Lesley Torrance
- James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
- School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
9
|
Goodin MM. Protein Localization and Interaction Studies in Plants: Toward Defining Complete Proteomes by Visualization. Adv Virus Res 2017; 100:117-144. [PMID: 29551133 DOI: 10.1016/bs.aivir.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein interaction and localization studies in plants are a fundamental component of achieving mechanistic understanding of virus:plant interactions at the systems level. Many such studies are conducted using transient expression assays in leaves of Nicotiana benthamiana, the most widely used experimental plant host in virology, examined by laser-scanning confocal microscopy. This chapter provides a workflow for protein interaction and localization experiments, with particular attention to the many control and supporting assays that may also need to be performed. Basic principles of microscopy are introduced to aid researchers in the early stages of adding imaging techniques to their experimental repertoire. Three major types of imaging-based experiments are discussed in detail: (i) protein localization using autofluorescent proteins, (ii) colocalization studies, and (iii) bimolecular fluorescence complementation, with emphasis on judicious interpretation of the data obtained from these approaches. In addition to establishing a general framework for protein localization experiments in plants, the need for proteome-scale localization projects is discussed, with emphasis on nuclear-localized proteins.
Collapse
|
10
|
Wang S, Boevink PC, Welsh L, Zhang R, Whisson SC, Birch PRJ. Delivery of cytoplasmic and apoplastic effectors from Phytophthora infestans haustoria by distinct secretion pathways. THE NEW PHYTOLOGIST 2017; 216:205-215. [PMID: 28758684 PMCID: PMC5601276 DOI: 10.1111/nph.14696] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/05/2017] [Indexed: 05/17/2023]
Abstract
The potato blight pathogen Phytophthora infestans secretes effector proteins that are delivered inside (cytoplasmic) or can act outside (apoplastic) plant cells to neutralize host immunity. Little is known about how and where effectors are secreted during infection, yet such knowledge is essential to understand and combat crop disease. We used transient Agrobacterium tumefaciens-mediated in planta expression, transformation of P. infestans with fluorescent protein fusions and confocal microscopy to investigate delivery of effectors to plant cells during infection. The cytoplasmic effector Pi04314, expressed as a monomeric red fluorescent protein (mRFP) fusion protein with a signal peptide to secrete it from plant cells, did not passively re-enter the cells upon secretion. However, Pi04314-mRFP expressed in P. infestans was translocated from haustoria, which form intimate interactions with plant cells, to accumulate at its sites of action in the host nucleus. The well-characterized apoplastic effector EPIC1, a cysteine protease inhibitor, was also secreted from haustoria. EPIC1 secretion was inhibited by brefeldin A (BFA), demonstrating that it is delivered by conventional Golgi-mediated secretion. By contrast, Pi04314 secretion was insensitive to BFA treatment, indicating that the cytoplasmic effector follows an alternative route for delivery into plant cells. Phytophthora infestans haustoria are thus sites for delivery of both apoplastic and cytoplasmic effectors during infection, following distinct secretion pathways.
Collapse
Affiliation(s)
- Shumei Wang
- Division of Plant SciencesUniversity of Dundee (at JHI)Errol RoadInvergowrieDundeeDD2 5DAUK
| | - Petra C. Boevink
- Cell and Molecular SciencesJames Hutton InstituteErrol RoadInvergowrieDundeeDD2 5DAUK
| | - Lydia Welsh
- Cell and Molecular SciencesJames Hutton InstituteErrol RoadInvergowrieDundeeDD2 5DAUK
| | - Ruofang Zhang
- Potato Engineering and Technology Research Centre of Inner Mongolia UniversityWest College Road 235Hohhot010021China
| | - Stephen C. Whisson
- Cell and Molecular SciencesJames Hutton InstituteErrol RoadInvergowrieDundeeDD2 5DAUK
| | - Paul R. J. Birch
- Division of Plant SciencesUniversity of Dundee (at JHI)Errol RoadInvergowrieDundeeDD2 5DAUK
- Cell and Molecular SciencesJames Hutton InstituteErrol RoadInvergowrieDundeeDD2 5DAUK
| |
Collapse
|
11
|
Holappa LD, Ronald PC, Kramer EM. Evolutionary Analysis of Snf1-Related Protein Kinase2 (SnRK2) and Calcium Sensor (SCS) Gene Lineages, and Dimerization of Rice Homologs, Suggest Deep Biochemical Conservation across Angiosperms. FRONTIERS IN PLANT SCIENCE 2017; 8:395. [PMID: 28424709 PMCID: PMC5381359 DOI: 10.3389/fpls.2017.00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/08/2017] [Indexed: 05/14/2023]
Abstract
Members of the sucrose non-fermenting related kinase Group2 (SnRK2) subclasses are implicated in both direct and indirect abscisic acid (ABA) response pathways. We have used phylogenetic, biochemical, and transient in vivo approaches to examine interactions between Triticum tauschii protein kinase 1 (TtPK1) and an interacting protein, Oryza sativa SnRK2-calcium sensor (OsSCS1). Given that TtPK1 has 100% identity with its rice ortholog, osmotic stress/ABA-activated protein kinase (OsSAPK2), we hypothesized that the SCS and TtPK1 interactions are present in both wheat and rice. Here, we show that SnRK2s are clearly divided into four pan-angiosperm clades with those in the traditionally defined Subclass II encompassing two distinct clades (OsSAPK1/2 and OsSAPK3), although OsSAPK3 lacks an Arabidopsis ortholog. We also show that SCSs are distinct from a second lineage, that we term SCSsister, and while both clades pre-date land plants, the SCSsister clade lacks Poales representatives. Our Y2H assays revealed that the removal of the OsSCS1 C-terminal region along with its N-terminal EF-hand abolished its interaction with the kinase. Using transient in planta bimolecular fluorescence complementation experiments, we demonstrate that TtPK1/OsSCS1 dimerization co-localizes with DAPI-stained nuclei and with FM4-64-stained membranes. Finally, OsSCS1- and OsSAPK2-hybridizing transcripts co-accumulate in shoots/coleoptile of drying seedlings, consistent with up-regulated kinase transcripts of PKABA1 and TtPK1. Our studies suggest that interactions between homologs of the SnRK2 and SCS lineages are broadly conserved across angiosperms and offer new directions for investigations of related proteins.
Collapse
Affiliation(s)
- Lynn D. Holappa
- Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA
- Plant Pathology and the Genome Center, University of California DavisDavis, CA, USA
- *Correspondence: Lynn D. Holappa
| | - Pamela C. Ronald
- Plant Pathology and the Genome Center, University of California DavisDavis, CA, USA
| | - Elena M. Kramer
- Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA
| |
Collapse
|
12
|
Mann KS, Johnson KN, Carroll BJ, Dietzgen RG. Cytorhabdovirus P protein suppresses RISC-mediated cleavage and RNA silencing amplification in planta. Virology 2016; 490:27-40. [PMID: 26808923 DOI: 10.1016/j.virol.2016.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 11/16/2022]
Abstract
Plant viruses have evolved to undermine the RNA silencing pathway by expressing suppressor protein(s) that interfere with one or more key components of this antiviral defense. Here we show that the recently identified RNA silencing suppressor (RSS) of lettuce necrotic yellows virus (LNYV), phosphoprotein P, binds to RNA silencing machinery proteins AGO1, AGO2, AGO4, RDR6 and SGS3 in protein-protein interaction assays when transiently expressed. In planta, we demonstrate that LNYV P inhibits miRNA-guided AGO1 cleavage and translational repression, and RDR6/SGS3-dependent amplification of silencing. Analysis of LNYV P deletion mutants identified a C-terminal protein domain essential for both local RNA silencing suppression and interaction with AGO1, AGO2, AGO4, RDR6 and SGS3. In contrast to other viral RSS known to disrupt AGO activity, LNYV P sequence does not contain any recognizable GW/WG or F-box motifs. This suggests that LNYV P may represent a new class of AGO binding proteins.
Collapse
Affiliation(s)
- Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
13
|
Mann KS, Bejerman N, Johnson KN, Dietzgen RG. Cytorhabdovirus P3 genes encode 30K-like cell-to-cell movement proteins. Virology 2016; 489:20-33. [PMID: 26700068 DOI: 10.1016/j.virol.2015.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
Abstract
Plant viruses encode movement proteins (MP) to facilitate cell-to-cell transport through plasmodesmata. In this study, using trans-complementation of a movement-defective turnip vein-clearing tobamovirus (TVCV) replicon, we show for the first time for cytorhabdoviruses (lettuce necrotic yellows virus (LNYV) and alfalfa dwarf virus (ADV)) that their P3 proteins function as MP similar to the TVCV P30 protein. All three MP localized to plasmodesmata when ectopically expressed. In addition, we show that these MP belong to the 30K superfamily since movement was inhibited by mutation of an aspartic acid residue in the critical 30K-specific LxD/N50-70G motif. We also report that Nicotiana benthamiana microtubule-associated VOZ1-like transcriptional activator interacts with LNYV P3 and TVCV P30 but not with ADV P3 or any of the MP point mutants. This host protein, which is known to interact with P3 of sonchus yellow net nucleorhabdovirus, may be involved in aiding the cell-to-cell movement of LNYV and TVCV.
Collapse
Affiliation(s)
- Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nicolas Bejerman
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
14
|
Bak A, Folimonova SY. The conundrum of a unique protein encoded by citrus tristeza virus that is dispensable for infection of most hosts yet shows characteristics of a viral movement protein. Virology 2015; 485:86-95. [PMID: 26210077 DOI: 10.1016/j.virol.2015.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 11/22/2022]
Abstract
Citrus tristeza virus (CTV), one of the most economically important viruses, produces a unique protein, p33, which is encoded only in the genomes of isolates of CTV. Recently, we demonstrated that membrane association of the p33 protein confers virus ability to extend its host range. In this work we show that p33 shares characteristics of viral movement proteins. Upon expression in a host cell, the protein localizes to plasmodesmata and displays the ability to form extracellular tubules. Furthermore, p33 appears to traffic via the cellular secretory pathway and the actin network to plasmodesmata locations and is likely being recycled through the endocytic pathway. Finally, our study reveals that p33 colocalizes with a putative movement protein of CTV, the p6 protein. These results suggest a potential role of p33 as a noncanonical viral movement protein, which mediates virus translocation in the specific hosts.
Collapse
Affiliation(s)
- Aurélie Bak
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | | |
Collapse
|
15
|
Bejerman N, Giolitti F, de Breuil S, Trucco V, Nome C, Lenardon S, Dietzgen RG. Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses. Virology 2015; 483:275-83. [PMID: 26004251 DOI: 10.1016/j.virol.2015.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 12/19/2022]
Abstract
We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3'-N-P-P3-M-G-P6-L-5'. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3' leader and 5' trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses.
Collapse
Affiliation(s)
- Nicolás Bejerman
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Fabián Giolitti
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Soledad de Breuil
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Verónica Trucco
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Claudia Nome
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Sergio Lenardon
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
16
|
Tripathi D, Raikhy G, Pappu HR. Movement and nucleocapsid proteins coded by two tospovirus species interact through multiple binding regions in mixed infections. Virology 2015; 478:137-47. [PMID: 25666522 DOI: 10.1016/j.virol.2015.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 12/07/2014] [Accepted: 01/10/2015] [Indexed: 12/31/2022]
Abstract
Negative-stranded tospoviruses (family: Bunyaviridae) are among the most agronomically important viruses. Some of the tospoviruses are known to exist as mixed infections in the same host plant. Iris yellow spot virus (IYSV) and Tomato spotted wilt virus (TSWV) were used to study virus-virus interaction in dually infected host plants. Viral genes of both viruses were separately cloned into binary pSITE-BiFC vectors. BiFC results showed that the N and NSm proteins of IYSV interact with their counterparts coded by TSWV in dually infected Nicotiana benthamiana plants. BiFC results were further confirmed by pull down and yeast-2-hybrid (Y2H) assays. Interacting regions of the N and NSm proteins were also identified by Y2H system and β-galactosidase activity. Several regions of the N and NSm were found interacting with each other. The regions involved in these interactions are presumed to be critical for the functioning of the tospovirus N and NSm proteins. This is the first report of in vivo protein interactions of distinct tospoviruses in mixed infection.
Collapse
Affiliation(s)
- Diwaker Tripathi
- Department of Plant Pathology, Washington State University, P.O. Box 646430, Pullman, WA 99164-6430, USA
| | - Gaurav Raikhy
- Department of Plant Pathology, Washington State University, P.O. Box 646430, Pullman, WA 99164-6430, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, P.O. Box 646430, Pullman, WA 99164-6430, USA.
| |
Collapse
|
17
|
Tripathi D, Raikhy G, Goodin MM, Dietzgen RG, Pappu HR. In vivo localization of iris yellow spot tospovirus (Bunyaviridae)-encoded proteins and identification of interacting regions of nucleocapsid and movement proteins. PLoS One 2015; 10:e0118973. [PMID: 25781476 PMCID: PMC4363525 DOI: 10.1371/journal.pone.0118973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 01/27/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Localization and interaction studies of viral proteins provide important information about their replication in their host plants. Tospoviruses (Family Bunyaviridae) are economically important viruses affecting numerous field and horticultural crops. Iris yellow spot virus (IYSV), one of the tospoviruses, has recently emerged as an important viral pathogen of Allium spp. in many parts of the world. We studied the in vivo localization and interaction patterns of the IYSV proteins in uninfected and infected Nicotiana benthamiana and identified the interacting partners. PRINCIPAL FINDINGS Bimolecular fluorescence complementation (BiFC) analysis demonstrated homotypic and heterotypic interactions between IYSV nucleocapsid (N) and movement (NSm) proteins. These interactions were further confirmed by pull-down assays. Additionally, interacting regions of IYSV N and NSm were identified by the yeast-2-hybrid system and β-galactosidase assay. The N protein self-association was found to be mediated through the N- and C-terminal regions making head to tail interaction. Self-interaction of IYSV NSm was shown to occur through multiple interacting regions. In yeast-2-hybrid assay, the N- and C-terminal regions of IYSV N protein interacted with an N-terminal region of IYSV NSm protein. CONCLUSION/SIGNIFICANCE Our studies provide new insights into localization and interactions of IYSV N and NSm proteins. Molecular basis of these interactions was studied and is discussed in the context of tospovirus assembly, replication, and infection processes.
Collapse
Affiliation(s)
- Diwaker Tripathi
- Department of Plant Pathology, P.O. Box 646430, Washington State University, Pullman, Washington, United States of America
| | - Gaurav Raikhy
- Department of Plant Pathology, P.O. Box 646430, Washington State University, Pullman, Washington, United States of America
| | - Michael M. Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ralf G. Dietzgen
- QAAFI, The University of Queensland, St. Lucia, Queensland, Australia
| | - Hanu R. Pappu
- Department of Plant Pathology, P.O. Box 646430, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
18
|
Goodin MM, Zaitlin D, Naidu RA, Lommel SA. Nicotiana benthamiana: Its History and Future as a Model for Plant-Pathogen Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:28-39. [PMID: 27839076 DOI: 10.1094/mpmi-00-00-1015-rev.testissue] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nicotiana benthamiana is the most widely used experimental host in plant virology, due mainly to the large number of diverse plant viruses that can successfully infect it. Addi- tionally, N. benthamiana is susceptible to a wide variety of other plant-pathogenic agents (such as bacteria, oomycetes, fungi, and so on), making this species a cornerstone of host-pathogen research, particularly in the context of innate immunity and defense signaling. Moreover, because it can be genetically transformed and regenerated with good efficiency and is amenable to facile methods for virus- induced gene silencing or transient protein expression, N. benthamiana is rapidly gaining popularity in plant biology, particularly in studies requiring protein localization, inter- action, or plant-based systems for protein expression and purification. Paradoxically, despite being an indispensable research model, little is known about the origins, genetic variation, or ecology of the N. benthamiana accessions cur- rently used by the research community. In addition to ad- dressing these latter topics, the purpose of this review is to provide information regarding sources for tools and reagents that can be used to support research in N. benthamiana. Finally, we propose that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.
Collapse
Affiliation(s)
| | - David Zaitlin
- 2 Kentucky Tobacco Research and Development Center (KTRDC), University of Kentucky, Lexington 40546, U.S.A
| | - Rayapati A Naidu
- 3 Department of Plant Pathology, Irrigated Agriculture Research & Extension Center, Washington State University, Prosser 99350, U.S.A
| | - Steven A Lommel
- 4 Department of Plant Pathology, North Carolina State University, Raleigh 27695, U.S.A
| |
Collapse
|
19
|
Liu X, Huang D, Tao J, Miller AJ, Fan X, Xu G. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport. THE NEW PHYTOLOGIST 2014; 204:74-80. [PMID: 25103875 PMCID: PMC4232926 DOI: 10.1111/nph.12986] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/15/2014] [Indexed: 05/21/2023]
Abstract
A partner protein, NAR2, is essential for high-affinity nitrate transport of the NRT2 protein in plants. However, the NAR2 motifs that interact with NRT2s for their plasma membrane (PM) localization and nitrate transporter activity have not been functionally characterized. In this study, OsNAR2.1 mutations with different carbon (C)-terminal deletions and nine different point mutations in the conserved regions of NAR2 homologs in plants were generated to explore the essential motifs involved in the interaction with OsNRT2.3a. Screening using the membrane yeast two-hybrid system and Xenopus oocytes for nitrogen-15 ((15)N) uptake demonstrated that either R100G or D109N point mutations impaired the OsNAR2.1 interaction with OsNRT2.3a. Western blotting and visualization using green fluorescent protein fused to either the N- or C-terminus of OsNAR2.1 indicated that OsNAR2.1 is expressed in both the PM and cytoplasm. The split-yellow fluorescent protein (YFP)/BiFC analyses indicated that OsNRT2.3a was targeted to the PM in the presence of OsNAR2.1, while either R100G or D109N mutation resulted in the loss of OsNRT2.3a-YFP signal in the PM. Based on these results, arginine 100 and aspartic acid 109 of the OsNAR2.1 protein are key amino acids in the interaction with OsNRT2.3a, and their interaction occurs in the PM but not cytoplasm.
Collapse
Affiliation(s)
- Xiaoqin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| | - Daimin Huang
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| | - Jinyuan Tao
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| | - Anthony J Miller
- Metabolic Biology Department, John Innes CentreNorwich Research Park, Norwich, NR4 7UH, UK
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| |
Collapse
|
20
|
Mann KS, Dietzgen RG. Plant rhabdoviruses: new insights and research needs in the interplay of negative-strand RNA viruses with plant and insect hosts. Arch Virol 2014; 159:1889-900. [DOI: 10.1007/s00705-014-2029-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/15/2014] [Indexed: 11/30/2022]
|
21
|
Stam R, Jupe J, Howden AJM, Morris JA, Boevink PC, Hedley PE, Huitema E. Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity. PLoS One 2013; 8:e59517. [PMID: 23536880 PMCID: PMC3607596 DOI: 10.1371/journal.pone.0059517] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/15/2013] [Indexed: 11/19/2022] Open
Abstract
Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN) gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions.
Collapse
Affiliation(s)
- Remco Stam
- Division of Plant Sciences, University of Dundee, Invergowrie, Dundee, United Kingdom
- Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Julietta Jupe
- Division of Plant Sciences, University of Dundee, Invergowrie, Dundee, United Kingdom
- Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Andrew J. M. Howden
- Division of Plant Sciences, University of Dundee, Invergowrie, Dundee, United Kingdom
- Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Jenny A. Morris
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Petra C. Boevink
- Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Pete E. Hedley
- Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Edgar Huitema
- Division of Plant Sciences, University of Dundee, Invergowrie, Dundee, United Kingdom
- Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| |
Collapse
|
22
|
Choi SW, Tamaki T, Ebine K, Uemura T, Ueda T, Nakano A. RABA members act in distinct steps of subcellular trafficking of the FLAGELLIN SENSING2 receptor. THE PLANT CELL 2013; 25:1174-87. [PMID: 23532067 PMCID: PMC3634684 DOI: 10.1105/tpc.112.108803] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/26/2013] [Accepted: 03/14/2013] [Indexed: 05/18/2023]
Abstract
Cell surface proteins play critical roles in the perception of environmental stimuli at the plasma membrane (PM) and ensuing signal transduction. Intracellular localization of such proteins must be strictly regulated, which requires elaborate integration of exocytic and endocytic trafficking pathways. Subcellular localization of Arabidopsis thaliana FLAGELLIN SENSING2 (FLS2), a receptor that recognizes bacterial flagellin, also depends on membrane trafficking. However, our understanding about the mechanisms involved is still limited. In this study, we visualized ligand-induced endocytosis of FLS2 using green fluorescent protein (GFP)-tagged FLS2 expressed in Nicotiana benthamiana. Upon treatment with the flg22 peptide, internalized FLS2-GFP from the PM was transported to a compartment with properties intermediate between the trans-Golgi network (TGN) and the multivesicular endosome. This compartment gradually discarded the TGN characteristics as it continued along the trafficking pathway. We further found that FLS2 endocytosis involves distinct RABA/RAB11 subgroups at different steps. Moreover, we demonstrated that transport of de novo-synthesized FLS2 to the PM also involves a distinct RABA/RAB11 subgroup. Our results demonstrate the complex regulatory system for properly localizing FLS2 and functional differentiation in RABA members in endo- and exocytosis.
Collapse
Affiliation(s)
- Seung-won Choi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Tamaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuo Ebine
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| |
Collapse
|
23
|
Dynamic localization of two tobamovirus ORF6 proteins involves distinct organellar compartments. J Gen Virol 2013; 94:230-240. [DOI: 10.1099/vir.0.045278-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ORF6 is a small gene that overlaps the movement and coat protein genes of subgroup 1a tobamoviruses. The ORF6 protein of tomato mosaic virus (ToMV) strain L (L-ORF6), interacts in vitro with eukaryotic elongation factor 1α, and mutation of the ORF6 gene of tobacco mosaic virus (TMV) strain U1 (U1-ORF6) reduces the pathogenicity in vivo of TMV, whereas expression of this gene from two other viruses, tobacco rattle virus (TRV) and potato virus X (PVX), increases their pathogenicity. In this work, the in vivo properties of the L-ORF6 and U1-ORF6 proteins were compared to identify sequences that direct the proteins to different subcellular locations and also influence virus pathogenicity. Site-specific mutations in the ORF6 protein were made, hybrid ORF6 proteins were created in which the N-terminal and C-terminal parts were derived from the two proteins, and different subregions of the protein were examined, using expression either from a recombinant TRV vector or as a yellow fluorescent protein fusion from a binary plasmid in Agrobacterium tumefaciens. L-ORF6 caused mild necrotic symptoms in Nicotiana benthamiana when expressed from TRV, whereas U1-ORF6 caused severe symptoms including death of the plant apex. The difference in symptoms was associated with the C-terminal region of L-ORF6, which directed the protein to the endoplasmic reticulum (ER), whereas U1-ORF6 was directed initially to the nucleolus and later to the mitochondria. Positively charged residues at the N terminus allowed nucleolar entry of both U1-ORF6 and L-ORF6, but hydrophobic residues at the C terminus of L-ORF6 directed this protein to the ER.
Collapse
|
24
|
Stam R, Howden AJM, Delgado-Cerezo M, M. M. Amaro TM, Motion GB, Pham J, Huitema E. Characterization of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus. FRONTIERS IN PLANT SCIENCE 2013; 4:387. [PMID: 24155749 PMCID: PMC3803116 DOI: 10.3389/fpls.2013.00387] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/11/2013] [Indexed: 05/20/2023]
Abstract
Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centers on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signaling. Here, we characterized three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localization of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organization, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility.
Collapse
Affiliation(s)
- Remco Stam
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
- Dundee Effector Consortium, The James Hutton Institute, Dundee, UK
| | - Andrew J. M. Howden
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, UK
- Dundee Effector Consortium, The James Hutton Institute, Dundee, UK
| | - Magdalena Delgado-Cerezo
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, UK
- Dundee Effector Consortium, The James Hutton Institute, Dundee, UK
| | - Tiago M. M. M. Amaro
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, UK
- Dundee Effector Consortium, The James Hutton Institute, Dundee, UK
| | - Graham B. Motion
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
- Dundee Effector Consortium, The James Hutton Institute, Dundee, UK
| | - Jasmine Pham
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, UK
- Dundee Effector Consortium, The James Hutton Institute, Dundee, UK
| | - Edgar Huitema
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, UK
- Dundee Effector Consortium, The James Hutton Institute, Dundee, UK
- *Correspondence: Edgar Huitema, Division of Plant Science, College of Life Sciences, University of Dundee at JHI, Errol Road, Invergowrie, Dundee DD2 5DA, UK e-mail:
| |
Collapse
|
25
|
Dietzgen RG, Martin KM, Anderson G, Goodin MM. In planta localization and interactions of impatiens necrotic spot tospovirus proteins. J Gen Virol 2012; 93:2490-2495. [PMID: 22837417 DOI: 10.1099/vir.0.042515-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Impatiens necrotic spot tospovirus (INSV) is a significant pathogen of ornamentals. The tripartite negative- and ambi-sense RNA genome encodes six proteins that are involved in cytoplasmic replication, movement, assembly, insect transmission and defence. To gain insight into the associations of these viral proteins, we determined their intracellular localization and interactions in living plant cells. Nucleotide sequences encoding the nucleoprotein N, non-structural proteins NSs and NSm, and glycoproteins Gn and Gc of a Kentucky isolate of INSV were amplified by RT-PCR, cloned, sequenced and transiently expressed as fusions with autofluorescent proteins in leaf epidermal cells of Nicotiana benthamiana. All proteins accumulated at the cell periphery and co-localized with an endoplasmic reticulum marker. The Gc protein fusion also localized to the nucleus. N and NSm protein self-interactions and an NSm-N interaction were observed by using bimolecular fluorescence complementation. A tospovirus NSm homotypic interaction had not been reported previously.
Collapse
Affiliation(s)
- Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Qld 4072, Australia
- Department of Plant Pathology, University of Kentucky, Lexington KY 40546, USA
| | - Kathleen M Martin
- Department of Plant Pathology, University of Kentucky, Lexington KY 40546, USA
| | - Gavin Anderson
- Department of Plant Pathology, University of Kentucky, Lexington KY 40546, USA
| | - Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington KY 40546, USA
| |
Collapse
|
26
|
Vizcay-Barrena G, Webb SED, Martin-Fernandez ML, Wilson ZA. Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5419-28. [PMID: 21865179 PMCID: PMC3223039 DOI: 10.1093/jxb/err212] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 05/18/2023]
Abstract
Total internal reflection fluorescence microscopy (TIRFM) has been proven to be an extremely powerful technique in animal cell research for generating high contrast images and dynamic protein conformation information. However, there has long been a perception that TIRFM is not feasible in plant cells because the cell wall would restrict the penetration of the evanescent field and lead to scattering of illumination. By comparative analysis of epifluorescence and TIRF in root cells, it is demonstrated that TIRFM can generate high contrast images, superior to other approaches, from intact plant cells. It is also shown that TIRF imaging is possible not only at the plasma membrane level, but also in organelles, for example the nucleus, due to the presence of the central vacuole. Importantly, it is demonstrated for the first time that this is TIRF excitation, and not TIRF-like excitation described as variable-angle epifluorescence microscopy (VAEM), and it is shown how to distinguish the two techniques in practical microscopy. These TIRF images show the highest signal-to-background ratio, and it is demonstrated that they can be used for single-molecule microscopy. Rare protein events, which would otherwise be masked by the average molecular behaviour, can therefore be detected, including the conformations and oligomerization states of interacting proteins and signalling networks in vivo. The demonstration of the application of TIRFM and single-molecule analysis to plant cells therefore opens up a new range of possibilities for plant cell imaging.
Collapse
Affiliation(s)
- Gema Vizcay-Barrena
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Stephen E. D. Webb
- Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, UK
| | - Marisa L. Martin-Fernandez
- Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, UK
| | - Zoe A. Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Gilroy EM, Taylor RM, Hein I, Boevink P, Sadanandom A, Birch PRJ. CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. THE NEW PHYTOLOGIST 2011; 190:653-66. [PMID: 21348873 DOI: 10.1111/j.1469-8137.2011.03643.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Little is known about how effectors from filamentous eukaryotic plant pathogens manipulate host defences. Recently, Phytophthora infestans RXLR effector AVR3a has been shown to target and stabilize host E3 ligase CMPG1, which is required for programmed cell death (PCD) triggered by INF1. We investigated the involvement of CMPG1 in PCD elicited by perception of diverse pathogen proteins, and assessed whether AVR3a could suppress each. • The role of CMPG1 in PCD events was investigated using virus-induced gene silencing, and the ability of AVR3a to suppress each was determined by transient expression of natural forms (AVR3a(KI) and AVR3a(EM)) and a mutated form, AVR3a(KI/Y147del) , which is unable to interact with or stabilize CMPG1. • PCD triggered at the host plasma membrane by Cf-9/Avr9, Cf-4/Avr4, Pto/AvrPto or the oomycete pathogen-associated molecular pattern (PAMP), cellulose-binding elicitor lectin (CBEL), required CMPG1 and was suppressed by AVR3a, but not by the AVR3a(KI/Y147del) mutant. Conversely, PCD triggered by nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins R3a, R2 and Rx was independent of CMPG1 and unaffected by AVR3a. • CMPG1-dependent PCD follows perception of diverse pathogen elicitors externally or in association with the inner surface of the host plasma membrane. We argue that AVR3a targets CMPG1 to block initial signal transduction/regulatory processes following pathogen perception at the plasma membrane.
Collapse
Affiliation(s)
- Eleanor M Gilroy
- Plant Pathology, Scottish Crop Research Institute, Invergowrie, Dundee, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Crivelli G, Ciuffo M, Genre A, Masenga V, Turina M. Reverse genetic analysis of Ourmiaviruses reveals the nucleolar localization of the coat protein in Nicotiana benthamiana and unusual requirements for virion formation. J Virol 2011; 85:5091-104. [PMID: 21411534 PMCID: PMC3126195 DOI: 10.1128/jvi.02565-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 03/07/2011] [Indexed: 01/27/2023] Open
Abstract
Ourmia melon virus (OuMV) is the type member of the genus Ourmiavirus. These viruses have a trisegmented genome, each part of which encodes a single protein. Ourmiaviruses share a distant similarity with other plant viruses only in their movement proteins (MP), whereas their RNA-dependent RNA polymerase (RdRP) shares features only with fungal viruses of the family Narnaviridae. Thus, ourmiaviruses are in a unique phylogenetic position among existing plant viruses. Here, we developed an agroinoculation system to launch infection in Nicotiana benthamiana plants. Using different combinations of the three segments, we demonstrated that RNA1 is necessary and sufficient for cis-acting replication in the agroinfiltrated area. RNA2 and RNA3, encoding the putative movement protein and the coat protein (CP), respectively, are both necessary for successful systemic infection of N. benthamiana. The CP is dispensable for long-distance transport of the virus through vascular tissues, but its absence prevents efficient systemic infection at the exit sites. Virion formation occurred only when the CP was translated from replication-derived RNA3. Transient expression of a green fluorescent protein-MP (GFP-MP) fusion via agroinfiltration showed that the MP is present in cytoplasmic connections across plant cell walls; in protoplasts the GFP-MP fusion stimulates the formation of tubular protrusions. Expression through agroinfiltration of a GFP-CP fusion displays most of the fluorescence inside the nucleus and within the nucleolus in particular. Nuclear localization of the CP was also confirmed through Western blot analysis of purified nuclei. The significance of several unusual properties of OuMV for replication, virion assembly, and movement is discussed in relation to other positive-strand RNA viruses.
Collapse
Affiliation(s)
| | | | - Andrea Genre
- Dipartimento di Biologia Vegetale, Universitá di Torino, Torino, Italy
| | - Vera Masenga
- Istituto di Virologia Vegetale, CNR, Torino, Italy
| | | |
Collapse
|
29
|
Abstract
Plant cells are delimited by a rigid cell wall that resists internal turgor pressure, but extends with a remarkable degree of control that allows the cell to grow and acquire specific shapes. Live cell fluorescence microscopy systems have allowed an amazing view into the complex and dynamic lives of individual proteins during cell morphogenesis. The current chapter will focus on methodology for live cell imaging of cellulose synthase (CESA) in Arabidopsis, which will also provide a launching pad to explore ones specific protein of interest.
Collapse
Affiliation(s)
- Meera Nair
- Department of Horticulture, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
30
|
Sparkes IA, Graumann K, Martinière A, Schoberer J, Wang P, Osterrieder A. Bleach it, switch it, bounce it, pull it: using lasers to reveal plant cell dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1-7. [PMID: 21078825 DOI: 10.1093/jxb/erq351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- I A Sparkes
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Bioimaging contributes significantly to our understanding of plant virus infections. In the present review, we describe technical advances that enable imaging of the infection process at previously unobtainable levels. We highlight how such new advances in subcellular imaging are contributing to a detailed dissection of all stages of the viral infection process. Specifically, we focus on: (i) the increasingly detailed localizations of viral proteins enabled by a diversifying palette of cellular markers; (ii) approaches using fluorescence microscopy for the functional analysis of proteins in vivo; (iii) the imaging of viral RNAs; (iv) methods that bridge the gap between optical and electron microscopy; and (v) methods that are blurring the distinction between imaging and structural biology. We describe the advantages and disadvantages of such techniques and place them in the broader perspective of their utility in analysing plant virus infection.
Collapse
|
32
|
Lim HS, Vaira AM, Domier LL, Lee SC, Kim HG, Hammond J. Efficiency of VIGS and gene expression in a novel bipartite potexvirus vector delivery system as a function of strength of TGB1 silencing suppression. Virology 2010; 402:149-63. [PMID: 20381827 DOI: 10.1016/j.virol.2010.03.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/07/2010] [Accepted: 03/14/2010] [Indexed: 11/27/2022]
Abstract
We have developed plant virus-based vectors for virus-induced gene silencing (VIGS) and protein expression, based on Alternanthera mosaic virus (AltMV), for infection of a wide range of host plants including Nicotiana benthamiana and Arabidopsis thaliana by either mechanical inoculation of in vitro transcripts or via agroinfiltration. In vivo transcripts produced by co-agroinfiltration of bacteriophage T7 RNA polymerase resulted in T7-driven AltMV infection from a binary vector in the absence of the Cauliflower mosaic virus 35S promoter. An artificial bipartite viral vector delivery system was created by separating the AltMV RNA-dependent RNA polymerase and Triple Gene Block (TGB)123-Coat protein (CP) coding regions into two constructs each bearing the AltMV 5' and 3' non-coding regions, which recombined in planta to generate a full-length AltMV genome. Substitution of TGB1 L(88)P, and equivalent changes in other potexvirus TGB1 proteins, affected RNA silencing suppression efficacy and suitability of the vectors from protein expression to VIGS.
Collapse
Affiliation(s)
- Hyoun-Sub Lim
- USDA-ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Harris D, Bulone V, Ding SY, DeBolt S. Tools for cellulose analysis in plant cell walls. PLANT PHYSIOLOGY 2010; 153:420-6. [PMID: 20304970 PMCID: PMC2879802 DOI: 10.1104/pp.110.154203] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/16/2010] [Indexed: 05/18/2023]
|
34
|
Lacorte C, Ribeiro SG, Lohuis D, Goldbach R, Prins M. Potatovirus X and Tobacco mosaic virus-based vectors compatible with the Gateway cloning system. J Virol Methods 2010; 164:7-13. [PMID: 19903495 DOI: 10.1016/j.jviromet.2009.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 11/21/2022]
Abstract
Virus-based expression vectors are important tools for high-level production of foreign proteins and for gene function analysis through virus induced gene silencing. To exploit further their advantages as fast, high yield replicons, a set of vectors was produced by converting and adapting Potato virus X (PVX) and Tobacco mosaic virus (TMV)-based vectors to allow easy cloning of foreign sequences by the Gateway cloning system. Target genes were cloned efficiently by recombination and successfully expressed in Nicotiana benthamiana following inoculation by Agrobacterium (agroinfection). Using green fluorescent protein (GFP) as marker, high-level expression with both PVX-GW and TMV-GW vectors was confirmed. A Gateway inserted phytoene desaturase gene (pds) fragment in PVX-GW and TMV-GW vectors (PVX-GW-PDS and TMC-GW-PDS), induced gene silencing of the endogenous pds gene in N. benthamiana as evidenced by chlorotic leaves. The PVX-GW vector was adapted further by cloning the GFP gene upstream of the Gateway sequences, allowing the easy production of GFP fusions after recombination of a target gene. Subcellular localization of resulting GFP fusion was validated by recombining and expressing the coat protein gene from Tomato chlorotic mottle virus, revealing its nuclear localization. A PVX-GW transient expression assay of a nucleocapsid protein gene fragment of Tomato spotted wilt virus and of a single chain antibody against this protein was shown to confer effective resistance to TSWV infection.
Collapse
Affiliation(s)
- Cristiano Lacorte
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
35
|
Buschmann H, Sambade A, Pesquet E, Calder G, Lloyd CW. Microtubule dynamics in plant cells. Methods Cell Biol 2010; 97:373-400. [PMID: 20719281 DOI: 10.1016/s0091-679x(10)97020-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This chapter describes some of the choices and unavoidable compromises to be made when studying microtubule dynamics in plant cells. The choice of species still depends very much on the ability to produce transgenic plants and most work has been done in the relatively small cells of Arabidopsis plants or in tobacco BY-2 suspension cells. Fluorescence-tagged microtubule proteins have been used to label entire microtubules, or their plus ends, but there are still few minus-end markers for these acentrosomal cells. Pragmatic decisions have to be made about probes, balancing the efficacy of microtubule labeling against a tendency to overstabilize and bundle the microtubules and even induce helical plant growth. A key limitation in visualizing plant microtubules is the ability to keep plants alive for long periods under the microscope and we describe a biochamber that allows for plant cell growth and development while allowing gas exchange and reducing evaporation. Another major difficulty is the limited fluorescence lifetime and we describe imaging strategies to reduce photobleaching in long-term imaging. We also discuss methods of measuring microtubule dynamics, with emphasis on the behavior of plant-specific microtubule arrays.
Collapse
Affiliation(s)
- Henrik Buschmann
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR47UH, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Rao S, Dinkins RD, Hunt AG. Distinctive interactions of the Arabidopsis homolog of the 30 kD subunit of the cleavage and polyadenylation specificity factor (AtCPSF30) with other polyadenylation factor subunits. BMC Cell Biol 2009; 10:51. [PMID: 19573236 PMCID: PMC2712457 DOI: 10.1186/1471-2121-10-51] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 07/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Arabidopsis ortholog of the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor (AtCPSF30) is an RNA-binding endonuclease that is associated with other Arabidopsis CPSF subunits (orthologs of the 160, 100, and 73 kD subunits of CPSF). In order to further explore the functions of AtCPSF30, the subcellular distribution of the protein was examined by over-expressing fusion proteins containing fluorescent reporters linked to different CPSF subunits. RESULTS It was found that AtCPSF30 by itself localizes, not to the nucleus, but to the cytoplasm. AtCPSF30 could be found in the nucleus when co-expressed with AtCPSF160 or AtCPSF73(I), one of the two Arabidopsis orthologs of CPSF73. This re-directing of AtCPSF30 indicates that AtCPSF30 is retained in the nucleus via interactions with either or both of these other CPSF subunits. Co-expression of AtCSPF30 with AtCPSF100 altered the location, not of AtCPSF30, but rather of AtCPSF100, with these proteins residing in the cytoplasm. Deletion of plant-specific N- or C-terminal domains of AtCPSF30 abolished various of the interactions between AtCPSF30 and other CPSF subunits, suggesting that the plant CPSF complex assembles via novel protein-protein interactions. CONCLUSION These results suggest that the nuclear CPSF complex in plants is a dynamic one, and that the interactions between AtCPSF30 and other CPSF subunits are different from those existing in other eukaryotes.
Collapse
Affiliation(s)
- Suryadevara Rao
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312 USA
| | - Randy D Dinkins
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312 USA
- USDA-ARS, FAPRU, Lexington, KY 40546-0091 USA
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312 USA
| |
Collapse
|
37
|
Martin K, Kopperud K, Chakrabarty R, Banerjee R, Brooks R, Goodin MM. Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:150-62. [PMID: 19309457 DOI: 10.1111/j.1365-313x.2009.03850.x] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Here, we report on the construction of a novel series of Gateway-compatible plant transformation vectors containing genes encoding autofluorescent proteins, including Cerulean, Dendra2, DRONPA, TagRFP and Venus, for the expression of protein fusions in plant cells. To assist users in the selection of vectors, we have determined the relative in planta photostability and brightness of nine autofluorescent proteins (AFPs), and have compared the use of DRONPA and Dendra2 in photoactivation and photoconversion experiments. Additionally, we have generated transgenic Nicotiana benthamiana lines that express fluorescent protein markers targeted to nuclei, endoplasmic reticulum or actin filaments. We show that conducting bimolecular fluorescence complementation assays in plants that constitutively express cyan fluorescent protein fused to histone 2B provides enhanced data quality and content over assays conducted without the benefit of a subcellular marker. In addition to testing protein interactions, we demonstrate that our transgenic lines that express red fluorescent protein markers offer exceptional support in experiments aimed at defining nuclear or endomembrane localization. Taken together, the new combination of pSITE-BiFC and pSITEII vectors for studying intracellular protein interaction, localization and movement, in conjunction with our transgenic marker lines, constitute powerful tools for the plant biology community.
Collapse
Affiliation(s)
- Kathleen Martin
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | |
Collapse
|
38
|
Li JF, Park E, von Arnim AG, Nebenführ A. The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. PLANT METHODS 2009; 5:6. [PMID: 19457242 PMCID: PMC2693113 DOI: 10.1186/1746-4811-5-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 05/20/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant genome sequencing has resulted in the identification of a large number of uncharacterized genes. To investigate these unknown gene functions, several transient transformation systems have been developed as quick and convenient alternatives to the lengthy transgenic assay. These transient assays include biolistic bombardment, protoplast transfection and Agrobacterium-mediated transient transformation, each having advantages and disadvantages depending on the research purposes. RESULTS We present a novel transient assay based on cocultivation of young Arabidopsis (Arabidopsis thaliana) seedlings with Agrobacterium tumefaciens in the presence of a surfactant which does not require any dedicated equipment and can be carried out within one week from sowing seeds to protein analysis. This Fast Agro-mediated Seedling Transformation (FAST) was used successfully to express a wide variety of constructs driven by different promoters in Arabidopsis seedling cotyledons (but not roots) in diverse genetic backgrounds. Localizations of three previously uncharacterized proteins were identified by cotransformation with fluorescent organelle markers. The FAST procedure requires minimal handling of seedlings and was also adaptable for use in 96-well plates. The high transformation efficiency of the FAST procedure enabled protein detection from eight transformed seedlings by immunoblotting. Protein-protein interaction, in this case HY5 homodimerization, was readily detected in FAST-treated seedlings with Förster resonance energy transfer and bimolecular fluorescence complementation techniques. Initial tests demonstrated that the FAST procedure can also be applied to other dicot and monocot species, including tobacco, tomato, rice and switchgrass. CONCLUSION The FAST system provides a rapid, efficient and economical assay of gene function in intact plants with minimal manual handling and without dedicated device. This method is potentially ideal for future automated high-throughput analysis.
Collapse
Affiliation(s)
- Jian-Feng Li
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
- Current address: Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114-2790, USA
| | - Eunsook Park
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | - Albrecht G von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | - Andreas Nebenführ
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| |
Collapse
|
39
|
Eubel H, Meyer EH, Taylor NL, Bussell JD, O'Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH. Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. PLANT PHYSIOLOGY 2008; 148:1809-29. [PMID: 18931141 PMCID: PMC2593673 DOI: 10.1104/pp.108.129999] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/10/2008] [Indexed: 05/17/2023]
Abstract
Peroxisomes play key roles in energy metabolism, cell signaling, and plant development. A better understanding of these important functions will be achieved with a more complete definition of the peroxisome proteome. The isolation of peroxisomes and their separation from mitochondria and other major membrane systems have been significant challenges in the Arabidopsis (Arabidopsis thaliana) model system. In this study, we present new data on the Arabidopsis peroxisome proteome obtained using two new technical advances that have not previously been applied to studies of plant peroxisomes. First, we followed density gradient centrifugation with free-flow electrophoresis to improve the separation of peroxisomes from mitochondria. Second, we used quantitative proteomics to identify proteins enriched in the peroxisome fractions relative to mitochondrial fractions. We provide evidence for peroxisomal localization of 89 proteins, 36 of which have not previously been identified in other analyses of Arabidopsis peroxisomes. Chimeric green fluorescent protein constructs of 35 proteins have been used to confirm their localization in peroxisomes or to identify endoplasmic reticulum contaminants. The distribution of many of these peroxisomal proteins between soluble, membrane-associated, and integral membrane locations has also been determined. This core peroxisomal proteome from nonphotosynthetic cultured cells contains a proportion of proteins that cannot be predicted to be peroxisomal due to the lack of recognizable peroxisomal targeting sequence 1 (PTS1) or PTS2 signals. Proteins identified are likely to be components in peroxisome biogenesis, beta-oxidation for fatty acid degradation and hormone biosynthesis, photorespiration, and metabolite transport. A considerable number of the proteins found in peroxisomes have no known function, and potential roles of these proteins in peroxisomal metabolism are discussed. This is aided by a metabolic network analysis that reveals a tight integration of functions and highlights specific metabolite nodes that most probably represent entry and exit metabolites that could require transport across the peroxisomal membrane.
Collapse
Affiliation(s)
- Holger Eubel
- Australian Research Council Centre of Excellence in Plant Energy Biology, M316 , University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
LIU D, KUHLMEY B, SMITH P, DAY D, FAULKNER C, OVERALL R. Reflection across plant cell boundaries in confocal laser scanning microscopy. J Microsc 2008; 231:349-57. [DOI: 10.1111/j.1365-2818.2008.02068.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Goodin MM, Zaitlin D, Naidu RA, Lommel SA. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1015-26. [PMID: 18616398 DOI: 10.1094/mpmi-21-8-1015] [Citation(s) in RCA: 392] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nicotiana benthamiana is the most widely used experimental host in plant virology, due mainly to the large number of diverse plant viruses that can successfully infect it. Additionally, N. benthamiana is susceptible to a wide variety of other plant-pathogenic agents (such as bacteria, oomycetes, fungi, and so on), making this species a cornerstone of host-pathogen research, particularly in the context of innate immunity and defense signaling. Moreover, because it can be genetically transformed and regenerated with good efficiency and is amenable to facile methods for virus-induced gene silencing or transient protein expression, N. benthamiana is rapidly gaining popularity in plant biology, particularly in studies requiring protein localization, interaction, or plant-based systems for protein expression and purification. Paradoxically, despite being an indispensable research model, little is known about the origins, genetic variation, or ecology of the N. benthamiana accessions currently used by the research community. In addition to addressing these latter topics, the purpose of this review is to provide information regarding sources for tools and reagents that can be used to support research in N. benthamiana. Finally, we propose that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.
Collapse
Affiliation(s)
- Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington 40546, USA.
| | | | | | | |
Collapse
|
42
|
Held MA, Boulaflous A, Brandizzi F. Advances in fluorescent protein-based imaging for the analysis of plant endomembranes. PLANT PHYSIOLOGY 2008; 147:1469-81. [PMID: 18678739 PMCID: PMC2492624 DOI: 10.1104/pp.108.120147] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Michael A Held
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824-1312, USA
| | | | | |
Collapse
|
43
|
Li JF, Nebenführ A. Inter-dependence of dimerization and organelle binding in myosin XI. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:478-490. [PMID: 18429938 DOI: 10.1111/j.1365-313x.2008.03522.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cytoplasmic streaming is a ubiquitous process in plant cells that is thought to be driven by the active movement of myosin XI motor proteins along actin filaments. These myosin motors bind to organelles through their C-terminal globular tail domain, although recent studies have also suggested a role for the central coiled-coil region during organelle binding. Here we have investigated the relationship between these two protein domains of MYA1, an Arabidopsis myosin XI, in a series of in vivo experiments demonstrating that dimerization of the coiled-coil region stabilizes organelle binding of the globular tail. Surprisingly, yeast two-hybrid assays, bimolecular fluorescence complementation, Förster resonance energy transfer and in vitro pull-down experiments all demonstrated that dimerization of the 174-residue MYA1 coiled coils by themselves was unstable. Furthermore, only the first of the two major coiled-coil segments in MYA1 contributed significantly to dimer formation. Interestingly, dimerization of myosin tail constructs that included the organelle-binding globular tail was stable, although the globular tails by themselves did not interact. This suggests an inter-dependent relationship between dimerization and organelle binding in myosin XI, whereby each process synergistically stimulates the other.
Collapse
Affiliation(s)
- Jian-Feng Li
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA.
| | | |
Collapse
|
44
|
Ghosh D, Brooks RE, Wang R, Lesnaw J, Goodin MM. Cloning and subcellular localization of the phosphoprotein and nucleocapsid proteins of Potato yellow dwarf virus, type species of the genus Nucleorhabdovirus. Virus Res 2008; 135:26-35. [PMID: 18387687 DOI: 10.1016/j.virusres.2008.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/07/2008] [Accepted: 02/10/2008] [Indexed: 11/15/2022]
Abstract
We have cloned and characterized mRNAs corresponding to the phosphoprotein (P) and nucleocapsid (N) genes of the sanguinolenta strain of Potato yellow dwarf virus (PYDV). The P and N messenger RNAs both begin with a common AAACA pentanucleotide and are 1546nt and 962nt in length, and capable of encoding 52kDa and 31kDa proteins, respectively. The N mRNA contains a 12nt 5' non-translated sequence (NTS) and a 83nt 3'-NTS. Similarly, the P mRNA has a 19nt 5'-NTS and a 125nt 3'-NTS. Primary structure analyses revealed three potential phosphorylation sites in the P protein and six in the N protein. Despite a lack of predictable nuclear localization signals (NLSs) in either protein, transient expression of the P and N proteins in N. benthamiana showed that both proteins are targeted exclusively to nuclei. Phylogenetic analyses showed that PYDV is most closely related to Maize mosaic virus and Taro vein chlorosis virus, which also lack predictable NLSs in their N proteins. The present data further distinguish PYDV from SYNV and suggest that, together, these viruses serve to provide a more comprehensive view of rhabdovirus cell biology, which can be studied in a common host plant.
Collapse
Affiliation(s)
- Debasish Ghosh
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | | | | | | | | |
Collapse
|
45
|
Citovsky V, Gafni Y, Tzfira T. Localizing protein–protein interactions by bimolecular fluorescence complementation in planta. Methods 2008; 45:196-206. [PMID: 18586107 DOI: 10.1016/j.ymeth.2008.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/11/2008] [Accepted: 06/16/2008] [Indexed: 11/28/2022] Open
Affiliation(s)
- Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
46
|
Tzfira T, Kozlovsky SV, Citovsky V. Advanced expression vector systems: new weapons for plant research and biotechnology. PLANT PHYSIOLOGY 2007; 145:1087-9. [PMID: 18056858 PMCID: PMC2151734 DOI: 10.1104/pp.107.111724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 10/26/2007] [Indexed: 05/12/2023]
|
47
|
Karimi M, Depicker A, Hilson P. Recombinational cloning with plant gateway vectors. PLANT PHYSIOLOGY 2007; 145:1144-54. [PMID: 18056864 PMCID: PMC2151728 DOI: 10.1104/pp.107.106989] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/02/2007] [Indexed: 05/18/2023]
Affiliation(s)
- Mansour Karimi
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Ghent University, 9052 Ghent, Belgium
| | | | | |
Collapse
|