1
|
Li Y, Xiong H, Guo H, Xie Y, Zhao L, Gu J, Li H, Zhao S, Ding Y, Zhou C, Fang Z, Liu L. A gain-of-function mutation at the C-terminus of FT-D1 promotes heading by interacting with 14-3-3A and FDL6 in wheat. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39276323 DOI: 10.1111/pbi.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/17/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024]
Abstract
Vernalization and photoperiod pathways converging at FT1 control the transition to flowering in wheat. Here, we identified a gain-of-function mutation in FT-D1 that results in earlier heading date (HD), and shorter plant height and spike length in the gamma ray-induced eh1 wheat mutant. Knockout of the wild-type and overexpression of the mutated FT-D1 indicate that both alleles are functional to affect HD and plant height. Protein interaction assays demonstrated that the frameshift mutation in FT-D1eh1 exon 3 led to gain-of-function interactions with 14-3-3A and FDL6, thereby enabling the formation of florigen activation complex (FAC) and consequently activating a flowering-related transcriptomic programme. This mutation did not affect FT-D1eh1 interactions with TaNaKR5 or TaFTIP7, both of which could modulate HD, potentially via mediating FT-D1 translocation to the shoot apical meristem. Furthermore, the 'Segment B' external loop is essential for FT-D1 interaction with FDL6, while residue Y85 is required for interactions with TaNaKR5 and TaFTIP7. Finally, the flowering regulatory hub gene, ELF5, was identified as the FT-D1 regulatory target. This study illustrates FT-D1 function in determining wheat HD with a suite of interaction partners and provides genetic resources for tuning HD in elite wheat lines.
Collapse
Affiliation(s)
- Yuting Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Hongchun Xiong
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huijun Guo
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongdun Xie
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linshu Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiayu Gu
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiyuan Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shirong Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuping Ding
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunyun Zhou
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhengwu Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Luxiang Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
2
|
Liu Y, Liu P, Gao L, Li Y, Ren X, Jia J, Wang L, Zheng X, Tong Y, Pei H, Lu Z. Epigenomic identification of vernalization cis-regulatory elements in winter wheat. Genome Biol 2024; 25:200. [PMID: 39080779 PMCID: PMC11290141 DOI: 10.1186/s13059-024-03342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Winter wheat undergoes vernalization, a process activated by prolonged exposure to low temperatures. During this phase, flowering signals are generated and transported to the apical meristems, stimulating the transition to the inflorescence meristem while inhibiting tiller bud elongation. Although some vernalization genes have been identified, the key cis-regulatory elements and precise mechanisms governing this process in wheat remain largely unknown. RESULTS In this study, we construct extensive epigenomic and transcriptomic profiling across multiple tissues-leaf, axillary bud, and shoot apex-during the vernalization of winter wheat. Epigenetic modifications play a crucial role in eliciting tissue-specific responses and sub-genome-divergent expressions during vernalization. Notably, we observe that H3K27me3 primarily regulates vernalization-induced genes and has limited influence on vernalization-repressed genes. The integration of these datasets enables the identification of 10,600 putative vernalization-related regulatory elements including distal accessible chromatin regions (ACRs) situated 30Kb upstream of VRN3, contributing to the construction of a comprehensive regulatory network. Furthermore, we discover that TaSPL7/15, integral components of the aging-related flowering pathway, interact with the VRN1 promoter and VRN3 distal regulatory elements. These interactions finely regulate their expressions, consequently impacting the vernalization process and flowering. CONCLUSIONS Our study offers critical insights into wheat vernalization's epigenomic dynamics and identifies the putative regulatory elements crucial for developing wheat germplasm with varied vernalization characteristics. It also establishes a vernalization-related transcriptional network, and uncovers that TaSPL7/15 from the aging pathway participates in vernalization by directly binding to the VRN1 promoter and VRN3 distal regulatory elements.
Collapse
Affiliation(s)
- Yanhong Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yushan Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueni Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Xu Zheng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongcui Pei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Madrigal Y, Alzate JF, Pabón-Mora N. Evolution of major flowering pathway integrators in Orchidaceae. PLANT REPRODUCTION 2024; 37:85-109. [PMID: 37823912 PMCID: PMC11180029 DOI: 10.1007/s00497-023-00482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
The Orchidaceae is a mega-diverse plant family with ca. 29,000 species with a large variety of life forms that can colonize transitory habitats. Despite this diversity, little is known about their flowering integrators in response to specific environmental factors. During the reproductive transition in flowering plants a vegetative apical meristem (SAM) transforms into an inflorescence meristem (IM) that forms bracts and flowers. In model grasses, like rice, a flowering genetic regulatory network (FGRN) controlling reproductive transitions has been identified, but little is known in the Orchidaceae. In order to analyze the players of the FRGN in orchids, we performed comprehensive phylogenetic analyses of CONSTANS-like/CONSTANS-like 4 (COL/COL4), FLOWERING LOCUS D (FD), FLOWERING LOCUS C/FRUITFULL (FLC/FUL) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) gene lineages. In addition to PEBP and AGL24/SVP genes previously analyzed, here we identify an increase of orchid homologs belonging to COL4, and FUL gene lineages in comparison with other monocots, including grasses, due to orchid-specific gene lineage duplications. Contrariwise, local duplications in Orchidaceae are less frequent in the COL, FD and SOC1 gene lineages, which points to a retention of key functions under strong purifying selection in essential signaling factors. We also identified changes in the protein sequences after such duplications, variation in the evolutionary rates of resulting paralogous clades and targeted expression of isolated homologs in different orchids. Interestingly, vernalization-response genes like VERNALIZATION1 (VRN1) and FLOWERING LOCUS C (FLC) are completely lacking in orchids, or alternatively are reduced in number, as is the case of VERNALIZATION2/GHD7 (VRN2). Our findings point to non-canonical factors sensing temperature changes in orchids during reproductive transition. Expression data of key factors gathered from Elleanthus auratiacus, a terrestrial orchid in high Andean mountains allow us to characterize which copies are actually active during flowering. Altogether, our data lays down a comprehensive framework to assess gene function of a restricted number of homologs identified more likely playing key roles during the flowering transition, and the changes of the FGRN in neotropical orchids in comparison with temperate grasses.
Collapse
Affiliation(s)
- Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F Alzate
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
4
|
Li Y, Jin L, Liu X, He C, Bi S, Saeed S, Yan W. Epigenetic control on transcription of vernalization genes and whole-genome gene expression profile induced by vernalization in common wheat. PLANT DIVERSITY 2024; 46:386-394. [PMID: 38798730 PMCID: PMC11119517 DOI: 10.1016/j.pld.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 02/27/2024] [Indexed: 05/29/2024]
Abstract
Vernalization is necessary for winter wheat to flower. However, it is unclear whether vernalization is also required for spring wheat, which is frequently sown in fall, and what molecular mechanisms underlie the vernalization response in wheat varieties. In this study, we examined the molecular mechanisms that regulate vernalization response in winter and spring wheat varieties. For this purpose, we determined how major vernalization genes (VRN1, VRN2, and VRN3) respond to vernalization in these varieties and whether modifications to histones play a role in changes in gene expression. We also identified genes that are differentially regulated in response to vernalization in winter and spring wheat varieties. We found that in winter wheat, but not in spring wheat, VRN1 expression decreases when returned to warm temperature following vernalization. This finding may be associated with differences between spring and winter wheat in the levels of tri-methylation of lysine 27 on histone H3 (H3K27me3) and tri-methylation of lysine 4 on histone H3 (H3K4me3) at the VRN1 gene. Analysis of winter wheat transcriptomes before and after vernalization revealed that vernalization influences the expression of several genes, including those involved in leucine catabolism, cysteine biosynthesis, and flavonoid biosynthesis. These findings provide new candidates for further study on the mechanism of vernalization regulation in wheat.
Collapse
Affiliation(s)
- Yunzhen Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liujie Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Siteng Bi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Sulaiman Saeed
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Li C, Lin H, Debernardi JM, Zhang C, Dubcovsky J. GIGANTEA accelerates wheat heading time through gene interactions converging on FLOWERING LOCUS T1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:519-533. [PMID: 38184778 DOI: 10.1111/tpj.16622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Precise regulation of flowering time is critical for cereal crops to synchronize reproductive development with optimum environmental conditions, thereby maximizing grain yield. The plant-specific gene GIGANTEA (GI) plays an important role in the control of flowering time, with additional functions on the circadian clock and plant stress responses. In this study, we show that GI loss-of-function mutants in a photoperiod-sensitive tetraploid wheat background exhibit significant delays in heading time under both long-day (LD) and short-day photoperiods, with stronger effects under LD. However, this interaction between GI and photoperiod is no longer observed in isogenic lines carrying either a photoperiod-insensitive allele in the PHOTOPERIOD1 (PPD1) gene or a loss-of-function allele in EARLY FLOWERING 3 (ELF3), a known repressor of PPD1. These results suggest that the normal circadian regulation of PPD1 is required for the differential effect of GI on heading time in different photoperiods. Using crosses between mutant or transgenic plants of GI and those of critical genes in the flowering regulation pathway, we show that GI accelerates wheat heading time by promoting FLOWERING LOCUS T1 (FT1) expression via interactions with ELF3, VERNALIZATION 2 (VRN2), CONSTANS (CO), and the age-dependent microRNA172-APETALA2 (AP2) pathway, at both transcriptional and protein levels. Our study reveals conserved GI mechanisms between wheat and Arabidopsis but also identifies specific interactions of GI with the distinctive photoperiod and vernalization pathways of the temperate grasses. These results provide valuable knowledge for modulating wheat heading time and engineering new varieties better adapted to a changing environment.
Collapse
Affiliation(s)
- Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Juan M Debernardi
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| |
Collapse
|
6
|
Afshari-Behbahanizadeh S, Puglisi D, Esposito S, De Vita P. Allelic Variations in Vernalization ( Vrn) Genes in Triticum spp. Genes (Basel) 2024; 15:251. [PMID: 38397240 PMCID: PMC10887697 DOI: 10.3390/genes15020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Rapid climate changes, with higher warming rates during winter and spring seasons, dramatically affect the vernalization requirements, one of the most critical processes for the induction of wheat reproductive growth, with severe consequences on flowering time, grain filling, and grain yield. Specifically, the Vrn genes play a major role in the transition from vegetative to reproductive growth in wheat. Recent advances in wheat genomics have significantly improved the understanding of the molecular mechanisms of Vrn genes (Vrn-1, Vrn-2, Vrn-3, and Vrn-4), unveiling a diverse array of natural allelic variations. In this review, we have examined the current knowledge of Vrn genes from a functional and structural point of view, considering the studies conducted on Vrn alleles at different ploidy levels (diploid, tetraploid, and hexaploid). The molecular characterization of Vrn-1 alleles has been a focal point, revealing a diverse array of allelic forms with implications for flowering time. We have highlighted the structural complexity of the different allelic forms and the problems linked to the different nomenclature of some Vrn alleles. Addressing these issues will be crucial for harmonizing research efforts and enhancing our understanding of Vrn gene function and evolution. The increasing availability of genome and transcriptome sequences, along with the improvements in bioinformatics and computational biology, offers a versatile range of possibilities for enriching genomic regions surrounding the target sites of Vrn genes, paving the way for innovative approaches to manipulate flowering time and improve wheat productivity.
Collapse
Affiliation(s)
- Sanaz Afshari-Behbahanizadeh
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Damiano Puglisi
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
| | - Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), 80055 Portici, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
| |
Collapse
|
7
|
Niu D, Gao Z, Cui B, Zhang Y, He Y. A molecular mechanism for embryonic resetting of winter memory and restoration of winter annual growth habit in wheat. NATURE PLANTS 2024; 10:37-52. [PMID: 38177663 DOI: 10.1038/s41477-023-01596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
The staple food crop winter bread wheat (Triticum aestivum) acquires competence to flower in late spring after experiencing prolonged cold in temperate winter seasons, through the physiological process of vernalization. Prolonged cold exposure results in transcriptional repression of the floral repressor VERNALIZATION 2 (TaVRN2) and activates the expression of the potent floral promoter VERNALIZATION 1 (TaVRN1). Cold-induced TaVRN1 activation and TaVRN2 repression are maintained in post-cold vegetative growth and development, leading to an epigenetic 'memory of winter cold', enabling spring flowering. When and how the cold memory is reset in wheat is essentially unknown. Here we report that the cold-induced TaVRN1 activation is inherited by early embryos, but reset in subsequent embryo development, whereas TaVRN2 remains silenced through seed development, but is reactivated rapidly by light during seed germination. We further found that a chromatin reader mediates embryonic resetting of TaVRN1 and that chromatin modifications play an important role in the regulation of TaVRN1 expression and thus the floral transition, in response to developmental state and environmental cues. The findings define a two-step molecular mechanism for re-establishing vernalization requirement in common wheat, ensuring that each generation must experience winter cold to acquire competence to flower in spring.
Collapse
Affiliation(s)
- De Niu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Zheng Gao
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Bowen Cui
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yongxing Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yuehui He
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| |
Collapse
|
8
|
Chepurnov GY, Ovchinnikova ES, Blinov AG, Chikida NN, Belousova MK, Goncharov NP. Analysis of the Structural Organization and Expression of the Vrn-D1 Gene Controlling Growth Habit (Spring vs. Winter) in Aegilops tauschii Coss. PLANTS (BASEL, SWITZERLAND) 2023; 12:3596. [PMID: 37896059 PMCID: PMC10610194 DOI: 10.3390/plants12203596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
The duration of the vegetative period is an important agronomic characteristic of cereal crops. It is mainly influenced by the Vrn (response to vernalization) and Ppd (response to photoperiod) genes. In this work, we searched for alleles of several known genes of these two systems of response to external conditions in 15 accessions of Aegilops tauschii Coss. (syn. Ae. squarrosa L.), with the aim of studying the impact these alleles have on the vegetative period duration and growth habit. As a result, three allelic variants have been found for the Vrn-D1 gene: (i) one intact (winter type), (ii) one with a 5437 bp deletion in the first intron and (iii) one previously undescribed allele with a 3273 bp deletion in the first intron. It has been shown that the spring growth habit of Ae. tauschii can be developed due to the presence of a new allele of the Vrn-D1 gene. Significant differences in expression levels between the new allelic variant of the Vrn-D1 gene and the intact allele vrn-D1 were confirmed by qPCR. The new allele can be introgressed into common wheat to enhance the biodiversity of the spring growth habit and vegetative period duration of plants.
Collapse
Affiliation(s)
- Grigory Yurievich Chepurnov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Ekaterina Sergeevna Ovchinnikova
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Alexander Genadevich Blinov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Nadezhda Nikolaevna Chikida
- Division of Wheat Genetic Resources, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia;
| | - Mariya Khasbulatovna Belousova
- Wheat Laboratory, Dagestan Experimental Station—The Branch of the Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Vavilovo Village, Derbent District, 368600 Saint Petersburg, Russia;
| | - Nikolay Petrovich Goncharov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| |
Collapse
|
9
|
Li Y, Xiong H, Guo H, Zhou C, Fu M, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Wang C, Irshad A, Liu L, Fang Z. Fine mapping and genetic analysis identified a C 2H 2-type zinc finger as a candidate gene for heading date regulation in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:140. [PMID: 37243757 DOI: 10.1007/s00122-023-04363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/08/2023] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE A minor-effect QTL, Qhd.2AS, that affects heading date in wheat was mapped to a genomic interval of 1.70-Mb on 2AS, and gene analysis indicated that the C2H2-type zinc finger protein gene TraesCS2A02G181200 is the best candidate for Qhd.2AS. Heading date (HD) is a complex quantitative trait that determines the regional adaptability of cereal crops, and identifying the underlying genetic elements with minor effects on HD is important for improving wheat production in diverse environments. In this study, a minor QTL for HD that we named Qhd.2AS was detected on the short arm of chromosome 2A by Bulked Segregant Analysis and validated in a recombinant inbred population. Using a segregating population of 4894 individuals, Qhd.2AS was further delimited to an interval of 0.41 cM, corresponding to a genomic region spanning 1.70 Mb (from 138.87 to 140.57 Mb) that contains 16 high-confidence genes based on IWGSC RefSeq v1.0. Analyses of sequence variations and gene transcription indicated that TraesCS2A02G181200, which encodes a C2H2-type zinc finger protein, is the best candidate gene for Qhd.2AS that influences HD. Screening a TILLING mutant library identified two mutants with premature stop codons in TraesCS2A02G181200, both of which exhibited a delay in HD of 2-4 days. Additionally, variations in its putative regulatory sites were widely present in natural accession, and we also identified the allele which was positively selected during wheat breeding. Epistatic analyses indicated that Qhd.2AS-mediated HD variation is independent of VRN-B1 and environmental factors. Phenotypic investigation of homozygous recombinant inbred lines (RILs) and F2:3 families showed that Qhd.2AS has no negative effect on yield-related traits. These results provide important cues for refining HD and therefore improving yield in wheat breeding programs and will deepen our understanding of the genetic regulation of HD in cereal plants.
Collapse
Affiliation(s)
- Yuting Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongchun Xiong
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijun Guo
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyun Zhou
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiyu Fu
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongdun Xie
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Zhao
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiayu Gu
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shirong Zhao
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuping Ding
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaojie Wang
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ahsan Irshad
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Luxiang Liu
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhengwu Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
10
|
Alvarez MA, Li C, Lin H, Joe A, Padilla M, Woods DP, Dubcovsky J. EARLY FLOWERING 3 interactions with PHYTOCHROME B and PHOTOPERIOD1 are critical for the photoperiodic regulation of wheat heading time. PLoS Genet 2023; 19:e1010655. [PMID: 37163495 PMCID: PMC10171656 DOI: 10.1371/journal.pgen.1010655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/04/2023] [Indexed: 05/12/2023] Open
Abstract
The photoperiodic response is critical for plants to adjust their reproductive phase to the most favorable season. Wheat heads earlier under long days (LD) than under short days (SD) and this difference is mainly regulated by the PHOTOPERIOD1 (PPD1) gene. Tetraploid wheat plants carrying the Ppd-A1a allele with a large deletion in the promoter head earlier under SD than plants carrying the wildtype Ppd-A1b allele with an intact promoter. Phytochromes PHYB and PHYC are necessary for the light activation of PPD1, and mutations in either of these genes result in the downregulation of PPD1 and very late heading time. We show here that both effects are reverted when the phyB mutant is combined with loss-of-function mutations in EARLY FLOWERING 3 (ELF3), a component of the Evening Complex (EC) in the circadian clock. We also show that the wheat ELF3 protein interacts with PHYB and PHYC, is rapidly modified by light, and binds to the PPD1 promoter in planta (likely as part of the EC). Deletion of the ELF3 binding region in the Ppd-A1a promoter results in PPD1 upregulation at dawn, similar to PPD1 alleles with intact promoters in the elf3 mutant background. The upregulation of PPD1 is correlated with the upregulation of the florigen gene FLOWERING LOCUS T1 (FT1) and early heading time. Loss-of-function mutations in PPD1 result in the downregulation of FT1 and delayed heading, even when combined with the elf3 mutation. Taken together, these results indicate that ELF3 operates downstream of PHYB as a direct transcriptional repressor of PPD1, and that this repression is relaxed both by light and by the deletion of the ELF3 binding region in the Ppd-A1a promoter. In summary, the regulation of the light mediated activation of PPD1 by ELF3 is critical for the photoperiodic regulation of wheat heading time.
Collapse
Affiliation(s)
- Maria Alejandra Alvarez
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Anna Joe
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Mariana Padilla
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Daniel P Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
11
|
Milec Z, Strejčková B, Šafář J. Contemplation on wheat vernalization. FRONTIERS IN PLANT SCIENCE 2023; 13:1093792. [PMID: 36684728 PMCID: PMC9853533 DOI: 10.3389/fpls.2022.1093792] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Vernalization is a period of low non-freezing temperatures, which provides the competence to flower. This mechanism ensures that plants sown before winter develop reproductive organs in more favourable conditions during spring. Such an evolutionary mechanism has evolved in both monocot and eudicot plants. Studies in monocots, represented by temperate cereals like wheat and barley, have identified and proposed the VERNALIZATION1 (VRN1) gene as a key player in the vernalization response. VRN1 belongs to MADS-box transcription factors and is expressed in the leaves and the apical meristem, where it subsequently promotes flowering. Despite substantial research advancement in the last two decades, there are still gaps in our understanding of the vernalization mechanism. Here we summarise the present knowledge of wheat vernalization. We discuss VRN1 allelic variation, review vernalization models, talk VRN1 copy number variation and devernalization phenomenon. Finally, we suggest possible future directions of the vernalization research in wheat.
Collapse
|
12
|
Kasemsap P, Bloom AJ. Breeding for Higher Yields of Wheat and Rice through Modifying Nitrogen Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 12:85. [PMID: 36616214 PMCID: PMC9823454 DOI: 10.3390/plants12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Wheat and rice produce nutritious grains that provide 32% of the protein in the human diet globally. Here, we examine how genetic modifications to improve assimilation of the inorganic nitrogen forms ammonium and nitrate into protein influence grain yield of these crops. Successful breeding for modified nitrogen metabolism has focused on genes that coordinate nitrogen and carbon metabolism, including those that regulate tillering, heading date, and ammonium assimilation. Gaps in our current understanding include (1) species differences among candidate genes in nitrogen metabolism pathways, (2) the extent to which relative abundance of these nitrogen forms across natural soil environments shape crop responses, and (3) natural variation and genetic architecture of nitrogen-mediated yield improvement. Despite extensive research on the genetics of nitrogen metabolism since the rise of synthetic fertilizers, only a few projects targeting nitrogen pathways have resulted in development of cultivars with higher yields. To continue improving grain yield and quality, breeding strategies need to focus concurrently on both carbon and nitrogen assimilation and consider manipulating genes with smaller effects or that underlie regulatory networks as well as genes directly associated with nitrogen metabolism.
Collapse
Affiliation(s)
- Pornpipat Kasemsap
- Department of Plant Sciences, University of California at Davis, Mailstop 3, Davis, CA 95616, USA
| | | |
Collapse
|
13
|
Yan X, Wang LJ, Zhao YQ, Jia GX. Expression Patterns of Key Genes in the Photoperiod and Vernalization Flowering Pathways in Lilium longiflorum with Different Bulb Sizes. Int J Mol Sci 2022; 23:ijms23158341. [PMID: 35955483 PMCID: PMC9368551 DOI: 10.3390/ijms23158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lilium longiflorum is a wild Lilium, and its flowering transition requires a long period of cold exposure to meet the demand of vernalization. The responses of different sized bulbs to cold exposure and photoperiod are different, and the floral transition pathways of small and large bulbs are different. In this study, small and large bulbs were placed in cold storage for different weeks and then cultured at a constant ambient temperature of 25 °C under long day (LD) and short day (SD) conditions. Then, the flowering characteristics and expression patterns of key genes related to the vernalization and photoperiod pathways in different groups were calculated and analyzed. The results showed that the floral transition of Lilium longiflorum was influenced by both vernalization and photoperiod, that vernalization and LD conditions can significantly improve the flowering rate of Lilium longiflorum, and that the time from planting to visible flowering buds’ appearance was decreased. The flowering time and rate of large bulbs were greatly influenced by cold exposure, and the vernalization pathway acted more actively at the floral transition stage. The floral transition of small bulbs was affected more by the photoperiod pathway. Moreover, it was speculated that cold exposure may promote greater sensitivity of the small bulbs to LD conditions. In addition, the expression of LlVRN1, LlFKF1, LlGI, LlCO5, LlCO7, LlCO16, LlFT1, LlFT3 and LlSOC1 was high during the process of floral transition, and LlCO13, LlCO14 and LlCO15 were highly expressed in the vegetative stage. The expression of LlCO13 and LlCO14 was different under different lighting conditions, and the flowering induction function of LlCO9 and LlFT3 was related to vernalization. Moreover, LlFKF1, LlGI, LlCO5, LlCO16, LlSOC1 and LlFT2 were involved in the entire growth process of plants, while LlCO6, LlCO16 and LlFT1 are involved in the differentiation and formation of small bulblets of plants after the inflorescence stage, and this process is also closely related to LD conditions. This study has great significance for understanding the molecular mechanisms of the vernalization and photoperiod flowering pathways of Lilium longiflorum.
Collapse
|
14
|
Debernardi JM, Woods DP, Li K, Li C, Dubcovsky J. MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat. PLoS Genet 2022; 18:e1010157. [PMID: 35468125 PMCID: PMC9037917 DOI: 10.1371/journal.pgen.1010157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022] Open
Abstract
Plants possess regulatory mechanisms that allow them to flower under conditions that maximize reproductive success. Selection of natural variants affecting those mechanisms has been critical in agriculture to modulate the flowering response of crops to specific environments and to increase yield. In the temperate cereals, wheat and barley, the photoperiod and vernalization pathways explain most of the natural variation in flowering time. However, other pathways also participate in fine-tuning the flowering response. In this work, we integrate the conserved microRNA miR172 and its targets APETALA2-like (AP2L) genes into the temperate grass flowering network involving VERNALIZATION 1 (VRN1), VRN2 and FLOWERING LOCUS T 1 (FT1 = VRN3) genes. Using mutants, transgenics and different growing conditions, we show that miR172 promotes flowering in wheat, while its target genes AP2L1 (TaTOE1) and AP2L5 (Q) act as flowering repressors. Moreover, we reveal that the miR172-AP2L pathway regulates FT1 expression in the leaves, and that this regulation is independent of VRN2 and VRN1. In addition, we show that the miR172-AP2L module and flowering are both controlled by plant age through miR156 in spring cultivars. However, in winter cultivars, flowering and the regulation of AP2L1 expression are decoupled from miR156 downregulation with age, and induction of VRN1 by vernalization is required to repress AP2L1 in the leaves and promote flowering. Interestingly, the levels of miR172 and both AP2L genes modulate the flowering response to different vernalization treatments in winter cultivars. In summary, our results show that conserved and grass specific gene networks interact to modulate the flowering response, and that natural or induced mutations in AP2L genes are useful tools for fine-tuning wheat flowering time in a changing environment.
Collapse
Affiliation(s)
- Juan M. Debernardi
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Daniel P. Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Kun Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
15
|
Zhang H, Jiao B, Dong F, Liang X, Zhou S, Wang H. Genome-wide identification of CCT genes in wheat (Triticum aestivum L.) and their expression analysis during vernalization. PLoS One 2022; 17:e0262147. [PMID: 34986172 PMCID: PMC8730456 DOI: 10.1371/journal.pone.0262147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Numerous CCT genes are known to regulate various biological processes, such as circadian rhythm regulation, flowering, light signaling, plant development, and stress resistance. The CCT gene family has been characterized in many plants but remains unknown in the major cereal wheat (Triticum aestivum L.). Extended exposure to low temperature (vernalization) is necessary for winter wheat to flower successfully. VERNALIZATION2 (VRN2), a specific CCT-containing gene, has been proved to be strongly associated with vernalization in winter wheat. Mutation of all VRN2 copies in three subgenomes results in the eliminated demands of low temperature in flowering. However, no other CCT genes have been reported to be associated with vernalization to date. The present study screened CCT genes in the whole wheat genome, and preliminarily identified the vernalization related CCT genes through expression analysis. 127 CCT genes were identified in three subgenomes of common wheat through a hidden Markov model-based method. Based on multiple alignment, these genes were grouped into 40 gene clusters, including the duplicated gene clusters TaCMF6 and TaCMF8, each tandemly arranged near the telomere. The phylogenetic analysis classified these genes into eight groups. The transcriptome analysis using leaf tissues collected before, during, and after vernalization revealed 49 upregulated and 31 downregulated CCT genes during vernalization, further validated by quantitative real-time PCR. Among the differentially expressed and well-investigated CCT gene clusters analyzed in this study, TaCMF11, TaCO18, TaPRR95, TaCMF6, and TaCO16 were induced during vernalization but decreased immediately after vernalization, while TaCO1, TaCO15, TaCO2, TaCMF8, and TaPPD1 were stably suppressed during and after vernalization. These data imply that some vernalization related CCT genes other than VRN2 may exist in wheat. This study improves our understanding of CCT genes and provides a foundation for further research on CCT genes related to vernalization in wheat.
Collapse
Affiliation(s)
- HongWei Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Bo Jiao
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - FuShuang Dong
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - XinXia Liang
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Shuo Zhou
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- * E-mail: (SZ); (HBW)
| | - HaiBo Wang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- * E-mail: (SZ); (HBW)
| |
Collapse
|
16
|
Li K, Debernardi JM, Li C, Lin H, Zhang C, Jernstedt J, von Korff M, Zhong J, Dubcovsky J. Interactions between SQUAMOSA and SHORT VEGETATIVE PHASE MADS-box proteins regulate meristem transitions during wheat spike development. THE PLANT CELL 2021; 33:3621-3644. [PMID: 34726755 PMCID: PMC8643710 DOI: 10.1093/plcell/koab243] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 05/20/2023]
Abstract
Inflorescence architecture is an important determinant of crop productivity. The number of spikelets produced by the wheat inflorescence meristem (IM) before its transition to a terminal spikelet (TS) influences the maximum number of grains per spike. Wheat MADS-box genes VERNALIZATION 1 (VRN1) and FRUITFULL 2 (FUL2) (in the SQUAMOSA-clade) are essential to promote the transition from IM to TS and for spikelet development. Here we show that SQUAMOSA genes contribute to spikelet identity by repressing MADS-box genes VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), SHORT VEGETATIVE PHASE 1 (SVP1), and SVP3 in the SVP clade. Constitutive expression of VRT2 resulted in leafy glumes and lemmas, reversion of spikelets to spikes, and downregulation of MADS-box genes involved in floret development, whereas the vrt2 mutant reduced vegetative characteristics in spikelets of squamosa mutants. Interestingly, the vrt2 svp1 mutant showed similar phenotypes to squamosa mutants regarding heading time, plant height, and spikelets per spike, but it exhibited unusual axillary inflorescences in the elongating stem. We propose that SQUAMOSA-SVP interactions are important to promote heading, formation of the TS, and stem elongation during the early reproductive phase, and that downregulation of SVP genes is then necessary for normal spikelet and floral development. Manipulating SVP and SQUAMOSA genes can contribute to engineering spike architectures with improved productivity.
Collapse
Affiliation(s)
| | | | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Judy Jernstedt
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Maria von Korff
- Institute for Plant Genetics, Heinrich Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Sciences “SMART Plants for Tomorrow’s Needs”, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Jinshun Zhong
- Institute for Plant Genetics, Heinrich Heine University, Düsseldorf 40225, Germany
| | | |
Collapse
|
17
|
Kumar U, Singh RP, Dreisigacker S, Röder MS, Crossa J, Huerta-Espino J, Mondal S, Crespo-Herrera L, Singh GP, Mishra CN, Mavi GS, Sohu VS, Prasad SVS, Naik R, Misra SC, Joshi AK. Juvenile Heat Tolerance in Wheat for Attaining Higher Grain Yield by Shifting to Early Sowing in October in South Asia. Genes (Basel) 2021; 12:genes12111808. [PMID: 34828414 PMCID: PMC8622066 DOI: 10.3390/genes12111808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
Farmers in northwestern and central India have been exploring to sow their wheat much earlier (October) than normal (November) to sustain productivity by escaping terminal heat stress and to utilize the available soil moisture after the harvesting of rice crop. However, current popular varieties are poorly adapted to early sowing due to the exposure of juvenile plants to the warmer temperatures in the month of October and early November. Therefore, a study was undertaken to identify wheat genotypes suited to October sowing under warmer temperatures in India. A diverse collection of 3322 bread wheat varieties and elite lines was prepared in CIMMYT, Mexico, and planted in the 3rd week of October during the crop season 2012-2013 in six locations (Ludhiana, Karnal, New Delhi, Indore, Pune and Dharwad) spread over northwestern plains zone (NWPZ) and central and Peninsular zone (CZ and PZ; designated as CPZ) of India. Agronomic traits data from the seedling stage to maturity were recorded. Results indicated substantial diversity for yield and yield-associated traits, with some lines showing indications of higher yields under October sowing. Based on agronomic performance and disease resistance, the top 48 lines (and two local checks) were identified and planted in the next crop season (2013-2014) in a replicated trial in all six locations under October sowing (third week). High yielding lines that could tolerate higher temperature in October sowing were identified for both zones; however, performance for grain yield was more promising in the NWPZ. Hence, a new trial of 30 lines was planted only in NWPZ under October sowing. Lines showing significantly superior yield over the best check and the most popular cultivars in the zone were identified. The study suggested that agronomically superior wheat varieties with early heat tolerance can be obtained that can provide yield up to 8 t/ha by planting in the third to fourth week of October.
Collapse
Affiliation(s)
- Uttam Kumar
- Borlaug Institute for South Asia (BISA), NASC Complex, DPS Marg, New Delhi 110012, India;
- International Maize and Wheat Improvement Center (CIMMYT), NASC Complex, DPS Marg, New Delhi 110012, India
| | - Ravi Prakash Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany;
| | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico-INIFAP, Carretera los Reyes-Texcoco, Coatlinchan 56250, Mexico;
| | - Suchismita Mondal
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Leonardo Crespo-Herrera
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), ICAR, Karnal 132001, India; (G.P.S.); (C.N.M.)
| | - Chandra Nath Mishra
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), ICAR, Karnal 132001, India; (G.P.S.); (C.N.M.)
| | - Gurvinder Singh Mavi
- Plant Breeding and Genetics Department, Punjab Agricultural University, Ludhiana 141004, India; (G.S.M.); (V.S.S.)
| | - Virinder Singh Sohu
- Plant Breeding and Genetics Department, Punjab Agricultural University, Ludhiana 141004, India; (G.S.M.); (V.S.S.)
| | | | - Rudra Naik
- Department of Genetics and Plant Breeding, University of Agricultural Sciences, Krishi Nagar, Dharwad 580005, India;
| | - Satish Chandra Misra
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune 411004, India;
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia (BISA), NASC Complex, DPS Marg, New Delhi 110012, India;
- International Maize and Wheat Improvement Center (CIMMYT), NASC Complex, DPS Marg, New Delhi 110012, India
- Correspondence:
| |
Collapse
|
18
|
Wolde GM, Schreiber M, Trautewig C, Himmelbach A, Sakuma S, Mascher M, Schnurbusch T. Genome-wide identification of loci modifying spike-branching in tetraploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1925-1943. [PMID: 33961064 PMCID: PMC8263435 DOI: 10.1007/s00122-020-03743-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/27/2020] [Indexed: 05/03/2023]
Abstract
Genetic modification of spike architecture is essential for improving wheat yield. Newly identified loci for the 'Miracle wheat' phenotype on chromosomes 1AS and 2BS have significant effects on spike traits. The wheat (Triticum ssp.) inflorescence, also known as a spike, forms an unbranched inflorescence in which the inflorescence meristem generates axillary spikelet meristems (SMs) destined to become sessile spikelets. Previously, we identified the putatively causative mutation in the branched headt (bht) gene (TtBH-A1) of tetraploid wheat (T. turgidum convar. compositum (L.f.) Filat.) responsible for the loss of SM identity, converting the non-branching spike to a branched wheat spike. In the current study, we performed whole-genome quantitative trait loci (QTL) analysis using 146 recombinant inbred lines (RILs) derived from a cross between spike-branching wheat ('Miracle wheat') and an elite durum wheat cultivar showing broad phenotypic variation for spike architecture. Besides the previously found gene at the bht-A1 locus on the short arm of chromosome 2A, we also mapped two new modifier QTL for spike-branching on the short arm of chromosome 1A, termed bht-A2, and 2BS. Using biparental mapping population and GWAS in 302 diverse accessions, the 2BS locus was highly associated with coding sequence variation found at the homoeo-allele of TtBH-B1 (bht-B1). Thus, RILs that combined both bht-A1 and bht-B1 alleles showed additive genetic effects leading to increased penetrance and expressivity of the supernumerary spikelet and/or mini-spike formation.
Collapse
Affiliation(s)
- Gizaw M Wolde
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany.
- Department of Plant Sciences One Shields Avenue, University of California, Davis, CA, 95616, USA.
| | - Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Corinna Trautewig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Shun Sakuma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, 680-8553, Japan
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany.
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany.
| |
Collapse
|
19
|
Fernández-Calleja M, Casas AM, Igartua E. Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1867-1897. [PMID: 33969431 PMCID: PMC8263424 DOI: 10.1007/s00122-021-03824-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/24/2021] [Indexed: 05/10/2023]
Abstract
This review summarizes the allelic series, effects, interactions between genes and with the environment, for the major flowering time genes that drive phenological adaptation of barley. The optimization of phenology is a major goal of plant breeding addressing the production of high-yielding varieties adapted to changing climatic conditions. Flowering time in cereals is regulated by genetic networks that respond predominately to day length and temperature. Allelic diversity at these genes is at the basis of barley wide adaptation. Detailed knowledge of their effects, and genetic and environmental interactions will facilitate plant breeders manipulating flowering time in cereal germplasm enhancement, by exploiting appropriate gene combinations. This review describes a catalogue of alleles found in QTL studies by barley geneticists, corresponding to the genetic diversity at major flowering time genes, the main drivers of barley phenological adaptation: VRN-H1 (HvBM5A), VRN-H2 (HvZCCTa-c), VRN-H3 (HvFT1), PPD-H1 (HvPRR37), PPD-H2 (HvFT3), and eam6/eps2 (HvCEN). For each gene, allelic series, size and direction of QTL effects, interactions between genes and with the environment are presented. Pleiotropic effects on agronomically important traits such as grain yield are also discussed. The review includes brief comments on additional genes with large effects on phenology that became relevant in modern barley breeding. The parallelisms between flowering time allelic variation between the two most cultivated Triticeae species (barley and wheat) are also outlined. This work is mostly based on previously published data, although we added some new data and hypothesis supported by a number of studies. This review shows the wide variety of allelic effects that provide enormous plasticity in barley flowering behavior, which opens new avenues to breeders for fine-tuning phenology of the barley crop.
Collapse
Affiliation(s)
- Miriam Fernández-Calleja
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ana M Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
20
|
Chen S, Hegarty J, Shen T, Hua L, Li H, Luo J, Li H, Bai S, Zhang C, Dubcovsky J. Stripe rust resistance gene Yr34 (synonym Yr48) is located within a distal translocation of Triticum monococcum chromosome 5A mL into common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2197-2211. [PMID: 33791822 PMCID: PMC8263425 DOI: 10.1007/s00122-021-03816-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 05/24/2023]
Abstract
Key message The stripe rust resistance gene Yr34 was transferred to polyploid wheat chromosome 5AL from T. monococcum and has been used for over two centuries.Wheat stripe (or yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is currently among the most damaging fungal diseases of wheat worldwide. In this study, we report that the stripe rust resistance gene Yr34 (synonym Yr48) is located within a distal segment of the cultivated Triticum monococcum subsp. monococcum chromosome 5AmL translocated to chromosome 5AL in polyploid wheat. The diploid wheat species Triticum monococcum (genome AmAm) is closely related to T. urartu (donor of the A genome to polyploid wheat) and has good levels of resistance against the stripe rust pathogen. When present in hexaploid wheat, the T. monococcum Yr34 resistance gene confers a moderate level of resistance against virulent Pst races present in California and the virulent Chinese race CYR34. In a survey of 1,442 common wheat genotypes, we identified 5AmL translocations of fourteen different lengths in 17.5% of the accessions, with higher frequencies in Europe than in other continents. The old European wheat variety "Mediterranean" was identified as a putative source of this translocation, suggesting that Yr34 has been used for over 200 years. Finally, we designed diagnostic CAPS and sequenced-based markers that will be useful to accelerate the deployment of Yr34 in wheat breeding programs to improve resistance to this devastating pathogen.
Collapse
Affiliation(s)
- Shisheng Chen
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| | - Joshua Hegarty
- Department of Plant Sciences, University of California, Davis, CA95616, USA
| | - Tao Shen
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lei Hua
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Hongna Li
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Jing Luo
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Hongyu Li
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Shengsheng Bai
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, CA95616, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA95616, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
21
|
Herridge R, Brownfield L, Macknight R. Identification and Characterization of Perennial Ryegrass ( Lolium perenne) Vernalization Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:640324. [PMID: 33747020 PMCID: PMC7973463 DOI: 10.3389/fpls.2021.640324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Perennial ryegrass (Lolium perenne) is a temperate grass species commonly used as pasture for livestock. Flowering (heading) of ryegrass impacts metabolizable energy content and seed yield, therefore this trait is important for both farmers and seed producers. In related grass species, the VRN genes (VRN1-3) have been largely implicated in the determination of vernalization response and are responsible for much of the intra-species variation in this trait. Many other important flowering-time regulators have been cataloged in the model grass Brachypodium distachyon; however, in several cases, such as VRN2, their ryegrass homologs have not been well-characterized. Here, ryegrass homologs of important flowering time genes from B. distachyon were identified through available synteny data and sequence similarity. Phylogenetic analysis of VRN3/FT-like and VRN2-like genes was performed to elucidate these families further. The expression patterns of these genes were assessed during vernalization. This confirmed the key roles played by LpVRN1 and LpFT3 in the promotion of flowering. Furthermore, two orthologs of VRN2 identified here, as well as an ortholog of CO9, were expressed prior to vernalization, and were repressed in flowering plants, suggesting a role in floral repression. Significant variability in expression of these flowering pathway genes in diverse genotypes was detected and may underlie variation in flowering time and vernalization response.
Collapse
|
22
|
Bogard M, Hourcade D, Piquemal B, Gouache D, Deswartes JC, Throude M, Cohan JP. Marker-based crop model-assisted ideotype design to improve avoidance of abiotic stress in bread wheat. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1085-1103. [PMID: 33068400 DOI: 10.1093/jxb/eraa477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/12/2020] [Indexed: 05/22/2023]
Abstract
Wheat phenology allows escape from seasonal abiotic stresses including frosts and high temperatures, the latter being forecast to increase with climate change. The use of marker-based crop models to identify ideotypes has been proposed to select genotypes adapted to specific weather and management conditions and anticipate climate change. In this study, a marker-based crop model for wheat phenology was calibrated and tested. Climate analysis of 30 years of historical weather data in 72 locations representing the main wheat production areas in France was performed. We carried out marker-based crop model simulations for 1019 wheat cultivars and three sowing dates, which allowed calculation of genotypic stress avoidance frequencies of frost and heat stress and identification of ideotypes. The phenology marker-based crop model allowed prediction of large genotypic variations for the beginning of stem elongation (GS30) and heading date (GS55). Prediction accuracy was assessed using untested genotypes and environments, and showed median genotype prediction errors of 8.5 and 4.2 days for GS30 and GS55, respectively. Climate analysis allowed the definition of a low risk period for each location based on the distribution of the last frost and first heat days. Clustering of locations showed three groups with contrasting levels of frost and heat risks. Marker-based crop model simulations showed the need to optimize the genotype depending on sowing date, particularly in high risk environments. An empirical validation of the approach showed that it holds good promises to improve frost and heat stress avoidance.
Collapse
Affiliation(s)
- Matthieu Bogard
- Arvalis - Institut du Végétal, 6 Chemin de la côte vieille, Baziège, France
| | - Delphine Hourcade
- Arvalis - Institut du Végétal, 6 Chemin de la côte vieille, Baziège, France
| | - Benoit Piquemal
- Arvalis - Institut du Végétal, station expérimentale, Boigneville, France
| | | | - Jean-Charles Deswartes
- Arvalis - Institut du Végétal, Route de Châteaufort ZA des graviers, Villiers-le-Bâcle, France
| | - Mickael Throude
- Biogemma: Centre de Recherche de Chappes, Route d'Ennezat, CS, Chappes, France
| | - Jean-Pierre Cohan
- Arvalis - Institut du Végétal, Station expérimentale de La Jaillière, La Chapelle Saint-Sauveur, Loireauxence, France
| |
Collapse
|
23
|
Shen C, Liu H, Guan Z, Yan J, Zheng T, Yan W, Wu C, Zhang Q, Yin P, Xing Y. Structural Insight into DNA Recognition by CCT/NF-YB/YC Complexes in Plant Photoperiodic Flowering. THE PLANT CELL 2020; 32:3469-3484. [PMID: 32843433 PMCID: PMC7610279 DOI: 10.1105/tpc.20.00067] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 05/18/2023]
Abstract
CONSTANS, CONSTANS-LIKE, and TIMING OF CAB EXPRESSION1 (CCT) domain-containing proteins are a large family unique to plants. They transcriptionally regulate photoperiodic flowering, circadian rhythms, vernalization, and other related processes. Through their CCT domains, CONSTANS and HEADING DATE1 (HD1) coordinate with the NUCLEAR FACTOR Y (NF-Y) B/C dimer to specifically target a conserved 'CCACA' motif within the promoters of their target genes. However, the mechanism underlying DNA recognition by the CCT domain remains unclear. Here we determined the crystal structures of the rice (Oryza sativa) NF-YB/YC dimer and the florigen gene Heading date 3a (Hd3a)-bound HD1CCT/NF-YB/YC trimer with resolutions of 2.0 Å and 2.55 Å, respectively. The CCT domain of HD1 displays an elongated structure containing two α-helices and two loops, tethering Hd3a to the NF-YB/YC dimer. Helix α2 and loop 2 are anchored into the minor groove of the 'CCACA' motif, which determines the specific base recognition. Our structures reveal the interaction mechanism among the CCT domain, NF-YB/YC dimer, and the target DNA. These results not only provide insight into the network between the CCT proteins and NF-Y subunits, but also offer potential approaches for improving productivity and global adaptability of crops by manipulating florigen expression.
Collapse
Affiliation(s)
- Cuicui Shen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyang Liu
- College of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Zheng
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Yan
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Yuan S, Li Z, Yuan N, Hu Q, Zhou M, Zhao J, Li D, Luo H. MiR396 is involved in plant response to vernalization and flower development in Agrostis stolonifera. HORTICULTURE RESEARCH 2020; 7:173. [PMID: 33328434 PMCID: PMC7603517 DOI: 10.1038/s41438-020-00394-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/23/2020] [Accepted: 08/30/2020] [Indexed: 05/05/2023]
Abstract
MicroRNA396 (miR396) has been demonstrated to regulate flower development by targeting growth-regulating factors (GRFs) in annual species. However, its role in perennial grasses and its potential involvement in flowering time control remain unexplored. Here we report that overexpression of miR396 in a perennial species, creeping bentgrass (Agrostis stolonifera L.), alters flower development. Most significantly, transgenic (TG) plants bypass the vernalization requirement for flowering. Gene expression analysis reveals that miR396 is induced by long-day (LD) photoperiod and vernalization. Further study identifies VRN1, VRN2, and VRN3 homologs whose expression patterns in wild-type (WT) plants are similar to those observed in wheat and barley during transition from short-day (SD) to LD, and SD to cold conditions. However, compared to WT controls, TG plants overexpressing miR396 exhibit significantly enhanced VRN1 and VRN3 expression, but repressed VRN2 expression under SD to LD conditions without vernalization, which might be associated with modified expression of methyltransferase genes. Collectively, our results unveil a potentially novel mechanism by which miR396 suppresses the vernalization requirement for flowering which might be related to the epigenetic regulation of VRN genes and provide important new insight into critical roles of a miRNA in regulating vernalization-mediated transition from vegetative to reproductive growth in monocots.
Collapse
Affiliation(s)
- Shuangrong Yuan
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Zhigang Li
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Ning Yuan
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Qian Hu
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Man Zhou
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Junming Zhao
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
- Department of Grassland Science, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Dayong Li
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and forestry Science, 100097, Beijing, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA.
| |
Collapse
|
25
|
Li Y, Xiong H, Guo H, Zhou C, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Liu L. Identification of the vernalization gene VRN-B1 responsible for heading date variation by QTL mapping using a RIL population in wheat. BMC PLANT BIOLOGY 2020; 20:331. [PMID: 32660420 PMCID: PMC7359472 DOI: 10.1186/s12870-020-02539-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/05/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Heading time is one of the most important agronomic traits in wheat, as it largely affects both adaptation to different agro-ecological conditions and yield potential. Identification of genes underlying the regulation of wheat heading and the development of diagnostic markers could facilitate our understanding of genetic control of this process. RESULTS In this study, we developed 400 recombinant inbred lines (RILs) by crossing a γ-ray-induced early heading mutant (eh1) with the late heading cultivar, Lunxuan987. Bulked Segregant Analysis (BSA) of both RNA and DNA pools consisting of various RILs detected a quantitative trait loci (QTL) for heading date located on chromosomes 5B, and further genetic linkage analysis limited the QTL to a 3.31 cM region. We then identified a large deletion in the first intron of the vernalization gene VRN-B1 in eh1, and showed it was associated with the heading phenotype in the RIL population. However, it is not the mutation loci that resulted in early heading phonotype in the mutant compared to that of wildtype. RNA-seq analysis suggested that Vrn-B3 and several newly discovered genes, including beta-amylase 1 (BMY1) and anther-specific protein (RTS), were highly expressed in both the mutant and early heading pool with the dominant Vrn-B1 genotype compared to that of Lunxuan987 and late heading pool. Enrichment analysis of differentially expressed genes (DEGs) identified several key pathways previously reported to be associated with flowering, including fatty acid elongation, starch and sucrose metabolism, and flavonoid biosynthesis. CONCLUSION The development of new markers for Vrn-B1 in this study supplies an alternative solution for marker-assisted breeding to optimize heading time in wheat and the DEGs analysis provides basic information for VRN-B1 regulation study.
Collapse
Affiliation(s)
- Yuting Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Hongchun Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Huijun Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Chunyun Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yongdun Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Jiayu Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Shirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yuping Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China.
| |
Collapse
|
26
|
Shaw LM, Li C, Woods DP, Alvarez MA, Lin H, Lau MY, Chen A, Dubcovsky J. Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat. PLoS Genet 2020; 16:e1008812. [PMID: 32658893 PMCID: PMC7394450 DOI: 10.1371/journal.pgen.1008812] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
In Arabidopsis, CONSTANS (CO) integrates light and circadian clock signals to promote flowering under long days (LD). In the grasses, a duplication generated two paralogs designated as CONSTANS1 (CO1) and CONSTANS2 (CO2). Here we show that in tetraploid wheat plants grown under LD, combined loss-of-function mutations in the A and B-genome homeologs of CO1 and CO2 (co1 co2) result in a small (3 d) but significant (P<0.0001) acceleration of heading time both in PHOTOPERIOD1 (PPD1) sensitive (Ppd-A1b, functional ancestral allele) and insensitive (Ppd-A1a, functional dominant allele) backgrounds. Under short days (SD), co1 co2 mutants headed 13 d earlier than the wild type (P<0.0001) in the presence of Ppd-A1a. However, in the presence of Ppd-A1b, spikes from both genotypes failed to emerge by 180 d. These results indicate that CO1 and CO2 operate mainly as weak heading time repressors in both LD and SD. By contrast, in ppd1 mutants with loss-of-function mutations in both PPD1 homeologs, the wild type Co1 allele accelerated heading time >60 d relative to the co1 mutant allele under LD. We detected significant genetic interactions among CO1, CO2 and PPD1 genes on heading time, which were reflected in complex interactions at the transcriptional and protein levels. Loss-of-function mutations in PPD1 delayed heading more than combined co1 co2 mutations and, more importantly, PPD1 was able to perceive and respond to differences in photoperiod in the absence of functional CO1 and CO2 genes. Similarly, CO1 was able to accelerate heading time in response to LD in the absence of a functional PPD1. Taken together, these results indicate that PPD1 and CO1 are able to respond to photoperiod in the absence of each other, and that interactions between these two photoperiod pathways at the transcriptional and protein levels are important to fine-tune the flowering response in wheat.
Collapse
Affiliation(s)
- Lindsay M. Shaw
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Currently at Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Daniel P. Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Maria A. Alvarez
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Mei Y. Lau
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Andrew Chen
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
27
|
Cao S, Xu D, Hanif M, Xia X, He Z. Genetic architecture underpinning yield component traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1811-1823. [PMID: 32062676 DOI: 10.1007/s00122-020-03562-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/06/2020] [Indexed: 05/19/2023]
Abstract
Genetic atlas, reliable QTL and candidate genes of yield component traits in wheat were figured out, laying concrete foundations for map-based gene cloning and dissection of regulatory mechanisms underlying yield. Mining genetic loci for yield is challenging due to the polygenic nature, large influence of environment and complex relationship among yield component traits (YCT). Many genetic loci related to wheat yield have been identified, but its genetic architecture and key genetic loci for selection are largely unknown. Wheat yield potential can be determined by three YCT, thousand kernel weight, kernel number per spike and spike number. Here, we summarized the genetic loci underpinning YCT from QTL mapping, association analysis and homology-based gene cloning. The major loci determining yield-associated agronomic traits, such as flowering time and plant height, were also included in comparative analyses with those for YCT. We integrated yield-related genetic loci onto chromosomes based on their physical locations. To identify the major stable loci for YCT, 58 QTL-rich clusters (QRC) were defined based on their distribution on chromosomes. Candidate genes in each QRC were predicted according to gene annotation of the wheat reference genome and previous information on validation of those genes in other species. Finally, a technological route was proposed to take full advantage of the resultant resources for gene cloning, molecular marker-assisted breeding and dissection of molecular regulatory mechanisms underlying wheat yield.
Collapse
Affiliation(s)
- Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Dengan Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Mamoona Hanif
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
- International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
28
|
Phenology and related traits for wheat adaptation. Heredity (Edinb) 2020; 125:417-430. [PMID: 32457509 PMCID: PMC7784700 DOI: 10.1038/s41437-020-0320-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Wheat is a major food crop, with around 765 million tonnes produced globally. The largest wheat producers include the European Union, China, India, Russia, United States, Canada, Pakistan, Australia, Ukraine and Argentina. Cultivation of wheat across such diverse global environments with variation in climate, biotic and abiotic stresses, requires cultivars adapted to a range of growing conditions. One intrinsic way that wheat achieves adaptation is through variation in phenology (seasonal timing of the lifecycle) and related traits (e.g., those affecting plant architecture). It is important to understand the genes that underlie this variation, and how they interact with each other, other traits and the growing environment. This review summarises the current understanding of phenology and developmental traits that adapt wheat to different environments. Examples are provided to illustrate how different combinations of alleles can facilitate breeding of wheat varieties with optimal crop performance for different growing regions or farming systems.
Collapse
|
29
|
Li C, Lin H, Chen A, Lau M, Jernstedt J, Dubcovsky J. Wheat VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet development and spike determinacy. Development 2019; 146:dev.175398. [PMID: 31337701 PMCID: PMC6679363 DOI: 10.1242/dev.175398] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/21/2019] [Indexed: 01/03/2023]
Abstract
The spikelet is the basic unit of the grass inflorescence. In this study, we show that wheat MADS-box genes VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet and spike development, and also affect flowering time and plant height. In the vrn1ful2ful3-null triple mutant, the inflorescence meristem formed a normal double-ridge structure, but then the lateral meristems generated vegetative tillers subtended by leaves instead of spikelets. These results suggest an essential role of these three genes in the fate of the upper spikelet ridge and the suppression of the lower leaf ridge. Inflorescence meristems of vrn1ful2ful3-null and vrn1ful2-null remained indeterminate and single vrn1-null and ful2-null mutants showed delayed formation of the terminal spikelet and increased number of spikelets per spike. Moreover, the ful2-null mutant showed more florets per spikelet, which together with a higher number of spikelets, resulted in a significant increase in the number of grains per spike in the field. Our results suggest that a better understanding of the mechanisms underlying wheat spikelet and spike development can inform future strategies to improve grain yield in wheat. Summary: The wheat MADS-box proteins VRN1, FUL2 and FUL3 are essential for the initial development of the lateral and terminal spikelets, and control the number of spikelets per spike.
Collapse
Affiliation(s)
- Chengxia Li
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Andrew Chen
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Meiyee Lau
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Judy Jernstedt
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616, USA .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
30
|
Shi C, Zhao L, Zhang X, Lv G, Pan Y, Chen F. Gene regulatory network and abundant genetic variation play critical roles in heading stage of polyploidy wheat. BMC PLANT BIOLOGY 2019; 19:6. [PMID: 30606101 PMCID: PMC6318890 DOI: 10.1186/s12870-018-1591-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/05/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND The extensive adaptability of polyploidy wheat is attributed to its complex genome, and accurately controlling heading stage is a prime target in wheat breeding process. Wheat heading stage is an essential growth and development processes since it starts at a crucial point in the transition from vegetative phase to reproductive phase. MAIN BODY Heading stage is mainly decided by vernalization, photoperiod, hormone (like gibberellic acid, GA), and earliness per se (Eps). As a polyploidy species, common wheat possesses the abundant genetic variation, such as allelic variation, copy number variation etc., which have a strong effect on regulation of wheat growth and development. Therefore, understanding genetic manipulation of heading stage is pivotal for controlling the heading stage in wheat. In this review, we summarized the recent advances in the genetic regulatory mechanisms and abundant variation in genetic diversity controlling heading stage in wheat, as well as the interaction mechanism of different signals and the contribution of different genetic variation. We first summarized the genes involved in vernalization, photoperoid and other signals cross-talk with each other to control wheat heading stage, then the abundant genetic variation related to signal components associated with wheat heading stage was also elaborated in detail. CONCLUSION Our knowledge of the regulatory network of wheat heading can be used to adjust the duration of the growth phase for the purpose of acclimatizing to different geographical environments.
Collapse
Affiliation(s)
- Chaonan Shi
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Xiangfen Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Yubo Pan
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| |
Collapse
|
31
|
Akpinar BA, Biyiklioglu S, Alptekin B, Havránková M, Vrána J, Doležel J, Distelfeld A, Hernandez P, Budak H. Chromosome-based survey sequencing reveals the genome organization of wild wheat progenitor Triticum dicoccoides. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:2077-2087. [PMID: 29729062 PMCID: PMC6230948 DOI: 10.1111/pbi.12940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is the progenitor of wheat. We performed chromosome-based survey sequencing of the 14 chromosomes, examining repetitive sequences, protein-coding genes, miRNA/target pairs and tRNA genes, as well as syntenic relationships with related grasses. We found considerable differences in the content and distribution of repetitive sequences between the A and B subgenomes. The gene contents of individual chromosomes varied widely, not necessarily correlating with chromosome size. We catalogued candidate agronomically important loci, along with new alleles and flanking sequences that can be used to design exome sequencing. Syntenic relationships and virtual gene orders revealed several small-scale evolutionary rearrangements, in addition to providing evidence for the 4AL-5AL-7BS translocation in wild emmer wheat. Chromosome-based sequence assemblies contained five novel miRNA families, among 59 families putatively encoded in the entire genome which provide insight into the domestication of wheat and an overview of the genome content and organization.
Collapse
Affiliation(s)
- Bala Ani Akpinar
- Department of Plant Sciences and Plant PathologyCereal Genomics LabMontana State UniversityBozemanMTUSA
| | - Sezgi Biyiklioglu
- Department of Plant Sciences and Plant PathologyCereal Genomics LabMontana State UniversityBozemanMTUSA
| | - Burcu Alptekin
- Department of Plant Sciences and Plant PathologyCereal Genomics LabMontana State UniversityBozemanMTUSA
| | - Miroslava Havránková
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | - Jan Vrána
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | - Assaf Distelfeld
- Department of Molecular Biology and Ecology of PlantsFaculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible (IAS)Consejo Superior de Investigaciones Científicas (CSIC)CordobaSpain
| | - The IWGSC
- International Wheat Genome Sequencing ConsortiumBethesdaMDUSA
| | - Hikmet Budak
- Department of Plant Sciences and Plant PathologyCereal Genomics LabMontana State UniversityBozemanMTUSA
| |
Collapse
|
32
|
Xu S, Chong K. Remembering winter through vernalisation. NATURE PLANTS 2018; 4:997-1009. [PMID: 30478363 DOI: 10.1038/s41477-018-0301-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 10/12/2018] [Indexed: 05/10/2023]
Abstract
Vernalisation is the programmed physiological process in which prolonged cold-exposure provides competency to flower in plants; widely found in winter and biennial species, such as Arabidopsis, fruit trees, vegetables and wheat. This phenomenon is regulated by diverse genetic networks, and memory of vernalisation in a life cycle mainly depends on epigenetic mechanisms. However, less is known about how to count winter-dosage for flowering in plants. Here, we compare the vernalisation genetic framework between the dicots Arabidopsis, temperate grasses, wheat, barley and Brachypodium. We discuss vernalisation mechanisms involving crosstalk between phosphorylation and O-GlcNAcylation modification of key proteins, and epigenetic modifications of the key gene VRN1 in wheat. We also highlight the potential evolutionary origins of vernalisation in various species. Current progress toward understanding the regulation of vernalisation requirements provides insight that will inform the design of molecular breeding strategies for winter crops.
Collapse
Affiliation(s)
- Shujuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Demska K, Filip E, Skuza L. "Expression of genes encoding protein disulfide isomerase (PDI) in cultivars and lines of common wheat with different baking quality of flour". BMC PLANT BIOLOGY 2018; 18:294. [PMID: 30466386 PMCID: PMC6251204 DOI: 10.1186/s12870-018-1522-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/13/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The subject of this research was to investigate the level of expression of genes encoding protein disulfide isomerase (PDI) in cultivars and lines of wheat with different baking value of flour. PDI plays a key role in the formation of disulfide bonds in newly formed proteins. Each of cultivars and lines had a specific set of high molecular weight glutenin subunits (HMW-GS). Based on the presence of individual subunits, the potential baking value is predicted. Sometimes this value is not confirmed during technological analysis. Since there are cases where flour has a better or worse value than expected on the basis of the genotype, the expression of PDI genes was considered as a potential cause for discrepancies mentioned. RESULTS Analysis focused on three stages of grain development. The expression level of PDI genes was compared between wheat cultivars and lines with different genotype-phenotype combinations, which means diversified sets of HMW-GS combined with diversified qualitative classification. The highest expression level of PDI was noticed at early stage of grain development, which is consistent with the function of PDI. The expression level was evaluated by the real-time PCR technique. CONCLUSION Results obtained in this work did not allow for a clear statement of decisive significance of PDI in the context of shaping the final baking value. The results of this work contribute to an ever more in-depth understanding of the mechanisms governing baking value, and thus to the progress of the selection of new varieties with more beneficial properties.
Collapse
Affiliation(s)
- Katarzyna Demska
- Department of Cell Biology, Faculty of Biology, The Institute for Research on Biodiversity, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
- The Centre for Molecular Biology and Biotechnology, Wąska 13, 71-415 Szczecin, Poland
| | - Ewa Filip
- Department of Cell Biology, Faculty of Biology, The Institute for Research on Biodiversity, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
- The Centre for Molecular Biology and Biotechnology, Wąska 13, 71-415 Szczecin, Poland
| | - Lidia Skuza
- Department of Cell Biology, Faculty of Biology, The Institute for Research on Biodiversity, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
- The Centre for Molecular Biology and Biotechnology, Wąska 13, 71-415 Szczecin, Poland
| |
Collapse
|
34
|
Kippes N, Guedira M, Lin L, Alvarez MA, Brown-Guedira GL, Dubcovsky J. Single nucleotide polymorphisms in a regulatory site of VRN-A1 first intron are associated with differences in vernalization requirement in winter wheat. Mol Genet Genomics 2018; 293:1231-1243. [PMID: 29872926 PMCID: PMC6153499 DOI: 10.1007/s00438-018-1455-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/31/2018] [Indexed: 02/03/2023]
Abstract
Winter wheats require a long exposure to cold temperatures (vernalization) to accelerate flowering. However, varieties differ in the length of the period of cold required to saturate the vernalization response. Here we show that single nucleotide polymorphisms (SNP) at the binding site of the GRP2 protein in the VRN-A1 first intron (henceforth, RIP3) are associated with significant differences in heading time after a partial vernalization treatment. The ancestral winter VRN-A1 allele in ‘Triple Dirk C’ has one SNP in the RIP3 region (1_SNP) relative to the canonical RIP3 sequence, whereas the derived ‘Jagger’ allele has three SNPs (3_SNPs). Both varieties have a single VRN-A1 copy encoding identical proteins. In an F2 population generated from a cross between these two varieties, plants with the 3_SNPs haplotype headed significantly earlier (P < 0.001) than those with the 1_SNP haplotype, both in the absence of vernalization (17 days difference) and after 3-weeks of vernalization (11 days difference). Plants with the 3_SNPs haplotype showed higher VRN-A1 transcript levels than those with the 1_SNP haplotype. The 3_SNPs haplotype was also associated with early heading in a panel of 127 winter wheat varieties grown in three separate controlled-environment experiments under partial vernalization (36 to 54 days, P < 0.001) and one experiment under field conditions (21 d, P < 0.0001). The RIP3 polymorphisms can be used by wheat breeders to develop winter wheat varieties adapted to regions with different duration or intensity of the cold season.
Collapse
Affiliation(s)
- Nestor Kippes
- Department of Plant Sciences, University of California, Davis, CA, 95616-8515, USA.,Department of Plant Biology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Mohammed Guedira
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Lijuan Lin
- Department of Plant Sciences, University of California, Davis, CA, 95616-8515, USA
| | - Maria A Alvarez
- Department of Plant Sciences, University of California, Davis, CA, 95616-8515, USA
| | - Gina L Brown-Guedira
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA.,USDA-ARS Plant Science Research Unit, Raleigh, NC, 27695, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616-8515, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
35
|
Huang Y, Chen DH, Liu BY, Shen WH, Ruan Y. Conservation and diversification of polycomb repressive complex 2 (PRC2) proteins in the green lineage. Brief Funct Genomics 2017; 16:106-119. [PMID: 27032420 DOI: 10.1093/bfgp/elw007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The polycomb group (PcG) proteins are key epigenetic regulators of gene expression in animals and plants. They act in multiprotein complexes, of which the best characterized is the polycomb repressive complex 2 (PRC2), which catalyses the trimethylation of histone H3 at lysine 27 (H3K27me3) at chromatin targets. In Arabidopsis thaliana, PRC2 proteins are involved in the regulation of diverse developmental processes, including cell fate determination, vegetative growth and development, flowering time control and embryogenesis. Here, we systematically analysed the evolutionary conservation and diversification of PRC2 components in lower and higher plants. We searched for and identified PRC2 homologues from the sequenced genomes of several green lineage species, from the unicellular green alga Ostreococcus lucimarinus to more complicated angiosperms. We found that some PRC2 core components, e.g. E(z), ESC/FIE and MSI/p55, are ancient and have multiplied coincidently with multicellular evolution. For one component, some members are newly formed, especially in the Cruciferae. During evolution, higher plants underwent copy number multiplication of various PRC2 components, which occurred independently for each component, without any obvious co-amplification of PRC2 members. Among the amplified members, usually one was well-conserved and the others were more diversified. Gene amplification occurred at different times for different PcG members during green lineage evolution. Certain PRC2 core components or members of them were highly conserved. Our study provides an insight into the evolutionary conservation and diversification of PcG proteins and may guide future functional characterization of these important epigenetic regulators in plants other than Arabidopsis.
Collapse
Affiliation(s)
- Yong Huang
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | - Dong-Hong Chen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | - Bo-Yu Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| | - Wen-Hui Shen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Institut de Biologie Moléculaire Des Plantes Du CNRS, Université de Strasbourg, 12 Rue Du Général Zimmer, Strasbourg Cedex, France
| | - Ying Ruan
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| |
Collapse
|
36
|
RNA-Seq Analysis of Plant Maturity in Crested Wheatgrass (Agropyron cristatum L.). Genes (Basel) 2017; 8:genes8110291. [PMID: 29068370 PMCID: PMC5704204 DOI: 10.3390/genes8110291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023] Open
Abstract
Crested wheatgrass (Agropyron cristatum L.) breeding programs aim to develop later maturing cultivars for extending early spring grazing in Western Canada. Plant maturity is a complex genetic trait, and little is known about genes associated with late maturity in this species. An attempt was made using RNA-Seq to profile the transcriptome of crested wheatgrass maturity and to analyze differentially expressed genes (DEGs) between early and late maturing lines. Three cDNA libraries for each line were generated by sampling leaves at the stem elongation stage, spikes at the boot and anthesis stages. A total of 75,218,230 and 74,015,092 clean sequence reads were obtained for early and late maturing lines, respectively. De novo assembly of all sequence reads generated 401,587 transcripts with a mean length of 546 bp and N50 length of 691 bp. Out of 13,133 DEGs detected, 22, 17, and eight flowering related DEGs were identified for the three stages, respectively. Twelve DEGs, including nine flowering related DEGs at the stem elongation stage were further confirmed by qRT-PCR. The analysis of homologous genes of the photoperiod pathway revealed their lower expression in the late maturing line at the stem elongation stage, suggesting that their differential expression contributed to late maturity in crested wheatgrass.
Collapse
|
37
|
Establishment of a vernalization requirement in Brachypodium distachyon requires REPRESSOR OF VERNALIZATION1. Proc Natl Acad Sci U S A 2017; 114:6623-6628. [PMID: 28584114 DOI: 10.1073/pnas.1700536114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A requirement for vernalization, the process by which prolonged cold exposure provides competence to flower, is an important adaptation to temperate climates that ensures flowering does not occur before the onset of winter. In temperate grasses, vernalization results in the up-regulation of VERNALIZATION1 (VRN1) to establish competence to flower; however, little is known about the mechanism underlying repression of VRN1 in the fall season, which is necessary to establish a vernalization requirement. Here, we report that a plant-specific gene containing a bromo-adjacent homology and transcriptional elongation factor S-II domain, which we named REPRESSOR OF VERNALIZATION1 (RVR1), represses VRN1 before vernalization in Brachypodium distachyon That RVR1 is upstream of VRN1 is supported by the observations that VRN1 is precociously elevated in an rvr1 mutant, resulting in rapid flowering without cold exposure, and the rapid-flowering rvr1 phenotype is dependent on VRN1 The precocious VRN1 expression in rvr1 is associated with reduced levels of the repressive chromatin modification H3K27me3 at VRN1, which is similar to the reduced VRN1 H3K27me3 in vernalized plants. Furthermore, the transcriptome of vernalized wild-type plants overlaps with that of nonvernalized rvr1 plants, indicating loss of rvr1 is similar to the vernalized state at a molecular level. However, loss of rvr1 results in more differentially expressed genes than does vernalization, indicating that RVR1 may be involved in processes other than vernalization despite a lack of any obvious pleiotropy in the rvr1 mutant. This study provides an example of a role for this class of plant-specific genes.
Collapse
|
38
|
Pearce S, Shaw LM, Lin H, Cotter JD, Li C, Dubcovsky J. Night-Break Experiments Shed Light on the Photoperiod1-Mediated Flowering. PLANT PHYSIOLOGY 2017; 174:1139-1150. [PMID: 28408541 PMCID: PMC5462047 DOI: 10.1104/pp.17.00361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/11/2017] [Indexed: 05/21/2023]
Abstract
Plants utilize variation in day length (photoperiod) to anticipate seasonal changes. They respond by modulating their growth and development to maximize seed production, which in cereal crops is directly related to yield. In wheat (Triticum aestivum), the acceleration of flowering under long days (LD) is dependent on the light induction of PHOTOPERIOD1 (PPD1) by phytochromes. Under LD, PPD1 activates FLOWERING LOCUS T1 (FT1), a mobile signaling protein that travels from the leaves to the shoot apical meristem to promote flowering. Here, we show that the interruption of long nights by short pulses of light ("night-break" [NB]) accelerates wheat flowering, suggesting that the duration of the night is critical for wheat photoperiodic response. PPD1 transcription was rapidly upregulated by NBs, and the magnitude of this induction increased with the length of darkness preceding the NB Cycloheximide abolished the NB up-regulation of PPD1, suggesting that this process is dependent on active protein synthesis during darkness. While one NB was sufficient to induce PPD1, more than 15 NBs were required to induce high levels of FT1 expression and a strong acceleration of flowering. Multiple NBs did not affect the expression of core circadian clock genes. The acceleration of flowering by NB disappeared in ppd1-null mutants, demonstrating that this response is mediated by PPD1 The acceleration of flowering was strongest when NBs were applied in the middle of the night, suggesting that in addition to PPD1, other circadian-controlled factors are required for the up-regulation of FT1 expression and the acceleration of flowering.
Collapse
Affiliation(s)
- Stephen Pearce
- Department of Plant Sciences, University of California, Davis, California 95616 (S.P., L.M.S., H.L., C.L., J.D.);
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 (C.L., J.D.); and
- Gordon and Betty Moore Foundation, Palo Alto, California 94304 (J.D.)
| | - Lindsay M Shaw
- Department of Plant Sciences, University of California, Davis, California 95616 (S.P., L.M.S., H.L., C.L., J.D.)
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 (C.L., J.D.); and
- Gordon and Betty Moore Foundation, Palo Alto, California 94304 (J.D.)
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California 95616 (S.P., L.M.S., H.L., C.L., J.D.)
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 (C.L., J.D.); and
- Gordon and Betty Moore Foundation, Palo Alto, California 94304 (J.D.)
| | - Jennifer D Cotter
- Department of Plant Sciences, University of California, Davis, California 95616 (S.P., L.M.S., H.L., C.L., J.D.)
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 (C.L., J.D.); and
- Gordon and Betty Moore Foundation, Palo Alto, California 94304 (J.D.)
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California 95616 (S.P., L.M.S., H.L., C.L., J.D.)
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 (C.L., J.D.); and
- Gordon and Betty Moore Foundation, Palo Alto, California 94304 (J.D.)
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California 95616 (S.P., L.M.S., H.L., C.L., J.D.)
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 (C.L., J.D.); and
- Gordon and Betty Moore Foundation, Palo Alto, California 94304 (J.D.)
| |
Collapse
|
39
|
Gnesutta N, Kumimoto RW, Swain S, Chiara M, Siriwardana C, Horner DS, Holt BF, Mantovani R. CONSTANS Imparts DNA Sequence Specificity to the Histone Fold NF-YB/NF-YC Dimer. THE PLANT CELL 2017; 29:1516-1532. [PMID: 28526714 PMCID: PMC5502446 DOI: 10.1105/tpc.16.00864] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/07/2017] [Accepted: 05/18/2017] [Indexed: 05/19/2023]
Abstract
Nuclear Factor Y (NF-Y) is a heterotrimeric transcription factor that binds CCAAT elements. The NF-Y trimer is composed of a Histone Fold Domain (HFD) dimer (NF-YB/NF-YC) and NF-YA, which confers DNA sequence specificity. NF-YA shares a conserved domain with the CONSTANS, CONSTANS-LIKE, TOC1 (CCT) proteins. We show that CONSTANS (CO/B-BOX PROTEIN1 BBX1), a master flowering regulator, forms a trimer with Arabidopsis thaliana NF-YB2/NF-YC3 to efficiently bind the CORE element of the FLOWERING LOCUS T promoter. We term this complex NF-CO. Using saturation mutagenesis, electrophoretic mobility shift assays, and RNA-sequencing profiling of co, nf-yb, and nf-yc mutants, we identify CCACA elements as the core NF-CO binding site. CO physically interacts with the same HFD surface required for NF-YA association, as determined by mutations in NF-YB2 and NF-YC9, and tested in vitro and in vivo. The co-7 mutation in the CCT domain, corresponding to an NF-YA arginine directly involved in CCAAT recognition, abolishes NF-CO binding to DNA. In summary, a unifying molecular mechanism of CO function relates it to the NF-YA paradigm, as part of a trimeric complex imparting sequence specificity to HFD/DNA interactions. It is likely that members of the large CCT family participate in similar complexes with At-NF-YB and At-NF-YC, broadening HFD combinatorial possibilities in terms of trimerization, DNA binding specificities, and transcriptional regulation.
Collapse
Affiliation(s)
- Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Roderick W Kumimoto
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - Swadhin Swain
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - Matteo Chiara
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Chamindika Siriwardana
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - David S Horner
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Ben F Holt
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| |
Collapse
|
40
|
RNA-Seq analysis of gene expression for floral development in crested wheatgrass (Agropyron cristatum L.). PLoS One 2017; 12:e0177417. [PMID: 28531235 PMCID: PMC5439701 DOI: 10.1371/journal.pone.0177417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/26/2017] [Indexed: 01/18/2023] Open
Abstract
Crested wheatgrass [Agropyron cristatum L. (Gaertn.)] is widely used for early spring grazing in western Canada and the development of late maturing cultivars which maintain forage quality for a longer period is desired. However, it is difficult to manipulate the timing of floral transition, as little is known about molecular mechanism of plant maturity in this species. In this study, RNA-Seq and differential gene expression analysis were performed to investigate gene expression for floral initiation and development in crested wheatgrass. Three cDNA libraries were generated and sequenced to represent three successive growth stages by sampling leaves at the stem elongation stage, spikes at boot and anthesis stages. The sequencing generated 25,568,846; 25,144,688 and 25,714,194 qualified Illumina reads for the three successive stages, respectively. De novo assembly of all the reads generated 311,671 transcripts with a mean length of 487 bp, and 152,849 genes with an average sequence length of 669 bp. A total of 48,574 (31.8%) and 105,222 (68.8%) genes were annotated in the Swiss-Prot and NCBI non-redundant (nr) protein databases, respectively. Based on the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway database, 9,723 annotated sequences were mapped onto 298 pathways, including plant circadian clock pathway. Specifically, 113 flowering time-associated genes, 123 MADS-box genes and 22 CONSTANS-LIKE (COL) genes were identified. A COL homolog DN52048-c0-g4 which was clustered with the flowering time genes AtCO and OsHd1 in Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.), respectively, showed specific expression in leaves and could be a CONSTANS (CO) candidate gene. Taken together, this study has generated a new set of genomic resources for identifying and characterizing genes and pathways involved in floral transition and development in crested wheatgrass. These findings are significant for further understanding of the molecular basis for late maturity in this grass species.
Collapse
|
41
|
Muterko A, Kalendar R, Salina E. Allelic variation at the VERNALIZATION-A1, VRN-B1, VRN-B3, and PHOTOPERIOD-A1 genes in cultivars of Triticum durum Desf. PLANTA 2016; 244:1253-1263. [PMID: 27522649 DOI: 10.1007/s00425-016-2584-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/09/2016] [Indexed: 05/13/2023]
Abstract
The durum wheat varieties from Ukraine, Russia, and Kazakhstan are characterized by the specific allelic composition of the VRN genes that sharply distinguish them from the Triticum durum varieties from other countries. For numerous varieties, the VRN alleles which previously were not found in tetraploid wheat were identified. The ability of wheat to adapt to a wide range of environmental conditions is mostly determined by the allelic diversity within genes regulating the vernalization requirement (VRN) and photoperiod response (PPD). In the present study, allelic variation in the VRN1, VRN3, and PPD-A1 genes was investigated for 134 varieties of Triticum durum from different eco-geographic areas. It was shown that varieties from Russia and Ukraine have a specific allelic composition at the VRN genes, which in quantity and quality differed from European and American cultivars. A large number of varieties of T. durum from Russia carry the dominant Vrn-A1a.1 allele, previously identified mainly in hexaploid wheat. For some varieties from Eastern Europe and Asia, Vrn-A1i and vrn-A1b.3 recently revealed in wheat were also identified. Polymorphism of the VRN-B1 promoter region, distinguishing all three variants of this sequence (VRN-B1.f, VRN-B1.s, and VRN-B1.m), was detected. It was found that the dominant Vrn-B1c allele is commonly found in varieties of T. durum from Russia and Ukraine, but not Europe or USA. Furthermore, many Ukrainian and Russian varieties carry the dominant alleles of the both VRN-A1 and VRN-B1 genes simultaneously, while varieties from Europe and America carry the dominant allele of VRN-A1 alone. Finally, a high frequency of the Vrn-B3a allele, which previously was found only in some accessions of hexaploid wheat, was observed for varieties from Ukraine and Russia. It was revealed that the Ukrainian pool of T. durum varieties is currently the largest genetic source of the dominant Vrn-B3a allele in wheat in the worldwide.
Collapse
Affiliation(s)
- Alexandr Muterko
- The Federal Research Center Institute of Cytology and Genetics, Lavrentyeva Avenue 10, Novosibirsk, 630090, Russian Federation.
- Plant Breeding and Genetics Institute-National Center of Seed and Cultivar Investigation, Ovidiopolskaya Road 3, Odessa, 65036, Ukraine.
| | - Ruslan Kalendar
- RSE "National Center for Biotechnology", Sh. Valikhanov 13/1, Astana, 010000, Kazakhstan
- MTT Plant Genomics Laboratory, Biocentre 3, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Elena Salina
- The Federal Research Center Institute of Cytology and Genetics, Lavrentyeva Avenue 10, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
42
|
Mizuno N, Kinoshita M, Kinoshita S, Nishida H, Fujita M, Kato K, Murai K, Nasuda S. Loss-of-Function Mutations in Three Homoeologous PHYTOCLOCK 1 Genes in Common Wheat Are Associated with the Extra-Early Flowering Phenotype. PLoS One 2016; 11:e0165618. [PMID: 27788250 PMCID: PMC5082820 DOI: 10.1371/journal.pone.0165618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/15/2016] [Indexed: 01/01/2023] Open
Abstract
Triticum aestivum L. cv ‘Chogokuwase’ is an extra-early flowering common wheat cultivar that is insensitive to photoperiod conferred by the photoperiod insensitive alleles at the Photoperiod-B1 (Ppd-B1) and Ppd-D1loci, and does not require vernalization for flowering. This reduced vernalization requirement is likely due to the spring habitat allele Vrn-D1 at the VERNALIZATION-D1 locus. Genotypes of the Ppd-1 loci that determine photoperiod sensitivity do not fully explain the insensitivity to photoperiod seen in ‘Chogokuwase’. We detected altered expression patterns of clock and clock-output genes including Ppd-1 in ‘Chogokuwase’ that were similar to those in an einkorn wheat mutant that lacks the clock-gene homologue, wheat PHYTOCLOCK 1 (WPCL1). Presumptive loss-of-function mutations in all WPCL1 homoeologous genes were found in ‘Chogokuwase’ and ‘Geurumil’, one of the parental cultivars. Segregation analysis of the two intervarietal F2 populations revealed that all the examined F2 plants that headed as early as ‘Chogokuwase’ had the loss-of-function wpcl1 alleles at all three homoeoloci. Some F2 plants carrying the wpcl1 alleles at three homoeoloci headed later than ‘Chogokuwase’, suggesting the presence of other loci influencing heading date. Flowering repressor Vrn-2 was up-regulated in ‘Chogokuwase’ and ‘Geurumil’ that had the triple recessive wpcl1 alleles. An elevated transcript abundance of Vrn-2 could explain the observation that ‘Geurumil’ and some F2 plants carrying the three recessive wpcl1 homeoealleles headed later than ‘Chogokuwase’. In spite of the up-regulation of Vrn-2, ‘Chogokuwase’ may have headed earlier due to unidentified earliness genes. Our observations indicated that loss-of-function mutations in the clock gene wpcl1 are necessary but are not sufficient to explain the extra-early heading of ‘Chogokuwase’.
Collapse
Affiliation(s)
- Nobuyuki Mizuno
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mika Kinoshita
- Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Fukui, Japan
| | - Saki Kinoshita
- Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Fukui, Japan
| | - Hidetaka Nishida
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan
| | - Masaya Fujita
- Institute of Crop Science, NARO, Tsukuba, Ibaraki, Japan
| | - Kenji Kato
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan
- * E-mail: (SN); (KM); (KK)
| | - Koji Murai
- Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Fukui, Japan
- * E-mail: (SN); (KM); (KK)
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail: (SN); (KM); (KK)
| |
Collapse
|
43
|
DROUGHT RESISTANCE AND PRODUCTIVITY OF WHEAT AND SOYBEAN ISOGENIC LINES WITH DIFFERENT PHOTOPERIODIC SENSITIVITY. EUREKA: LIFE SCIENCES 2016. [DOI: 10.21303/2504-5695.2016.00226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The results of the study of drought tolerance of isogenic (NILs – near isogenic lines) by genes PPD (photoperiod) wheat lines and isogenic by genes ЕЕ (early maturation) soybean lines, that control the photoperiodic sensitivity are presented. In field experiments the photoperiodic sensitivity of the lines when grown under natural long days (16 hours at a latitude of Kharkov) and under artificial short-day (9 hours) is determined. The results showed that line PРD-D1A and PPD-A1a wheat and soybean lines L 71-920 had a weak photoperiodic sensitivity (weak PPDS) and line PPD-B1a wheat and soybean lines L 71-920 - strong photoperiodic sensitivity (strong PPDS). Wheat and soybean lines with weak PPDS were more productive. When simulating drought action on seed germination (20% strength mannitol solution - rapid method), it was showed that the seeds of soybean and wheat lines with weak PPDS have a higher germination than seeds of the lines with strong PPDS. When simulating soil drought (30% FMC – field moisture capacity of the soil) under growing experiment, it was revealed that the biomass accumulation indices of plants, leaf relative water content (RWC) and proline content in leaves lines with weak PPDS were higher than in the photoperiodic lines with strong PPDS. So, all used methods for determining drought tolerance showed that the low photoperiodic sensitivity lines are more resistant to drought.
It is assumed that wheat genes PPD and soybean genes EE can participate in the formation of resistance to drought. Genotypes with low photoperiodic sensitivity should be used in breeding soybean and wheat drought resistance.
Collapse
|
44
|
Yu K, Liu D, Wu W, Yang W, Sun J, Li X, Zhan K, Cui D, Ling H, Liu C, Zhang A. Development of an integrated linkage map of einkorn wheat and its application for QTL mapping and genome sequence anchoring. THEORETICAL AND APPLIED GENETICS 2016; 130:53-70. [PMID: 27659843 DOI: 10.1007/s00122-016-2791-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/12/2016] [Indexed: 11/26/2022]
Abstract
KEY MESSAGE An integrated genetic map was constructed for einkorn wheat A genome and provided valuable information for QTL mapping and genome sequence anchoring. Wheat is one of the most widely grown food grain crops in the world. The construction of a genetic map is a key step to organize biologically or agronomically important traits along the chromosomes. In the present study, an integrated linkage map of einkorn wheat was developed using 109 recombinant inbred lines (RILs) derived from an inter sub-specific cross, KT1-1 (T. monococcum ssp. boeoticum) × KT3-5 (T. monococcum ssp. monococcum). The map contains 926 molecular markers assigned to seven linkage groups, and covers 1,377 cM with an average marker interval of 1.5 cM. A quantitative trait locus (QTL) analysis of five agronomic traits identified 16 stable QTL on all seven chromosomes, except 6A. The total phenotypic variance explained by these stable QTL using multiple regressions varied across environments from 8.8 to 87.1 % for days to heading, 24.4-63.0 % for spike length, 48.2-79.6 % for spikelet number per spike, 13.1-48.1 % for plant architecture, and 12.2-26.5 % for plant height, revealing that much of the RIL phenotypic variation had been genetically dissected. Co-localizations of closely linked QTL for different traits were frequently observed, especially on 3A and 7A. The QTL on 3A, 5A and 7A were closely associated with Eps-A m 3, Vrn1 and Vrn3 loci, respectively. Furthermore, this genetic map facilitated the anchoring of 237 T. urartu scaffolds onto seven chromosomes with a physical length of 26.15 Mb. This map and the QTL data provide valuable genetic information to dissect important agronomic and developmental traits in diploid wheat and contribute to the genetic ordering of the genome assembly.
Collapse
Affiliation(s)
- Kang Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, People's Republic of China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Wenying Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Kehui Zhan
- Collaborative Innovation Center for Grain Crops in Henan, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan, 450002, People's Republic of China
| | - Dangqun Cui
- Collaborative Innovation Center for Grain Crops in Henan, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan, 450002, People's Republic of China
| | - Hongqing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Chunming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, People's Republic of China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- Collaborative Innovation Center for Grain Crops in Henan, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan, 450002, People's Republic of China.
| |
Collapse
|
45
|
Kippes N, Chen A, Zhang X, Lukaszewski AJ, Dubcovsky J. Development and characterization of a spring hexaploid wheat line with no functional VRN2 genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1417-1428. [PMID: 27112150 PMCID: PMC4909811 DOI: 10.1007/s00122-016-2713-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/08/2016] [Indexed: 05/02/2023]
Abstract
The combination of three non-functional alleles of the flowering repressor VRN2 results in a spring growth habit in wheat. In temperate cereals with a winter growth habit, a prolonged exposure to low temperatures (vernalization) accelerates flowering. Before vernalization, the VRN2 locus plays a central role in maintaining flowering repression. Non-functional VRN2 alleles result in spring growth habit and are frequent in diploid wheat and barley. However, in hexaploid wheat, the effect of these non-functional VRN2 alleles is masked by gene redundancy. In this study, we developed a triple VRN2 mutant (synthetic vrn2-null) in hexaploid wheat by combining the non-functional VRN-A2 allele present in most polyploid wheats with a VRN-B2 deletion from tetraploid wheat, and a non-functional VRN-D2 allele from Aegilops tauschii (Ae. tauschii) (the donor of hexaploid wheat D genome). Non-vernalized vrn2-null plants flowered 118 days (P < 2.8E-07) earlier than the winter control, and showed a limited vernalization response. The functional VRN-B2 allele is expressed at higher levels than the functional VRN-D2 allele and showed a stronger repressive effect under partial vernalization (4 °C for 4 weeks), and also in non-vernalized plants carrying only a functional VRN-B2 or VRN-D2 in heterozygous state. These results suggest that different combinations of VRN-B2 and VRN-D2 alleles can be a used to modulate the vernalization response in regions with mild winters. Spring vrn2-null mutants have been selected repeatedly in diploid wheat and barley, suggesting that they may have an adaptative value and that may be useful in hexaploid wheat. Spring wheat breeders can use these new alleles to improve wheat adaptation to different or changing environments.
Collapse
Affiliation(s)
- Nestor Kippes
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Andrew Chen
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Xiaoqin Zhang
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Adam J. Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
- Howard Hughes Medical Institute and Gordon and Betty Moor Foundation Investigator, Davis, USA
| |
Collapse
|
46
|
Woods DP, McKeown MA, Dong Y, Preston JC, Amasino RM. Evolution of VRN2/Ghd7-Like Genes in Vernalization-Mediated Repression of Grass Flowering. PLANT PHYSIOLOGY 2016; 170:2124-35. [PMID: 26848096 PMCID: PMC4825116 DOI: 10.1104/pp.15.01279] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/02/2016] [Indexed: 05/03/2023]
Abstract
Flowering of many plant species is coordinated with seasonal environmental cues such as temperature and photoperiod. Vernalization provides competence to flower after prolonged cold exposure, and a vernalization requirement prevents flowering from occurring prior to winter. In winter wheat (Triticum aestivum) and barley (Hordeum vulgare), three genes VRN1, VRN2, and FT form a regulatory loop that regulates the initiation of flowering. Prior to cold exposure, VRN2 represses FT. During cold, VRN1 expression increases, resulting in the repression of VRN2, which in turn allows activation of FT during long days to induce flowering. Here, we test whether the circuitry of this regulatory loop is conserved across Pooideae, consistent with their niche transition from the tropics to the temperate zone. Our phylogenetic analyses of VRN2-like genes reveal a duplication event occurred before the diversification of the grasses that gave rise to a CO9 and VRN2/Ghd7 clade and support orthology between wheat/barley VRN2 and rice (Oryza sativa) Ghd7 Our Brachypodium distachyon VRN1 and VRN2 knockdown and overexpression experiments demonstrate functional conservation of grass VRN1 and VRN2 in the promotion and repression of flowering, respectively. However, expression analyses in a range of pooids demonstrate that the cold repression of VRN2 is unique to core Pooideae such as wheat and barley. Furthermore, VRN1 knockdown in B. distachyon demonstrates that the VRN1-mediated suppression of VRN2 is not conserved. Thus, the VRN1-VRN2 feature of the regulatory loop appears to have evolved late in the diversification of temperate grasses.
Collapse
Affiliation(s)
- Daniel P Woods
- Laboratory of Genetics, U.S. Department of Energy Great Lakes Bioenergy Research Center (D.P.W., R.M.A.), and Department of Biochemistry (D.P.W., Y.D., R.M.A.), University of Wisconsin, Madison, Wisconsin 53706;Department of Plant Biology, University of Vermont, Burlington, Vermont 05405 (M.A.M., J.C.P.); andCollege of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China (Y.D.)
| | - Meghan A McKeown
- Laboratory of Genetics, U.S. Department of Energy Great Lakes Bioenergy Research Center (D.P.W., R.M.A.), and Department of Biochemistry (D.P.W., Y.D., R.M.A.), University of Wisconsin, Madison, Wisconsin 53706;Department of Plant Biology, University of Vermont, Burlington, Vermont 05405 (M.A.M., J.C.P.); andCollege of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China (Y.D.)
| | - Yinxin Dong
- Laboratory of Genetics, U.S. Department of Energy Great Lakes Bioenergy Research Center (D.P.W., R.M.A.), and Department of Biochemistry (D.P.W., Y.D., R.M.A.), University of Wisconsin, Madison, Wisconsin 53706;Department of Plant Biology, University of Vermont, Burlington, Vermont 05405 (M.A.M., J.C.P.); andCollege of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China (Y.D.)
| | - Jill C Preston
- Laboratory of Genetics, U.S. Department of Energy Great Lakes Bioenergy Research Center (D.P.W., R.M.A.), and Department of Biochemistry (D.P.W., Y.D., R.M.A.), University of Wisconsin, Madison, Wisconsin 53706;Department of Plant Biology, University of Vermont, Burlington, Vermont 05405 (M.A.M., J.C.P.); andCollege of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China (Y.D.)
| | - Richard M Amasino
- Laboratory of Genetics, U.S. Department of Energy Great Lakes Bioenergy Research Center (D.P.W., R.M.A.), and Department of Biochemistry (D.P.W., Y.D., R.M.A.), University of Wisconsin, Madison, Wisconsin 53706;Department of Plant Biology, University of Vermont, Burlington, Vermont 05405 (M.A.M., J.C.P.); andCollege of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China (Y.D.)
| |
Collapse
|
47
|
Gorafi YSA, Eltayeb AE, Tsujimoto H. Alteration of wheat vernalization requirement by alien chromosome-mediated transposition of MITE. BREEDING SCIENCE 2016; 66:181-90. [PMID: 27162490 PMCID: PMC4784996 DOI: 10.1270/jsbbs.66.181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/29/2015] [Indexed: 05/27/2023]
Abstract
Under the changing climate, early flowering is advantageous to escape terminal heat and drought. Previously during evaluation of 14 chromosome introgression lines (ILs), we found three ILs that flowered a month earlier than their wheat background Chinese Spring (CS). This paper describes the cause of the early flowering in the ILs and provides insight into the evolution of spring wheat from the winter wheat. We used specific molecular markers for Vrn genes to determine its allelic composition. Phenotypic evaluations carried out under field conditions and in a growth chamber. Unlike the winter vrn-A1 allele of CS, the spring Vrn-A1 allele of the ILs had insertions of 222 and 131-bp miniature inverted-repeat transposable element (MITE) in the promoter region. Sequence analysis indicated that the 222-bp insertion is similar to an insertion in the spring genotype, Triple Dirk D. Our results ruled out any possibility of outcrossing or contamination. Without vernalization, Vrn-A1 is highly expressed in the ILs compared to CS. We attribute the early flowering of the ILs to the insertion of the MITE in the promoter of Vrn-A1. The alien chromosome might mediate this insertion.
Collapse
Affiliation(s)
- Yasir Serag Alnor Gorafi
- Arid Land Research Center, Tottori University,
1390 Hamasaka, Tottori 680-0001,
Japan
- Agricultural Research Corporation,
Wad Medani, PO Box 126,
Sudan
| | - Amin Elsadig Eltayeb
- Arid Land Research Center, Tottori University,
1390 Hamasaka, Tottori 680-0001,
Japan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University,
1390 Hamasaka, Tottori 680-0001,
Japan
| |
Collapse
|
48
|
Zhou W, Wu S, Ding M, Li J, Shi Z, Wei W, Guo J, Zhang H, Jiang Y, Rong J. Mapping of Ppd-B1, a Major Candidate Gene for Late Heading on Wild Emmer Chromosome Arm 2BS and Assessment of Its Interactions with Early Heading QTLs on 3AL. PLoS One 2016; 11:e0147377. [PMID: 26848576 PMCID: PMC4743932 DOI: 10.1371/journal.pone.0147377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
Wheat heading date is an important agronomic trait determining maturation time and yield. A set of common wheat (Triticum aestivum var. Chinese Spring; CS)-wild emmer (T. turgidum L. subsp. dicoccoides (TDIC)) chromosome arm substitution lines (CASLs) was used to identify and allocate QTLs conferring late or early spike emergence by examining heading date. Genetic loci accelerating heading were found on TDIC chromosome arms 3AL and 7BS, while loci delaying heading were located on 4AL and 2BS. To map QTLs conferring late heading on 2BS, F2 populations derived from two cross combinations of CASL2BS × CS and CASL3AL × CASL2BS were developed and each planted at two times, constituting four F2 mapping populations. Heading date varied continuously among individuals of these four populations, suggesting quantitative characteristics. A genetic map of 2BS, consisting of 23 SSR and one single-stranded conformation polymorphism (SSCP) marker(s), was constructed using these F2 populations. This map spanned a genetic length of 53.2 cM with average marker density of 2.3 cM. The photoperiod-sensitivity gene Ppd-B1 was mapped to chromosome arm 2BS as a SSCP molecular marker, and was validated as tightly linked to a major QTL governing late heading of CASL2BS in all mapping populations. A significant dominance by additive effect of Ppd-B1 with the LUX gene located on 3AL was also detected. CS had more copies of Ppd-B1 than CASL2BS, implying that increased copy number could elevate the expression of Ppd-1 in CS, also increasing expression of LUX and FT genes and causing CS to have an earlier heading date than CASL2BS in long days.
Collapse
Affiliation(s)
- Wei Zhou
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China
| | - Shasha Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China
| | - Mingquan Ding
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China
| | - Jingjuan Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China
| | - Zhaobin Shi
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China
| | - Wei Wei
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China
| | - Jialian Guo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China
| | - Hua Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China
| | - Yurong Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang 311300, China
- * E-mail:
| |
Collapse
|
49
|
Muterko A, Kalendar R, Salina E. Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region. BMC PLANT BIOLOGY 2016; 16 Suppl 1:9. [PMID: 26822192 PMCID: PMC4895274 DOI: 10.1186/s12870-015-0691-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND In wheat, the vernalization requirement is mainly controlled by the VRN genes. Different species of hexaploid and tetraploid wheat are widely used as genetic source for new mutant variants and alleles for fundamental investigations and practical breeding programs. In this study, VRN-A1 and VRN-B1 were analysed for 178 accessions representing six tetraploid wheat species (Triticum dicoccoides, T. dicoccum, T. turgidum, T. polonicum, T. carthlicum, T. durum) and five hexaploid species (T. compactum, T. sphaerococcum, T. spelta, T. macha, T. vavilovii). RESULTS Novel allelic variants in the promoter region of VRN-A1 and VRN-B1 were identified based on the change in curvature and flexibility of the DNA molecules. The new variants of VRN-A1 (designated as Vrn-A1a.2, Vrn-A1b.2 - Vrn-A1b.6 and Vrn-A1i) were found to be widely distributed in hexaploid and tetraploid wheat, and in fact were predominant over the known VRN-A1 alleles. The greatest diversity of the new variants of VRN-B1 (designated as VRN-B1.f, VRN-B1.s and VRN-B1.m) was found in the tetraploid and some hexaploid wheat species. For the first time, minor differences within the sequence motif known as the VRN-box of VRN1 were correlated with wheat growth habit. Thus, vrn-A1b.3 and vrn-A1b.4 were revealed in winter wheat in contrast to Vrn-A1b.2, Vrn-A1b.5, Vrn-A1b.6 and Vrn-A1i. It was found that single nucleotide mutation in the VRN-box can influence the vernalization requirement and growth habit of wheat. Our data suggest that both the A-tract and C-rich segment within the VRN-box contribute to its functionality, and provide a new view of the hypothesised role of the VRN-box in regulating transcription of the VRN1 genes. Specifically, it is proposed that combination of mutations in this region can modulate vernalization sensitivity and flowering time of wheat. CONCLUSIONS New allelic variants of the VRN-A1 and VRN-B1 genes were identified in hexaploid and tetraploid wheat. Mutations in A-tract and C-rich segments within the VRN-box of VRN-A1 are associated with modulation of the vernalization requirement and flowering time. New allelic variants will be useful in fundamental investigations into the regulation of VRN1 expression, and provide a valuable genetic resource for practical breeding of wheat.
Collapse
Affiliation(s)
- Alexandr Muterko
- Laboratory of Plant Molecular Genetics and Cytogenetics, The Federal Research Center Institute of Cytology and Genetics, Lavrentyeva Avenue 10, Novosibirsk, 630090, Russian Federation.
- Department of Common and Molecular Genetics, Plant Breeding and Genetics Institute - National Center of Seed and Cultivar Investigation, Ovidiopolskaya Road 3, Odessa, 65036, Ukraine.
| | - Ruslan Kalendar
- Laboratory of Plant Genomics and Bioinformatics, RSE "National Center for Biotechnology", Sh. Valikhanov 13/1, Astana, 010000, Kazakhstan
- University of Helsinki, Institute of Biotechnology, MTT Plant Genomics Laboratory, Biocentre 3, P.O. Box 65, Viikinkaari 1, Helsinki, 00014, Finland
| | - Elena Salina
- Laboratory of Plant Molecular Genetics and Cytogenetics, The Federal Research Center Institute of Cytology and Genetics, Lavrentyeva Avenue 10, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
50
|
Halliwell J, Borrill P, Gordon A, Kowalczyk R, Pagano ML, Saccomanno B, Bentley AR, Uauy C, Cockram J. Systematic Investigation of FLOWERING LOCUS T-Like Poaceae Gene Families Identifies the Short-Day Expressed Flowering Pathway Gene, TaFT3 in Wheat (Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2016; 7:857. [PMID: 27458461 PMCID: PMC4937749 DOI: 10.3389/fpls.2016.00857] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/31/2016] [Indexed: 05/20/2023]
Abstract
To date, a small number of major flowering time loci have been identified in the related Triticeae crops, bread wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare). Natural genetic variants at these loci result in major phenotypic changes which have adapted crops to the novel environments encountered during the spread of agriculture. The polyploid nature of bread and durum wheat means that major flowering time loci in which recessive alleles confer adaptive advantage in related diploid species have not been readily identified. One such example is the PPD-H2 flowering time locus encoded by FLOWERING LOCUS T 3 (HvFT3) in the diploid crop barley, for which recessive mutant alleles confer delayed flowering under short day (SD) photoperiods. In autumn-sown barley, such alleles aid the repression of flowering over the winter, which help prevent the development of cold-sensitive floral organs until the onset of inductive long day (LD) photoperiods the following spring. While the identification of orthologous loci in wheat could provide breeders with alternative mechanisms to fine tune flowering time, systematic identification of wheat orthologs of HvFT3 has not been reported. Here, we characterize the FT gene families in six Poaceae species, identifying novel members in all taxa investigated, as well as FT3 homoeologs from the A, B and D genomes of hexaploid (TaFT3) and tetraploid wheat. Sequence analysis shows TaFT3 homoeologs display high similarity to the HvFT3 coding region (95-96%) and predicted protein (96-97%), with conservation of intron/exon structure across the five cereal species investigated. Genetic mapping and comparative analyses in hexaploid and tetraploid wheat find TaFT3 homoeologs map to the long arms of the group 1 chromosomes, collinear to HvFT3 in barley and FT3 orthologs in rice, foxtail millet and brachypodium. Genome-specific expression analyses show FT3 homoeologs in tetraploid and hexaploid wheat are upregulated under SD photoperiods, but not under LDs, analogous to the expression of HvFT3. Collectively, these results indicate that functional wheat orthologs of HvFT3 have been identified. The molecular resources generated here provide the foundation for engineering a novel major flowering time locus in wheat using forward or reverse genetics approaches.
Collapse
Affiliation(s)
- Joanna Halliwell
- Crop Genetics Department, John Innes CentreNorwich, UK
- John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | | | - Anna Gordon
- John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | - Radoslaw Kowalczyk
- John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
- Faculty of Life Sciences, University of ManchesterManchester, UK
| | - Marina L. Pagano
- John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | | | - Alison R. Bentley
- John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | - Cristobal Uauy
- Crop Genetics Department, John Innes CentreNorwich, UK
- John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | - James Cockram
- John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
- *Correspondence: James Cockram
| |
Collapse
|