1
|
Dechkrong P, Srima S, Sukkhaeng S, Utkhao W, Thanomchat P, de Jong H, Tongyoo P. Mutation mapping of a variegated EMS tomato reveals an FtsH-like protein precursor potentially causing patches of four phenotype classes in the leaves with distinctive internal morphology. BMC PLANT BIOLOGY 2024; 24:265. [PMID: 38600480 PMCID: PMC11005157 DOI: 10.1186/s12870-024-04973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Leaf variegation is an intriguing phenomenon observed in many plant species. However, questions remain on its mechanisms causing patterns of different colours. In this study, we describe a tomato plant detected in an M2 population of EMS mutagenised seeds, showing variegated leaves with sectors of dark green (DG), medium green (MG), light green (LG) hues, and white (WH). Cells and tissues of these classes, along with wild-type tomato plants, were studied by light, fluorescence, and transmission electron microscopy. We also measured chlorophyll a/b and carotene and quantified the variegation patterns with a machine-learning image analysis tool. We compared the genomes of pooled plants with wild-type-like and mutant phenotypes in a segregating F2 population to reveal candidate genes responsible for the variegation. RESULTS A genetic test demonstrated a recessive nuclear mutation caused the variegated phenotype. Cross-sections displayed distinct anatomy of four-leaf phenotypes, suggesting a stepwise mesophyll degradation. DG sectors showed large spongy layers, MG presented intercellular spaces in palisade layers, and LG displayed deformed palisade cells. Electron photomicrographs of those mesophyll cells demonstrated a gradual breakdown of the chloroplasts. Chlorophyll a/b and carotene were proportionally reduced in the sectors with reduced green pigments, whereas white sectors have hardly any of these pigments. The colour segmentation system based on machine-learning image analysis was able to convert leaf variegation patterns into binary images for quantitative measurements. The bulk segregant analysis of pooled wild-type-like and variegated progeny enabled the identification of SNP and InDels via bioinformatic analysis. The mutation mapping bioinformatic pipeline revealed a region with three candidate genes in chromosome 4, of which the FtsH-like protein precursor (LOC100037730) carries an SNP that we consider the causal variegated phenotype mutation. Phylogenetic analysis shows the candidate is evolutionary closest to the Arabidopsis VAR1. The synonymous mutation created by the SNP generated a miRNA binding site, potentially disrupting the photoprotection mechanism and thylakoid development, resulting in leaf variegation. CONCLUSION We described the histology, anatomy, physiology, and image analysis of four classes of cell layers and chloroplast degradation in a tomato plant with a variegated phenotype. The genomics and bioinformatics pipeline revealed a VAR1-related FtsH mutant, the first of its kind in tomato variegation phenotypes. The miRNA binding site of the mutated SNP opens the way to future studies on its epigenetic mechanism underlying the variegation.
Collapse
Affiliation(s)
- Punyavee Dechkrong
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Sornsawan Srima
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Siriphan Sukkhaeng
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Winai Utkhao
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESRI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Piyanan Thanomchat
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok, 10900, Thailand
| | - Hans de Jong
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESRI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Wageningen University, Plant Sciences Group, Laboratory of Genetics, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Pumipat Tongyoo
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESRI), Bangkok, 10900, Thailand.
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
2
|
Tang X, Wang Y, Zhang Y, Huang S, Liu Z, Fei D, Feng H. A missense mutation of plastid RPS4 is associated with chlorophyll deficiency in Chinese cabbage (Brassica campestris ssp. pekinensis). BMC PLANT BIOLOGY 2018; 18:130. [PMID: 29940850 PMCID: PMC6019835 DOI: 10.1186/s12870-018-1353-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 06/17/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plastome mutants are ideal resources for elucidating the functions of plastid genes. Numerous studies have been conducted for the function of plastid genes in barley and tobacco; however, related information is limited in Chinese cabbage. RESULTS A chlorophyll-deficient mutant of Chinese cabbage that was derived by ethyl methanesulfonate treatment on isolated microspores showed uniformly pale green inner leaves and slow growth compared with that shown by the wild type "Fukuda 50' ('FT'). Genetic analysis revealed that cdm was cytoplasmically inherited. Physiological and ultrastructural analyses of cdm showed impaired photosynthesis and abnormal chloroplast development. Utilizing next generation sequencing, the complete plastomes of cdm and 'FT' were respectively re-mapped to the reference genome of Chinese cabbage, and an A-to-C base substitution with a mutation ratio higher than 99% was detected. The missense mutation of plastid ribosomal protein S4 led to valine substitution for glycine at residue 193. The expression level of rps4 was analyzed using quantitative real-time PCR and found lower in than in 'FT'. RNA gel-blot assays showed that the abundance of mature 23S rRNA, 16S rRNA, 5S rRNA, and 4.5S rRNA significantly decreased and that the processing of 23S, 16S rRNA, and 4.5S rRNA was seriously impaired, affecting the ribosomal function in cdm. CONCLUSIONS These findings indicated that cdm was a plastome mutant and that chlorophyll deficiency might be due to an A-to-C base substitution of the plastome-encoded rps4 that impaired the rRNA processing and affected the ribosomal function.
Collapse
Affiliation(s)
- Xiaoyan Tang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Yiheng Wang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Yun Zhang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Shengnan Huang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Zhiyong Liu
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Danli Fei
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Hui Feng
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| |
Collapse
|
3
|
Sanchez-Puerta MV, Zubko MK, Palmer JD. Homologous recombination and retention of a single form of most genes shape the highly chimeric mitochondrial genome of a cybrid plant. THE NEW PHYTOLOGIST 2015; 206:381-396. [PMID: 25441621 PMCID: PMC4342287 DOI: 10.1111/nph.13188] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/14/2014] [Indexed: 05/10/2023]
Abstract
The structure and evolution of angiosperm mitochondrial genomes are driven by extremely high rates of recombination and rearrangement. An excellent experimental system for studying these events is offered by cybrid plants, in which parental mitochondria usually fuse and their genomes recombine. Little is known about the extent, nature and consequences of mitochondrial recombination in these plants. We conducted the first study in which the organellar genomes of a cybrid - between Nicotiana tabacum and Hyoscyamus niger - were sequenced and compared to those of its parents. This cybrid mitochondrial genome is highly recombinant, reflecting at least 30 crossovers and five gene conversions between its parental genomes. It is also surprisingly large (41% and 64% larger than the parental genomes), yet contains single alleles for 90% of mitochondrial genes. Recombination produced a remarkably chimeric cybrid mitochondrial genome and occurred entirely via homologous mechanisms involving the double-strand break repair and/or break-induced replication pathways. Retention of a single form of most genes could be advantageous to minimize intracellular incompatibilities and/or reflect neutral forces that preferentially eliminate duplicated regions. We discuss the relevance of these findings to the surprisingly frequent occurrence of horizontal gene - and genome - transfer in angiosperm mitochondrial DNAs.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- Facultad de Ciencias Exactas y Naturales and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo & IBAM-CONICET, Chacras de Coria, 5500, Mendoza, Argentina
| | - Mikhajlo K Zubko
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
4
|
Affiliation(s)
- John S Boyer
- College of Earth, Ocean and Environment (formerly College of Marine Studies), University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA.
| |
Collapse
|
5
|
Gibala M, Kicia M, Sakamoto W, Gola EM, Kubrakiewicz J, Smakowska E, Janska H. The lack of mitochondrial AtFtsH4 protease alters Arabidopsis leaf morphology at the late stage of rosette development under short-day photoperiod. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:685-99. [PMID: 19453455 DOI: 10.1111/j.1365-313x.2009.03907.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
AtFtsH4 is one of four inner membrane-bound mitochondrial ATP-dependent metalloproteases in Arabidopsis thaliana, called AAA proteases, whose catalytic site is exposed to the intermembrane space. In the present study, we used a reverse-genetic approach to investigate the physiological role of the AtFtsH4 protease. We found that loss of AtFtsH4 did not significantly affect Arabidopsis growth under optimal conditions (long days); however, severe morphological and developmental abnormalities in late rosette development occurred under short-day conditions. The asymmetric shape and irregular serration of expanding leaf blades were the most striking features of the ftsh4 mutant phenotype. The severe abnormal morphology of the leaf blades was accompanied by ultrastructural changes in mitochondria and chloroplasts. These abnormalities correlated with elevated levels of reactive oxygen species and carbonylated mitochondrial proteins. We found that two classes of molecular chaperones, Hsp70 and prohibitins, were over-expressed in ftsh4 mutants during late vegetative growth under both short- and long-day conditions. Taken together, our data indicate that lack of AtFtsH4 results in impairment of organelle development and Arabidopsis leaf morphology under short-day conditions.
Collapse
Affiliation(s)
- Marta Gibala
- Department of Biotechnology, Wroclaw University, Przybyszewskiego, Wroclaw, Poland
| | | | | | | | | | | | | |
Collapse
|
6
|
Yu F, Fu A, Aluru M, Park S, Xu Y, Liu H, Liu X, Foudree A, Nambogga M, Rodermel S. Variegation mutants and mechanisms of chloroplast biogenesis. PLANT, CELL & ENVIRONMENT 2007; 30:350-365. [PMID: 17263779 DOI: 10.1111/j.1365-3040.2006.01630.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Variegated plants typically have green- and white-sectored leaves. Cells in the green sectors contain normal-appearing chloroplasts, whereas cells in the white sectors lack pigments and appear to be blocked at various stages of chloroplast biogenesis. Variegations can be caused by mutations in nuclear, chloroplast or mitochondrial genes. In some plants, the green and white sectors have different genotypes, but in others they have the same (mutant) genotype. One advantage of variegations is that they provide a means of studying genes for proteins that are important for chloroplast development, but for which mutant analysis is difficult, either because mutations in a gene of interest are lethal or because they do not show a readily distinguishable phenotype. This paper focuses on Arabidopsis variegations, for which the most information is available at the molecular level. Perhaps the most interesting of these are variegations caused by defective nuclear gene products in which the cells of the mutant have a uniform genotype. Two questions are of paramount interest: (1) What is the gene product and how does it function in chloroplast biogenesis? (2) What is the mechanism of variegation and why do green sectors arise in plants with a uniform (mutant) genotype? Two paradigms of variegation mechanism are described: immutans (im) and variegated2 (var2). Both mechanisms emphasize compensating activities and the notion of plastid autonomy, but redundant gene products are proposed to play a role in var2, but not in im. It is hypothesized that threshold levels of certain activities are necessary for normal chloroplast development.
Collapse
Affiliation(s)
- Fei Yu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Aigen Fu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Maneesha Aluru
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Sungsoon Park
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Yang Xu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Huiying Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Xiayan Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Andrew Foudree
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Milly Nambogga
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Steven Rodermel
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
7
|
Jiao S, Thornsberry JM, Elthon TE, Newton KJ. Biochemical and molecular characterization of photosystem I deficiency in the NCS6 mitochondrial mutant of maize. PLANT MOLECULAR BIOLOGY 2005; 57:303-313. [PMID: 15821884 DOI: 10.1007/s11103-004-7792-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 12/17/2004] [Indexed: 05/24/2023]
Abstract
Interorganellar signaling interactions are poorly understood. The maize non-chromosomal stripe (NCS) mutants provide models to study the requirement of mitochondrial function for chloroplast biogenesis and photosynthesis. Previous work suggested that the NCS6 mitochondrial mutation, a cytochrome oxidase subunit 2 (cox2) deletion, is associated with a malfunction of Photosystem I (PSI) in defective chloroplasts of mutant leaf sectors (Gu et al., 1993). We have now quantified the reductions of photosynthetic rates and PSI activity in the NCS6 defective stripes. Major reductions of the plastid-coded PsaC and nucleus-coded PsaD and PsaE PSI subunits and of their corresponding mRNAs are seen in mutant sectors; however, although the psaA/B mRNA is greatly reduced, levels of PsaA and PsaB (the core proteins of PSI) are only slightly decreased. Levels of the PsaL subunit and its mRNA appear to be unchanged. Tested subunits of other thylakoid membrane complexes--PSII, Cyt b6/f, and ATP synthase, have minor (or no) reductions within mutant sectors. The results suggest that specific signaling pathways sense the dysfunction of the mitochondrial electron transport chain and respond to down-regulate particular PSI mRNAs, leading to decreased PSI accumulation in the chloroplast. The reductions of both nucleus and plastid encoded components indicate that complex interorganellar signaling pathways may be involved.
Collapse
Affiliation(s)
- Shunxing Jiao
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
8
|
|
9
|
Bellaoui M, Keddie JS, Gruissem W. DCL is a plant-specific protein required for plastid ribosomal RNA processing and embryo development. PLANT MOLECULAR BIOLOGY 2003; 53:531-543. [PMID: 15010617 DOI: 10.1023/b:plan.0000019061.79773.06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The defective chloroplast and leaf-mutable (dcl-m) mutation of tomato blocks chloroplast differentiation in leaf mesophyll cells and a signaling system that appears to be required for morphogenesis of palisade cells during leaf growth. To dissect the function of DCL, mutants with stable dcl alleles (dcl-s) were generated and examined for their phenotype. DCL/dcl-s plant produce dcl-s/dcl-s seeds with embryos arrested at the globular stage of development. The levels of several chloroplast- and nuclear-encoded proteins are strongly reduced in dcl-m mutant leaf sectors without significant changes in their corresponding mRNAs. The 4.5S rRNA fails to be processed efficiently, however, suggesting that DCL has a direct or indirect function in rRNA processing or correct ribosome assembly. Accordingly, chloroplasts in dcl-m sectors are impaired in polysome assembly, which can explain the reduced accumulation of chloroplast-encoded proteins. These results suggest that DCL is required for chloroplast rRNA processing, and emphasize the importance of plastid function during embryogenesis.
Collapse
Affiliation(s)
- Mohammed Bellaoui
- Institute of Plant Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | | | | |
Collapse
|
10
|
Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK. Extracellular invertase: key metabolic enzyme and PR protein. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:513-24. [PMID: 12508062 DOI: 10.1093/jxb/erg050] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extracellular invertase is the key enzyme of an apoplasmic phloem unloading pathway and catalyses the hydrolytic cleavage of the transport sugar sucrose released into the apoplast. This mechanism contributes to long-distance assimilate transport, provides the substrate to sustain heterotrophic growth and generates metabolic signals known to effect various processes of primary metabolism and defence responses. The essential function of extracellular invertase for supplying carbohydrates to sink organs was demonstrated by the finding that antisense repression of an anther-specific isoenzyme provides an efficient method for metabolic engineering of male sterility. The regulation of extracellular invertase by all classes of phytohormones indicates an essential link between the molecular mechanism of phytohormone action and primary metabolism. The up-regulation of extracellular invertase appears to be a common response to various biotic and abiotic stress-related stimuli such as pathogen infection and salt stress, in addition to specific stress-related reactions. Based on the observed co-ordinated regulation of source/sink relations and defence responses by sugars and stress-related stimuli, the identified activation of distinct subsets of MAP kinases provides a mechanism for signal integration and distribution within such complex networks. Sucrose derivatives not synthesized by higher plants, such as turanose, were shown to elicit responses distinctly different from metabolizable sugars and are rather perceived as stress-related stimuli.
Collapse
Affiliation(s)
- T Roitsch
- Lehrstuhl für Pharmazeutische Biologie, Julius-von-Sachs Institute, Julius-von-Sachs-Platz 2, Universität Würzburg, D-97082 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
11
|
Zubko MK, Zubko EI, Ruban AV, Adler K, Mock HP, Misera S, Gleba YY, Grimm B. Extensive developmental and metabolic alterations in cybrids Nicotiana tabacum (+ Hyoscyamus niger) are caused by complex nucleo-cytoplasmic incompatibility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:627-39. [PMID: 11319030 DOI: 10.1046/j.1365-313x.2001.00997.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The genetic basis of multiple phenotypic alterations was studied in cell-engineered cybrids Nicotiana tabacum (+ Hyoscyamus niger) combining the nuclear genome of N. tabacum, plastome of H. niger and recombinant mitochondria. The plants possess a complex, maternally inheritable syndrome of nucleo-cytoplasmic incompatibility, severely affecting growth, metabolism and development. In vivo, the syndrome was manifested as: late germination of seeds; dramatic decrease of chlorophyll and carotenoids in cotyledons and leaves; altered morphology of cotyledons, leaves and flowers; and dwarfism. The leaf phenotype depended on light intensity. In 'green flowers' (an extreme phenotype), homeotic function B was downregulated. In vitro, the incompatibility syndrome was restricted to the pigment deficiency of cotyledons. Electron microscopy revealed perturbations in the differentiation of chloroplasts and palisade parenchyma cells in bleached leaves. The pigment deficiency accompanied by retarded growth is discussed as a result of plastome-genome incompatibility, whereas other features are likely to be due to nucleo-mitochondrial incompatibilities.
Collapse
Affiliation(s)
- M K Zubko
- Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben, IPK Corrensstrasse 3, 06466 Gatersleben, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Goldschmidt-Clermont M. Coordination of nuclear and chloroplast gene expression in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 177:115-80. [PMID: 9378616 DOI: 10.1016/s0074-7696(08)62232-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plastid proteins are encoded in two genomes, one in the nucleus and the other in the organelle. The expression of genes in these two compartments in coordinated during development and in response to environmental parameters such as light. Two converging approaches reveal features of this coordination: the biochemical analysis of proteins involved in gene expression, and the genetic analysis of mutants affected in plastid function or development. Because the majority of proteins implicated in plastid gene expression are encoded in the nucleus, regulatory processes in the nucleus and in the cytoplasm control plastid gene expression, in particular during development. Many nucleus-encoded factors involved in transcriptional and posttranscriptional steps of plastid gene expression have been characterized. We are also beginning to understand whether and how certain developmental or environmental signals perceived in one compartment may be transduced to the other.
Collapse
|
13
|
Stoeva P, Maricheva B, Petrova M, Atanassov A, Atchkova Z. Nuclear—Cytoplasm Interrelations in Genus Lycopersicon. BIOTECHNOL BIOTEC EQ 1997. [DOI: 10.1080/13102818.1997.10818935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|