1
|
Zhang X, Ding Z, Lou H, Han R, Ma C, Yang S. A Systematic Review and Developmental Perspective on Origin of CMS Genes in Crops. Int J Mol Sci 2024; 25:8372. [PMID: 39125940 PMCID: PMC11312923 DOI: 10.3390/ijms25158372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cytoplasmic male sterility (CMS) arises from the incompatibility between the nucleus and cytoplasm as typical representatives of the chimeric structures in the mitochondrial genome (mitogenome), which has been extensively applied for hybrid seed production in various crops. The frequent occurrence of chimeric mitochondrial genes leading to CMS is consistent with the mitochondrial DNA (mtDNA) evolution. The sequence conservation resulting from faithfully maternal inheritance and the chimeric structure caused by frequent sequence recombination have been defined as two major features of the mitogenome. However, when and how these chimeric mitochondrial genes appear in the context of the highly conserved reproduction of mitochondria is an enigma. This review, therefore, presents the critical view of the research on CMS in plants to elucidate the mechanisms of this phenomenon. Generally, distant hybridization is the main mechanism to generate an original CMS source in natural populations and in breeding. Mitochondria and mitogenomes show pleomorphic and dynamic changes at key stages of the life cycle. The promitochondria in dry seeds develop into fully functioning mitochondria during seed imbibition, followed by massive mitochondria or mitogenome fusion and fission in the germination stage along with changes in the mtDNA structure and quantity. The mitogenome stability is controlled by nuclear loci, such as the nuclear gene Msh1. Its suppression leads to the rearrangement of mtDNA and the production of heritable CMS genes. An abundant recombination of mtDNA is also often found in distant hybrids and somatic/cybrid hybrids. Since mtDNA recombination is ubiquitous in distant hybridization, we put forward a hypothesis that the original CMS genes originated from mtDNA recombination during the germination of the hybrid seeds produced from distant hybridizations to solve the nucleo-cytoplasmic incompatibility resulting from the allogenic nuclear genome during seed germination.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Zhengpin Ding
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Hongbo Lou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
2
|
Bishnoi R, Solanki R, Singla D, Mittal A, Chhuneja P, Meena OP, Dhatt AS. Comparative mitochondrial genome analysis reveals a candidate ORF for cytoplasmic male sterility in tropical onion. 3 Biotech 2024; 14:6. [PMID: 38074291 PMCID: PMC10700285 DOI: 10.1007/s13205-023-03850-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/08/2023] [Indexed: 01/19/2024] Open
Abstract
Cytoplasmic male sterility (CMS) has been widely exploited for hybrid seed production in onions (Allium cepa L.). In contrast to long-day onion cultivars, short-day onion has not yet been investigated for mitochondrial genome structure and DNA rearrangements associated with CMS activity. Here, we report the 3,16,321 bp complete circular mitochondrial genome of tropical onion CMS line (97A). Due to the substantial number of repetitive regions, the assembled mitochondrial genome of maintainer line (97B) remained linear with 15 scaffolds. Additionally, 13 and 20 chloroplast-derived fragments with a size ranging from 143 to 13,984 bp and 153-17,725 bp were identified in the 97A and 97B genomes, respectively. Genome annotation revealed 24 core protein-coding genes along with 24 and 28 tRNA genes in the mitochondrial genomes of 97A and 97B, respectively. Furthermore, comparative genome analysis of the 97A and 97B mitochondrial genomes showed that gene content was almost similar except for the chimeric ORF725 gene which is the extended form of the COX1 gene. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03850-2.
Collapse
Affiliation(s)
- Ritika Bishnoi
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Ravindra Solanki
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Deepak Singla
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Om Prakash Meena
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004 India
| | - Ajmer Singh Dhatt
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
3
|
Zhang X, Chen S, Zhao Z, Ma C, Liu Y. Investigation of B-atp6-orfH79 distributing in Chinese populations of Oryza rufipogon and analysis of its chimeric structure. BMC PLANT BIOLOGY 2023; 23:81. [PMID: 36750954 PMCID: PMC9903446 DOI: 10.1186/s12870-023-04082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The cytoplasmic male sterility (CMS) of rice is caused by chimeric mitochondrial DNA (mtDNA) that is maternally inherited in the majority of multicellular organisms. Wild rice (Oryza rufipogon Griff.) has been regarded as the ancestral progenitor of Asian cultivated rice (Oryza sativa L.). To investigate the distribution of original CMS source, and explore the origin of gametophytic CMS gene, a total of 427 individuals with seventeen representative populations of O. rufipogon were collected in from Dongxiang of Jiangxi Province to Sanya of Hainan Province, China, for the PCR amplification of atp6, orfH79 and B-atp6-orfH79, respectively. RESULTS The B-atp6-orfH79 and its variants (B-atp6-GSV) were detected in five among seventeen populations (i.e. HK, GZ, PS, TL and YJ) through PCR amplification, which could be divided into three haplotypes, i.e., BH1, BH2, and BH3. The BH2 haplotype was identical to B-atp6-orfH79, while the BH1 and BH3 were the novel haplotypes of B-atp6-GSV. Combined with the high-homology sequences in GenBank, a total of eighteen haplotypes have been revealed, only with ten haplotypes in orfH79 and its variants (GSV) that belong to three species (i.e. O. rufipogon, Oryza nivara and Oryza sativa). Enough haplotypes clearly demonstrated the uniform structural characteristics of the B-atp6-orfH79 as follows: except for the conserved sequence (671 bp) composed of B-atp6 (619 bp) and the downstream followed the B-atp6 (52 bp, DS), and GSV sequence, a rich variable sequence (VS, 176 bp) lies between the DS and GSV with five insertion or deletion and more than 30 single nucleotide polymorphism. Maximum likelihood analysis showed that eighteen haplotypes formed three clades with high support rate. The hierarchical analysis of molecular variance (AMOVA) indicated the occurrence of variation among all populations (FST = 1; P < 0.001), which implied that the chimeric structure occurred independently. Three haplotypes (i.e., H1, H2 and H3) were detected by the primer of orfH79, which were identical to the GVS in B-atp6-GVS structure, respectively. All seventeen haplotypes of the orfH79, belonged to six species based on our results and the existing references. Seven existed single nucleotide polymorphism in GSV section can be translated into eleven various amino acid sequences. CONCLUSIONS Generally, this study, indicating that orfH79 was always accompanied by the B-atp6, not only provide two original CMS sources for rice breeding, but also confirm the uniform structure of B-atp-orfH79, which contribute to revealing the origin of rice gametophytic CMS genes, and the reason about frequent recombination of mitochondrial DNA.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Shuying Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zixian Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Yating Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- College of Tobacco, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
4
|
He W, Xiang K, Chen C, Wang J, Wu Z. Master graph: an essential integrated assembly model for the plant mitogenome based on a graph-based framework. Brief Bioinform 2023; 24:bbac522. [PMID: 36644898 DOI: 10.1093/bib/bbac522] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 01/17/2023] Open
Abstract
Unlike the typical single circular structure of most animal mitochondrial genomes (mitogenome), the drastic structural variation of plant mitogenomes is a result of a mixture of molecules of various sizes and structures. Obtaining the full panoramic plant mitogenome is still considered a roadblock in evolutionary biology. In this study, we developed a graph-based sequence assembly toolkit (GSAT) to construct the pan-structural landscape of plant mitogenome with high-quality mitochondrial master graphs (MMGs) for model species including rice (Oryza sativa) and thale cress (Arabidopsis thaliana). The rice and thale cress MMGs have total lengths of 346 562 and 358 041 bp, including 9 and 6 contigs and 12 and 8 links, respectively, and could be further divided into 6 and 3 minimum master circles and 4 and 2 minimum secondary circles separately. The nuclear mitochondrial DNA segments (NUMTs) in thale cress strongly affected the frequency evaluation of the homologous structures in the mitogenome, while the effects of NUMTs in rice were relatively weak. The mitochondrial plastid DNA segments (MTPTs) in both species had no effects on the assessment of the MMGs. All potential recombinant structures were evaluated, and the findings revealed that all, except for nuclear-homologous structures, MMG structures are present at a much higher frequency than non-MMG structures are. Investigations of potential circular and linear molecules further supported multiple dominant structures in the mitogenomes and could be completely summarized in the MMG. Our study provided an efficient and accurate model for assembling and applying graph-based plant mitogenomes to assess their pan-structural variations.
Collapse
Affiliation(s)
- Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kunli Xiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Caijin Chen
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528200, China
| |
Collapse
|
5
|
Fan W, Liu F, Jia Q, Du H, Chen W, Ruan J, Lei J, Li DZ, Mower JP, Zhu A. Fragaria mitogenomes evolve rapidly in structure but slowly in sequence and incur frequent multinucleotide mutations mediated by microinversions. THE NEW PHYTOLOGIST 2022; 236:745-759. [PMID: 35731093 DOI: 10.1111/nph.18334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Plant mitochondrial DNA has been described as evolving rapidly in structure but slowly in sequence. However, many of the noncoding portions of plant mitogenomes are not homologous among species, raising questions about the rate and spectrum of mutations in noncoding regions. Recent studies have suggested that the lack of homology in noncoding regions could be due to increased sequence divergence. We compared 30 kb of coding and 200 kb of noncoding DNA from 13 sequenced Fragaria mitogenomes, followed by analysis of the rate of sequence divergence, microinversion events and structural variations. Substitution rates in synonymous sites and nongenic sites are nearly identical, suggesting that the genome-wide point mutation rate is generally consistent. A surprisingly high number of large multinucleotide substitutions were detected in Fragaria mitogenomes, which may have resulted from microinversion events and could affect phylogenetic signal and local rate estimates. Fragaria mitogenomes preferentially accumulate deletions relative to insertions and substantial genomic arrangements, whereas mutation rates could positively associate with these sequence and structural changes among species. Together, these observations suggest that plant mitogenomes exhibit low point mutations genome-wide but exceptionally high structural variations, and our results favour a gain-and-loss model for the rapid loss of homology among plant mitogenomes.
Collapse
Affiliation(s)
- Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaoya Jia
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650500, China
| | - Haiyuan Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wu Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiwei Ruan
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
6
|
Sun M, Zhang M, Chen X, Liu Y, Liu B, Li J, Wang R, Zhao K, Wu J. Rearrangement and domestication as drivers of Rosaceae mitogenome plasticity. BMC Biol 2022; 20:181. [PMID: 35986276 PMCID: PMC9392253 DOI: 10.1186/s12915-022-01383-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background The mitochondrion is an important cellular component in plants and that functions in producing vital energy for the cell. However, the evolution and structure of mitochondrial genomes (mitogenomes) remain unclear in the Rosaceae family. In this study, we assembled 34 Rosaceae mitogenomes and characterized genome variation, rearrangement rate, and selection signal variation within these mitogenomes. Results Comparative analysis of six genera from the Amygdaloideae and five from the Rosoideae subfamilies of Rosaceae revealed that three protein-coding genes were absent from the mitogenomes of five Rosoideae genera. Positive correlations between genome size and repeat content were identified in 38 Rosaceae mitogenomes. Twenty repeats with high recombination frequency (> 50%) provided evidence for predominant substoichiometric conformation of the mitogenomes. Variations in rearrangement rates were identified between eleven genera, and within the Pyrus, Malus, Prunus, and Fragaria genera. Based on population data, phylogenetic inferences from Pyrus mitogenomes supported two distinct maternal lineages of Asian cultivated pears. A Pyrus-specific deletion (DEL-D) in selective sweeps was identified based on the assembled genomes and population data. After the DEL-D sequence fragments originally arose, they may have experienced a subsequent doubling event via homologous recombination and sequence transfer in the Amygdaloideae; afterwards, this variant sequence may have significantly expanded to cultivated groups, thereby improving adaptation during the domestication process. Conclusions This study characterizes the variations in gene content, genome size, rearrangement rate, and the impact of domestication in Rosaceae mitogenomes and provides insights into their structural variation patterns and phylogenetic relationships. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01383-3.
Collapse
|
7
|
Comparison of Mitochondrial Genomes between a Cytoplasmic Male-Sterile Line and Its Restorer Line for Identifying Candidate CMS Genes in Gossypium hirsutum. Int J Mol Sci 2022; 23:ijms23169198. [PMID: 36012463 PMCID: PMC9409232 DOI: 10.3390/ijms23169198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
As the core of heterosis utilization, cytoplasmic male sterility (CMS) has been widely used in hybrid seed production. Previous studies have shown that CMS is always closely related to the altered programming of mitochondrial genes. To explore candidate CMS genes in cotton (Gossypium hirsutum), sequencing and de novo assembly were performed on the mitochondrial genome of the G. hirsutum CMS line SI3A, with G. harknessii CMS-D2 cytoplasm, and the corresponding G. hirsutum restorer line 0-613-2R. Remarkable variations in genome structure and gene transcripts were detected. The mitochondrial genome of SI3A has three circle molecules, including one main circle and two sub-circles, while 0-613-2R only has one. RNA-seq and RT-qPCR analysis proved that orf606a and orf109a, which have a chimeric structure and transmembrane domain, were highly expressed in abortive anthers of SI3A. In addition, comparative analysis of RNA-seq and full-length transcripts revealed the complex I gene nad4 to be expressed at a lower level in SI3A than in its restorer and that it featured an intron retention splicing pattern. These two novel chimeric ORFs and nad4 are potential candidates that confer CMS character in SI3A. This study provides new insight into the molecular basis of the nuclear–cytoplasmic interaction mechanism, and that putative CMS genes might be important sources for future precise design cross-breeding of cotton.
Collapse
|
8
|
Sanetomo R, Akai K, Nashiki A. Discovery of a novel mitochondrial DNA molecule associated with tetrad pollen sterility in potato. BMC PLANT BIOLOGY 2022; 22:302. [PMID: 35725378 PMCID: PMC9210639 DOI: 10.1186/s12870-022-03669-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/31/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Tetrad sterility in potato is caused by a specific cytoplasm, called TSCsto, derived from the Mexican wild tetraploid species Solanum stoloniferum. Different S. stoloniferum accessions crossed as females with S. tuberosum resulted in 12 fertile hybrids and 27 sterile hybrids exhibiting tetrad sterility. RESULTS Whole-mitochondrial-genome sequencing was performed for two fertile hybrids and three hybrids exhibiting tetrad sterility. Two to seven contigs, with the total assembly lengths ranging from 462,716 to 535,375 bp, were assembled for each hybrid. Unlike for the reference mitochondrial genome (cv. Désirée), two different recombinant-type contigs (RC-I and RC-II) were identified. RC-I featured by the rpl5-ψrps14 gene joined to the nad6 gene, generating a novel intergenic region. Using a PCR marker (P-3), we found that this intergenic region occurred exclusively in interspecific hybrids exhibiting tetrad sterility and in their parental S. stoloniferum accessions. A part of this intergenic sequence was expressed in the pollen. From a large survey in which P-3 was applied to 129 accessions of 27 mostly Mexican wild species, RC-I was found in diploid S. verrucosum and polyploid species. From eight accessions of S. verrucosum used as females, 92 interspecific hybrids were generated, in which only those carrying RC-I exhibited tetrad sterility. CONCLUSIONS RC-I was clearly associated with tetrad sterility, and the RC-I-specific intergenic region likely contains a causal factor of tetrad sterility.
Collapse
Affiliation(s)
- Rena Sanetomo
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| | - Kotaro Akai
- National Agriculture and Food Research Organization, Hokkaido Agricultural Research Center, Memuro, Hokkaido, 082-0081, Japan
| | - Akito Nashiki
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
- Graduate School of Science and Technology, The University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
9
|
Characterization of the mitochondrial genome of Cucumis hystrix and comparison with other cucurbit crops. Gene 2022; 823:146342. [PMID: 35219813 DOI: 10.1016/j.gene.2022.146342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
The mitochondria ofCucumis genus contain several intriguing features such as paternal inheritance and three-ring genome structure. However, the evolutionary relationships of mitochondria inCucumisremain elusive. Here, we assembled the mitochondrial genome ofC. hystrixand performed a comparative genomic analysis with other crops inthe Cucurbitaceae. The mitochondrial genome ofC. hystrixhas three circular-mapping chromosomes of lengths 1,113,461 bp, 110,683 bp, and 92,288 bp, which contain 73 genes including 38 protein-coding genes, 31tRNAgenes, and 4rRNAgenes. Repeat sequences, RNA editing, and horizontal gene transfer events were identified. The results of phylogenetic analyses, collinearity and gene clusters revealed thatC. hystrixis closer toC. sativus than to C. melo. Meanwhile, wedemonstrated mitochondrial paternal inheritance inC. hystrixbymolecular markers. In comparison with other cucurbitcrops, wefound amarker foridentification of germplasm resources ofCucumis. Collectively, our findings provide a tool to help clarify the paternal lineage within that genus in the evolution of Cucumis.
Collapse
|
10
|
Liu H, Yu J, Yu X, Zhang D, Chang H, Li W, Song H, Cui Z, Wang P, Luo Y, Wang F, Wang D, Li Z, Huang Z, Fu A, Xu M. Structural variation of mitochondrial genomes sheds light on evolutionary history of soybeans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1456-1472. [PMID: 34587339 DOI: 10.1111/tpj.15522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The architecture and genetic diversity of mitogenome (mtDNA) are largely unknown in cultivated soybean (Glycine max), which is domesticated from the wild progenitor, Glycine soja, 5000 years ago. Here, we de novo assembled the mitogenome of the cultivar 'Williams 82' (Wm82_mtDNA) with Illumina PE300 deep sequencing data, and verified it with polymerase chain reaction (PCR) and Southern blot analyses. Wm82_mtDNA maps as two autonomous circular chromosomes (370 871-bp Chr-m1 and 62 661-bp Chr-m2). Its structure is extensively divergent from that of the mono-chromosomal mitogenome reported in the landrace 'Aiganhuang' (AGH_mtDNA). Synteny analysis showed that the structural variations (SVs) between two genomes are mainly attributed to ectopic and illegitimate recombination. Moreover, Wm82_mtDNA and AGH_mtDNA each possess six and four specific regions, which are absent in their counterparts and likely result from differential sequence-loss events. Mitogenome SV was further studied in 39 wild and 182 cultivated soybean accessions distributed world-widely with PCR/Southern analyses or a comparable in silico analysis. The results classified both wild and cultivated soybeans into five cytoplasmic groups, named as GSa-GSe and G1-G5; 'Williams 82' and 'Aiganhuang' belong to G1 and G5, respectively. Notably, except for members in GSe and G5, all accessions carry a bi-chromosomal mitogenome with a common Chr-m2. Phylogenetic analyses based on mtDNA structures and chloroplast gene sequences both inferred that G1-G3, representing >90% of cultigens, likely inherited cytoplasm from the ancestor of domestic soybean, while G4 and G5 likely inherited cytoplasm from wild soybeans carrying GSa- and GSe-like cytoplasm through interspecific hybridization, offering new insights into soybean cultivation history.
Collapse
Affiliation(s)
- Hao Liu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Junping Yu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xiaoxia Yu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Dan Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Han Chang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wei Li
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Haifeng Song
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zheng Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Peng Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yixin Luo
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Fei Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Dagang Wang
- Key Laboratory of Crop Quality Improvement of Anhui Province, Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei, Anhui, 230031, China
| | - Zhi Li
- Fuyang Academy of Agricultural Sciences, Fuyang, Anhui, 236000, China
| | - Zhiping Huang
- Key Laboratory of Crop Quality Improvement of Anhui Province, Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei, Anhui, 230031, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Min Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
11
|
Omukai S, Arimura SI, Toriyama K, Kazama T. Disruption of mitochondrial open reading frame 352 partially restores pollen development in cytoplasmic male sterile rice. PLANT PHYSIOLOGY 2021; 187:236-246. [PMID: 34015134 PMCID: PMC8418389 DOI: 10.1093/plphys/kiab236] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/01/2021] [Indexed: 05/20/2023]
Abstract
Plant mitochondrial genomes sometimes carry cytoplasmic male sterility (CMS)-associated genes. These genes have been harnessed in various crops to produce high-yielding F1 hybrid seeds. The gene open reading frame 352 (orf352) was reported to be an RT102-type CMS gene in rice (Oryza sativa), although the mechanism underlying its role in CMS is unknown. Here, we employed mitochondrion-targeted transcription activator-like effector nucleases (mitoTALENs) to knockout orf352 from the mitochondrial genome in the CMS rice RT102A. We isolated 18 independent transformation events in RT102A that resulted in genome editing of orf352, including its complete removal from the mitochondrial genome in several plants. Sequence analysis around the mitoTALEN target sites revealed their induced double-strand breaks were repaired via homologous recombination. Near the 5'-target site, repair involved sequences identical to orf284, while repair of the 3'-target site yielded various new sequences that generated chimeric genes consisting of orf352 fragments. Plants with a chimeric mitochondrial gene encoding amino acids 179-352 of ORF352 exhibited the same shrunken pollen grain phenotype as RT102A, whereas plants either lacking orf352 or harboring a chimeric gene encoding amino acids 211-352 of ORF352 exhibited partial rescue of pollen viability and germination, although these plants failed to set seed. These results demonstrated that disruption of orf352 partially restored pollen development, indicating that amino acids 179-210 from ORF352 may contribute to pollen abortion.
Collapse
Affiliation(s)
- Shiho Omukai
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Shin-ich Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyou-ku, Tokyo 113-8657, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Kinya Toriyama
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Tomohiko Kazama
- Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
- Author for communication:
| |
Collapse
|
12
|
Cheng Q, Wang P, Li T, Liu J, Zhang Y, Wang Y, Sun L, Shen H. Complete Mitochondrial Genome Sequence and Identification of a Candidate Gene Responsible for Cytoplasmic Male Sterility in Celery ( Apium graveolens L.). Int J Mol Sci 2021; 22:ijms22168584. [PMID: 34445290 PMCID: PMC8395238 DOI: 10.3390/ijms22168584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Celery (Apium graveolens L.) is an important leafy vegetable worldwide. The development of F1 hybrids in celery is highly dependent on cytoplasmic male sterility (CMS) because emasculation is difficult. In this study, we first report a celery CMS, which was found in a high-generation inbred line population of the Chinese celery “tanzhixiangqin”. Comparative analysis, following sequencing and assembly of the complete mitochondrial genome sequences for this celery CMS line and its maintainer line, revealed that there are 21 unique regions in the celery CMS line and these unique regions contain 15 ORFs. Among these ORFs, only orf768a is a chimeric gene, consisting of 1497 bp sequences of the cox1 gene and 810 bp unidentified sequences located in the unique region, and the predicted protein product of orf768a possesses 11 transmembrane domains. In summary, the results of this study indicate that orf768a is likely to be a strong candidate gene for CMS induction in celery. In addition, orf768a can be a co-segregate marker, which can be used to screen CMS in celery.
Collapse
Affiliation(s)
- Qing Cheng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
| | - Peng Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Tiantian Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
| | - Jinkui Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
| | - Yingxue Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
| | - Yihao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
| | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
- Correspondence:
| |
Collapse
|
13
|
Habib S, Dong S, Liu Y, Liao W, Zhang S. The complete mitochondrial genome of Cycas debaoensis revealed unexpected static evolution in gymnosperm species. PLoS One 2021; 16:e0255091. [PMID: 34293066 PMCID: PMC8297867 DOI: 10.1371/journal.pone.0255091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/11/2021] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial genomes of vascular plants are well known for their liability in architecture evolution. However, the evolutionary features of mitogenomes at intra-generic level are seldom studied in vascular plants, especially among gymnosperms. Here we present the complete mitogenome of Cycas debaoensis, an endemic cycad species to the Guangxi region in southern China. In addition to assemblage of draft mitochondrial genome, we test the conservation of gene content and mitogenomic stability by comparing it to the previously published mitogenome of Cycas taitungensis. Furthermore, we explored the factors such as structural rearrangements and nuclear surveillance of double-strand break repair (DSBR) proteins in Cycas in comparison to other vascular plant groups. The C. debaoensis mitogenome is 413,715 bp in size and encodes 69 unique genes, including 40 protein coding genes, 26 tRNAs, and 3 rRNA genes, similar to that of C. taitungensis. Cycas mitogenomes maintained the ancestral intron content of seed plants (26 introns), which is reduced in other lineages of gymnosperms, such as Ginkgo biloba, Taxus cuspidata and Welwitschia mirabilis due to selective pressure or retroprocessing events. C. debaoensis mitogenome holds 1,569 repeated sequences (> 50 bp), which partially account for fairly large intron size (1200 bp in average) of Cycas mitogenome. The comparison of RNA-editing sites revealed 267 shared non-silent editing site among predicted vs. empirically observed editing events. Another 33 silent editing sites from empirical data increase the total number of editing sites in Cycas debaoensis mitochondrial protein coding genes to 300. Our study revealed unexpected conserved evolution between the two Cycas species. Furthermore, we found strict collinearity of the gene order along with the identical set of genomic content in Cycas mt genomes. The stability of Cycas mt genomes is surprising despite the existence of large number of repeats. This structural stability may be related to the relative expansion of three DSBR protein families (i.e., RecA, OSB, and RecG) in Cycas nuclear genome, which inhibit the homologous recombinations, by monitoring the accuracy of mitochondrial chromosome repair.
Collapse
Affiliation(s)
- Sadaf Habib
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Shanshan Dong
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Yang Liu
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Wenbo Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouzhou Zhang
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
14
|
Jin Z, Seo J, Kim B, Lee SY, Koh HJ. Identification of a Candidate Gene for the Novel Cytoplasmic Male Sterility Derived from Inter-Subspecific Crosses in Rice ( Oryza sativa L.). Genes (Basel) 2021; 12:590. [PMID: 33920582 PMCID: PMC8073397 DOI: 10.3390/genes12040590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/09/2023] Open
Abstract
Tetep-cytoplasmic male sterility (CMS) was developed through successive backcrosses between subspecies indica and japonica in rice (Oryza sativa L.), which showed abnormal anther dehiscence phenotypes. Whole genome sequencing and de novo assembly of the mitochondrial genome identified the chimeric gene orf312, which possesses a transmembrane domain and overlaps with two mitotype-specific sequences (MSSs) that are unique to the Tetep-CMS line. The encoded peptide of orf312 was toxic to Escherichia coli and inhibited cell growth compared to the control under isopropyl-β-D-1-thiogalactopyranoside (IPTG) induction. The peptide of orf312 contains COX11-interaction domains, which are thought to be a main functional domain for WA352c in the wild abortive (WA-CMS) line of rice. A QTL for Rf-Tetep (restorer-of-fertility gene(s) originating from Tetep) was identified on chromosome 10. In this region, several restorer genes, Rf1a, Rf1b, and Rf4, have previously been reported. Collectively, the interactions of orf312, a candidate gene for Tetep-CMS, and Rf-Tetep, a restorer QTL, confer male sterility and fertility restoration, respectively, which enables a hybrid rice breeding system. Further studies on orf312 and isolation of Rf-Tetep will help to identify the underlying molecular mechanism of mitochondrial ORFs with the COX11-interaction domains.
Collapse
Affiliation(s)
- Zhuo Jin
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
| | - Jeonghwan Seo
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea
| | - Backki Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
| | - Seung Young Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
| | - Hee-Jong Koh
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
| |
Collapse
|
15
|
Li D, Gan G, Li W, Li W, Jiang Y, Liang X, Yu N, Chen R, Wang Y. Inheritance of Solanum chloroplast genomic DNA in interspecific hybrids. Mitochondrial DNA B Resour 2021; 6:351-357. [PMID: 33659675 PMCID: PMC7872556 DOI: 10.1080/23802359.2020.1866450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
The chloroplast genomic information was obtained from three wild Solanum and four hybrids by chloroplast genome sequencing. The chloroplast genomes of the seven samples comprise of a circular structure and sizes from 155,581 to 155,612 bp and composed of 130 genes. The genome structures of the two hybrids were identical, while the other two hybrids showed 2 bp differences in the LSC when compared with their maternal parent. The total sites of SNP and InDel were 39-344 and 54-90, respectively. With the exception of one hybrid with two additional sites, the other hybrids were identical to their maternal.
Collapse
Affiliation(s)
- Dandan Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjia Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuyu Liang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ning Yu
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
16
|
He T, Ding X, Zhang H, Li Y, Chen L, Wang T, Yang L, Nie Z, Song Q, Gai J, Yang S. Comparative analysis of mitochondrial genomes of soybean cytoplasmic male-sterile lines and their maintainer lines. Funct Integr Genomics 2021; 21:43-57. [PMID: 33404916 DOI: 10.1007/s10142-020-00760-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/22/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022]
Abstract
In soybean, only one mitochondrial genome of cultispecies has been completely obtained. To explore the effect of mitochondrial genome on soybean cytoplasmic male sterility (CMS), two CMS lines and three maintainer lines were used for sequencing. Comparative analysis showed that mitochondrial genome of the CMS line was more compact than that of its maintainer line, but genes were highly conserved. Conserved and unique sequence coexisted in the genomes. Mitochondrial genomes contained different sequence lengths and copy numbers of repeats between CMS line and maintainer line. Large and short repeats mediated intramolecular and intermolecular recombination in mitochondria. Unique sequences and genes were also involved in recombination process and constituted a complex network. orf178 and orf261 were identified as CMS-associated candidate genes. They had sequence characteristics of reported CMS genes in other crops and could be transcribed in CMS lines but not in maintainer lines. This report reveals mitochondrial genome of soybean CMS lines and compares complete mitochondrial sequence between CMS lines and their maintainer lines. The information will be helpful in further understanding the characteristics of soybean mitochondrial genome and the mechanism underlying CMS.
Collapse
Affiliation(s)
- Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanwei Li
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linfeng Chen
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tanliu Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longshu Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhixing Nie
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, 20705, USA
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Anupama K, Pranathi K, Meenakshi Sundaram R. Assessment of genetic purity of bulked-seed of rice CMS lines using capillary electrophoresis. Electrophoresis 2020; 41:1749-1751. [PMID: 32357250 DOI: 10.1002/elps.201900429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 11/08/2022]
Abstract
Genetically pure cytoplasmic male sterile line (A-line) is essential to generate pure hybrid seeds in order to harness the yield heterosis in rice. Conventionally, seed purity testing is carried by grow-out test, which has many limitations. Seed purity assessments based on molecular markers reduce the time required for analysis significantly. However, it is very tedious as at least 200-400 seeds/seedlings are needed to be analyzed individually. An assay based on bulked-seed and molecular markers will be an ideal system. Keeping these points in view, in the present study, a co-dominant mitochondrial marker was used to test the purity of bulked parental line (A-line) seed utilizing CE system in a genetic analyzer. The results indicate that this method is very simple, accurate, and can be used to test purity of large number of samples rapidly in a cost-effective way compared to grow-out test and conventional molecular marker analysis.
Collapse
Affiliation(s)
- Kornepati Anupama
- Plant DNA Fingerprinting Services, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Karnati Pranathi
- Crop Improvement Section, Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | | |
Collapse
|
18
|
Choi IS, Schwarz EN, Ruhlman TA, Khiyami MA, Sabir JSM, Hajarah NH, Sabir MJ, Rabah SO, Jansen RK. Fluctuations in Fabaceae mitochondrial genome size and content are both ancient and recent. BMC PLANT BIOLOGY 2019; 19:448. [PMID: 31653201 PMCID: PMC6814987 DOI: 10.1186/s12870-019-2064-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/02/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Organelle genome studies of Fabaceae, an economically and ecologically important plant family, have been biased towards the plastid genome (plastome). Thus far, less than 15 mitochondrial genome (mitogenome) sequences of Fabaceae have been published, all but four of which belong to the subfamily Papilionoideae, limiting the understanding of size variation and content across the family. To address this, four mitogenomes were sequenced and assembled from three different subfamilies (Cercidoideae, Detarioideae and Caesalpinioideae). RESULTS Phylogenetic analysis based on shared mitochondrial protein coding regions produced a fully resolved and well-supported phylogeny that was completely congruent with the plastome tree. Comparative analyses suggest that two kinds of mitogenome expansions have occurred in Fabaceae. Size expansion of four genera (Tamarindus, Libidibia, Haematoxylum, and Leucaena) in two subfamilies (Detarioideae and Caesalpinioideae) occurred in relatively deep nodes, and was mainly caused by intercellular gene transfer and/or interspecific horizontal gene transfer (HGT). The second, more recent expansion occurred in the Papilionoideae as a result of duplication of native mitochondrial sequences. Family-wide gene content analysis revealed 11 gene losses, four (rps2, 7, 11 and 13) of which occurred in the ancestor of Fabaceae. Losses of the remaining seven genes (cox2, rpl2, rpl10, rps1, rps19, sdh3, sdh4) were restricted to specific lineages or occurred independently in different clades. Introns of three genes (cox2, ccmFc and rps10) showed extensive lineage-specific length variation due to large sequence insertions and deletions. Shared DNA analysis among Fabaceae mitogenomes demonstrated a substantial decay of intergenic spacers and provided further insight into HGT between the mimosoid clade of Caesalpinioideae and the holoparasitic Lophophytum (Balanophoraceae). CONCLUSION This study represents the most exhaustive analysis of Fabaceae mitogenomes so far, and extends the understanding the dynamic variation in size and gene/intron content. The four newly sequenced mitogenomes reported here expands the phylogenetic coverage to four subfamilies. The family has experienced multiple mitogenome size fluctuations in both ancient and recent times. The causes of these size variations are distinct in different lineages. Fabaceae mitogenomes experienced extensive size fluctuation by recruitment of exogenous DNA and duplication of native mitochondrial DNA.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Erika N. Schwarz
- Department of Biological Sciences, St. Edward’s University, Austin, TX 78704 USA
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Mohammad A. Khiyami
- King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442 Saudi Arabia
| | - Jamal S. M. Sabir
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Nahid H. Hajarah
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mernan J. Sabir
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Samar O. Rabah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
19
|
Gavrilenko ТA, Klimenko NS, Alpatieva NV, Kostina LI, Lebedeva VA, Evdokimova ZZ, Apalikova OV, Novikova LY, Antonova OY. Cytoplasmic genetic diversity of potato varieties bred in Russia and FSU countries. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Т. A. Gavrilenko
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR); St. Petersburg State University
| | - N. S. Klimenko
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - N. V. Alpatieva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - L. I. Kostina
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - V. A. Lebedeva
- Leningrad Research Institute for Applied Agricultural Science (Belogorka)
| | - Z. Z. Evdokimova
- Leningrad Research Institute for Applied Agricultural Science (Belogorka)
| | - O. V. Apalikova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - L. Y. Novikova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - O. Yu. Antonova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| |
Collapse
|
20
|
Pranathi K, Kalyani MB, Viraktamath BC, Balachandran SM, Hajira SK, Koteshwar Rao P, Kulakarni SR, Rekha G, Anila M, Koushik MBVN, Senguttuvel P, Hariprasad AS, Mangrautia SK, Madhav MS, Sundaram RM. Expression profiling of immature florets of IR58025A, a wild-abortive cytoplasmic male sterile line of rice and its cognate, isonuclear maintainer line, IR58025B. 3 Biotech 2019; 9:278. [PMID: 31245242 PMCID: PMC6588665 DOI: 10.1007/s13205-019-1806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022] Open
Abstract
Interaction between gene products encoded by the cytoplasm and nucleus form the core of wild abortive cytoplasmic male sterile (WA-CMS) system of hybrid breeding in rice. Gaining insights into such interactions can be helpful in the development of better three-line rice hybrids and also identify novel male sterility systems. In the present study, the whole transcriptome profiles of immature florets of IR58025A, a WA-CMS line and its isonuclear maintainer line, IR58025B, collected at pre-anthesis stage were compared to delineate the pathways involved in pollen abortion and male sterility. Among the 774 differentially expressed transcripts (DETs), 496 were down regulated and 278 were up regulated in IR58025A compared to IR58025B. The genes associated with oxidative stress response, defense response, etc. were significantly up-regulated, while those associated with respiration, cell wall modifications, pectinesterase activity, etc. were significantly down-regulated in the WA-CMS line. Gene ontology and pathway enrichment analyses revealed the down-regulation of both nuclear and organellar genes involved in key metabolic processes of cell respiration, photosynthesis and other energy yielding metabolites in IR58025A, relative to IR58025B, indicating a general shift toward conservation of energy and other key resources in the florets of WA-CMS line. The data derived from RNA-Seq analysis were validated through qRT-PCR analysis. Based on the results obtained, it can be hypothesized that pollen abortion principally occurs due to up-regulation of pathways leading to oxidative stress leading to energy starvation conditions in consonance with reduced expression of genes associated with the cell wall formation, respiration, and other key metabolic processes.
Collapse
Affiliation(s)
- K. Pranathi
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - M. B. Kalyani
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - B. C. Viraktamath
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | | | - S. K. Hajira
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - P. Koteshwar Rao
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - S. R. Kulakarni
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - G. Rekha
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - M. Anila
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | | | - P. Senguttuvel
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - A. S. Hariprasad
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - S. K. Mangrautia
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - M. S. Madhav
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - R. M. Sundaram
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| |
Collapse
|
21
|
Cole LW, Guo W, Mower JP, Palmer JD. High and Variable Rates of Repeat-Mediated Mitochondrial Genome Rearrangement in a Genus of Plants. Mol Biol Evol 2019; 35:2773-2785. [PMID: 30202905 DOI: 10.1093/molbev/msy176] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For 30 years, it has been clear that angiosperm mitochondrial genomes evolve rapidly in sequence arrangement (i.e., synteny), yet absolute rates of rearrangement have not been measured in any plant group, nor is it known how much these rates vary. To investigate these issues, we sequenced and reconstructed the rearrangement history of seven mitochondrial genomes in Monsonia (Geraniaceae). We show that rearrangements (occurring mostly as inversions) not only take place at generally high rates in these genomes but also uncover significant variation in rearrangement rates. For example, the hyperactive mitochondrial genome of Monsonia ciliata has accumulated at least 30 rearrangements over the last million years, whereas the branch leading to M. ciliata and its sister species has sustained rearrangement at a rate that is at least ten times lower. Furthermore, our analysis of published data shows that rates of mitochondrial genome rearrangement in seed plants vary by at least 600-fold. We find that sites of rearrangement are highly preferentially located in very close proximity to repeated sequences in Monsonia. This provides strong support for the hypothesis that rearrangement in angiosperm mitochondrial genomes occurs largely through repeat-mediated recombination. Because there is little variation in the amount of repeat sequence among Monsonia genomes, the variable rates of rearrangement in Monsonia probably reflect variable rates of mitochondrial recombination itself. Finally, we show that mitochondrial synonymous substitutions occur in a clock-like manner in Monsonia; rates of mitochondrial substitutions and rearrangements are therefore highly uncoupled in this group.
Collapse
Affiliation(s)
- Logan W Cole
- Department of Biology, Indiana University, Bloomington, IN
| | | | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE.,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE
| | | |
Collapse
|
22
|
Li S, Chen Z, Zhao N, Wang Y, Nie H, Hua J. The comparison of four mitochondrial genomes reveals cytoplasmic male sterility candidate genes in cotton. BMC Genomics 2018; 19:775. [PMID: 30367630 PMCID: PMC6204043 DOI: 10.1186/s12864-018-5122-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The mitochondrial genomes of higher plants vary remarkably in size, structure and sequence content, as demonstrated by the accumulation and activity of repetitive DNA sequences. Incompatibility between mitochondrial genome and nuclear genome leads to non-functional male reproductive organs and results in cytoplasmic male sterility (CMS). CMS has been used to produce F1 hybrid seeds in a variety of plant species. RESULTS Here we compared the mitochondrial genomes (mitogenomes) of Gossypium hirsutum sterile male lines CMS-2074A and CMS-2074S, as well as their restorer and maintainer lines. First, we noticed the mitogenome organization and sequences were conserved in these lines. Second, we discovered the mitogenomes of 2074A and 2074S underwent large-scale substitutions and rearrangements. Actually, there were five and six unique chimeric open reading frames (ORFs) in 2074A and 2074S, respectively, which were derived from the recombination between unique repetitive sequences and nearby functional genes. Third, we found out four chimeric ORFs that were differentially transcribed in sterile line (2074A) and fertile-restored line. CONCLUSIONS These four novel and recombinant ORFs are potential candidates that confer CMS character in 2074A. In addition, our observations suggest that CMS in cotton is associated with the accelerated rates of rearrangement, and that novel expression products are derived from recombinant ORFs.
Collapse
Affiliation(s)
- Shuangshuang Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhiwen Chen
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yumei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Xie H, Peng X, Qian M, Cai Y, Ding X, Chen Q, Cai Q, Zhu Y, Yan L, Cai Y. The chimeric mitochondrial gene orf182 causes non-pollen-type abortion in Dongxiang cytoplasmic male-sterile rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:715-726. [PMID: 29876974 DOI: 10.1111/tpj.13982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/04/2018] [Accepted: 05/18/2018] [Indexed: 05/25/2023]
Abstract
D1-cytoplasmic male sterility (CMS) rice is a sporophytic cytoplasmic male-sterile rice developed from Dongxiang wild rice that exhibits a no-pollen-grain phenotype. A mitochondrial chimeric gene (orf182) was detected by mitochondrial genome sequencing and a comparative analysis. Orf182 is composed of three recombinant fragments, the largest of which is homologous to Sorghum bicolor mitochondrial sequences. In addition, orf182 was found only in wild rice species collected from China. Northern blot analysis showed that orf182 transcripts were affected by Rf genes in the isocytoplasmic restorer line DR7. Western blot analysis showed that the ORF182 product was localized in the mitochondria of the CMS line. An expression cassette containing orf182 fused to a mitochondrial transit peptide induced the maintainer line of male sterility, which lacked pollen grains in the anthers. Furthermore, the in vivo expression of orf182 also inhibited the growth of Escherichia coli, with lower respiration rate, excess accumulation of reactive oxygen species and decreased ATP levels. We conclude that the mitochondrial chimeric gene orf182 possesses a unique structure and origin differing from other identified mitochondrial CMS genes, and this gene is connected to non-pollen type of sporophytic male sterility in D1-CMS rice.
Collapse
Affiliation(s)
- Hongwei Xie
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Xiaojue Peng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China
| | - Mingjuan Qian
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Yicong Cai
- China National Rice Research Institute, Hangzhou, China
| | - Xia Ding
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China
| | - Qiusheng Chen
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China
| | - Qiying Cai
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China
| | - Youlin Zhu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China
| | - Longan Yan
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Yaohui Cai
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| |
Collapse
|
24
|
Reddemann A, Horn R. Recombination Events Involving the atp9 Gene Are Associated with Male Sterility of CMS PET2 in Sunflower. Int J Mol Sci 2018; 19:E806. [PMID: 29534485 PMCID: PMC5877667 DOI: 10.3390/ijms19030806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Cytoplasmic male sterility (CMS) systems represent ideal mutants to study the role of mitochondria in pollen development. In sunflower, CMS PET2 also has the potential to become an alternative CMS source for commercial sunflower hybrid breeding. CMS PET2 originates from an interspecific cross of H. petiolaris and H. annuus as CMS PET1, but results in a different CMS mechanism. Southern analyses revealed differences for atp6, atp9 and cob between CMS PET2, CMS PET1 and the male-fertile line HA89. A second identical copy of atp6 was present on an additional CMS PET2-specific fragment. In addition, the atp9 gene was duplicated. However, this duplication was followed by an insertion of 271 bp of unknown origin in the 5' coding region of the atp9 gene in CMS PET2, which led to the creation of two unique open reading frames orf288 and orf231. The first 53 bp of orf288 are identical to the 5' end of atp9. Orf231 consists apart from the first 3 bp, being part of the 271-bp-insertion, of the last 228 bp of atp9. These CMS PET2-specific orfs are co-transcribed. All 11 editing sites of the atp9 gene present in orf231 are fully edited. The anther-specific reduction of the co-transcript in fertility-restored hybrids supports the involvement in male-sterility based on CMS PET2.
Collapse
Affiliation(s)
- Antje Reddemann
- Institut für Biowissenschaften, Abt. Pflanzengenetik, Universität Rostock, Albert-Einstein-Straße 3, D-18059 Rostock, Germany
| | - Renate Horn
- Institut für Biowissenschaften, Abt. Pflanzengenetik, Universität Rostock, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.
| |
Collapse
|
25
|
Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice. Sci Rep 2017; 7:43327. [PMID: 28256554 PMCID: PMC5335689 DOI: 10.1038/srep43327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/24/2017] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucleotide diversity than landrace and/or weedy, and landrace rice has higher diversity than weedy rice. Genetic distance was suggestive of a high level of breeding between landrace and weedy rice, and the landrace showing a closer association with wild rice than weedy rice. Population structure and principal component analyses showed no obvious difference in the genetic backgrounds of landrace and weedy rice in mitochondrial genome level. Phylogenetic, population split, and haplotype network evaluations were suggestive of independent origins of the indica and japonica varieties. The origin of weedy rice is supposed to be more likely from cultivated rice rather than from wild rice in mitochondrial genome level.
Collapse
|
26
|
Abstract
Cytoplasmic male sterility (CMS) factors have long been known in some wild plants, and also in some domesticated species, where they are used to produce plants to be used as maternal parents, for example to breed hybrids that display hybrid vigor. Their origins have been mystifying, and now a study recently published in Cell Research helps understand how one widely-used rice CMS factor evolved.
Collapse
|
27
|
Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF. The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med 2016; 100:238-256. [PMID: 27036362 DOI: 10.1016/j.freeradbiomed.2016.03.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 01/03/2023]
Abstract
Eukaryotic cells require orchestrated communication between nuclear and organellar genomes, perturbations in which are linked to stress response and disease in both animals and plants. In addition to mitochondria, which are found across eukaryotes, plant cells contain a second organelle, the plastid. Signaling both among the organelles (cytoplasmic) and between the cytoplasm and the nucleus (i.e. nuclear-cytoplasmic interactions (NCI)) is essential for proper cellular function. A deeper understanding of NCI and its impact on development, stress response, and long-term health is needed in both animal and plant systems. Here we focus on the role of plant mitochondria in development and stress response. We compare and contrast features of plant and animal mitochondrial genomes (mtDNA), particularly highlighting the large and highly dynamic nature of plant mtDNA. Plant-based tools are powerful, yet underutilized, resources for enhancing our fundamental understanding of NCI. These tools also have great potential for improving crop production. Across taxa, mitochondria are most abundant in cells that have high energy or nutrient demands as well as at key developmental time points. Although plant mitochondria act as integrators of signals involved in both development and stress response pathways, little is known about plant mtDNA diversity and its impact on these processes. In humans, there are strong correlations between particular mitotypes (and mtDNA mutations) and developmental differences (or disease). We propose that future work in plants should focus on defining mitotypes more carefully and investigating their functional implications as well as improving techniques to facilitate this research.
Collapse
Affiliation(s)
- Katie L Liberatore
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States.
| | | | - Marisa E Miller
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Shahryar F Kianian
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
28
|
Multi-step formation, evolution, and functionalization of new cytoplasmic male sterility genes in the plant mitochondrial genomes. Cell Res 2016; 27:130-146. [PMID: 27725674 DOI: 10.1038/cr.2016.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/04/2016] [Accepted: 09/01/2016] [Indexed: 01/28/2023] Open
Abstract
New gene origination is a major source of genomic innovations that confer phenotypic changes and biological diversity. Generation of new mitochondrial genes in plants may cause cytoplasmic male sterility (CMS), which can promote outcrossing and increase fitness. However, how mitochondrial genes originate and evolve in structure and function remains unclear. The rice Wild Abortive type of CMS is conferred by the mitochondrial gene WA352c (previously named WA352) and has been widely exploited in hybrid rice breeding. Here, we reconstruct the evolutionary trajectory of WA352c by the identification and analyses of 11 mitochondrial genomic recombinant structures related to WA352c in wild and cultivated rice. We deduce that these structures arose through multiple rearrangements among conserved mitochondrial sequences in the mitochondrial genome of the wild rice Oryza rufipogon, coupled with substoichiometric shifting and sequence variation. We identify two expressed but nonfunctional protogenes among these structures, and show that they could evolve into functional CMS genes via sequence variations that could relieve the self-inhibitory potential of the proteins. These sequence changes would endow the proteins the ability to interact with the nucleus-encoded mitochondrial protein COX11, resulting in premature programmed cell death in the anther tapetum and male sterility. Furthermore, we show that the sequences that encode the COX11-interaction domains in these WA352c-related genes have experienced purifying selection during evolution. We propose a model for the formation and evolution of new CMS genes via a "multi-recombination/protogene formation/functionalization" mechanism involving gradual variations in the structure, sequence, copy number, and function.
Collapse
|
29
|
Kazama T, Toriyama K. Whole Mitochondrial Genome Sequencing and Re-Examination of a Cytoplasmic Male Sterility-Associated Gene in Boro-Taichung-Type Cytoplasmic Male Sterile Rice. PLoS One 2016; 11:e0159379. [PMID: 27414645 PMCID: PMC4944960 DOI: 10.1371/journal.pone.0159379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/03/2016] [Indexed: 11/19/2022] Open
Abstract
Nuclear genome substitutions between subspecies can lead to cytoplasmic male sterility (CMS) through incompatibility between nuclear and mitochondrial genomes. Boro-Taichung (BT)-type CMS rice was obtained by substituting the nuclear genome of Oryza sativa subsp. indica cultivar Chinsurah Boro II with that of Oryza sativa subsp. japonica cultivar Taichung 65. In BT-type CMS rice, the mitochondrial gene orf79 is associated with male sterility. A complete sequence of the Boro-type mitochondrial genome responsible for BT-type CMS has not been determined to date. Here, we used pyrosequencing to construct the Boro-type mitochondrial genome. The contiguous sequences were assembled into five circular DNA molecules, four of which could be connected into a single circle. The two resulting subgenomic circles were unable to form a reliable master circle, as recombination between them was scarcely detected. We also found an unequal abundance of DNA molecules for the two loci of atp6. These results indicate the presence of multi-partite DNA molecules in the Boro-type mitochondrial genome. Expression patterns were investigated for Boro-type mitochondria-specific orfs, which were not found in the mitochondria from the standard japonica cultivar Nipponbare. Restorer of fertility 1 (RF1)-dependent RNA processing has been observed in orf79-containing RNA but was not detected in other Boro-type mitochondria-specific orfs, supporting the conclusion that orf79 is a unique CMS-associated gene in Boro-type mitochondria.
Collapse
Affiliation(s)
- Tomohiko Kazama
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kinya Toriyama
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
30
|
Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. PLANT CELL REPORTS 2016; 35:967-93. [PMID: 26905724 DOI: 10.1007/s00299-016-1949-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/02/2016] [Indexed: 05/20/2023]
Abstract
A comprehensive understanding of CMS/Rf system enabled by modern omics tools and technologies considerably improves our ability to harness hybrid technology for enhancing the productivity of field crops. Harnessing hybrid vigor or heterosis is a promising approach to tackle the current challenge of sustaining enhanced yield gains of field crops. In the context, cytoplasmic male sterility (CMS) owing to its heritable nature to manifest non-functional male gametophyte remains a cost-effective system to promote efficient hybrid seed production. The phenomenon of CMS stems from a complex interplay between maternally-inherited (mitochondrion) and bi-parental (nucleus) genomic elements. In recent years, attempts aimed to comprehend the sterility-inducing factors (orfs) and corresponding fertility determinants (Rf) in plants have greatly increased our access to candidate genomic segments and the cloned genes. To this end, novel insights obtained by applying state-of-the-art omics platforms have substantially enriched our understanding of cytoplasmic-nuclear communication. Concomitantly, molecular tools including DNA markers have been implicated in crop hybrid breeding in order to greatly expedite the progress. Here, we review the status of diverse sterility-inducing cytoplasms and associated Rf factors reported across different field crops along with exploring opportunities for integrating modern omics tools with CMS-based hybrid breeding.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur, India.
| | - Uday C Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, India
| | | | - Deepak Bisht
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi, India
| | | |
Collapse
|
31
|
Chakraborty A, Mitra J, Bhattacharyya J, Pradhan S, Sikdar N, Das S, Chakraborty S, Kumar S, Lakhanpaul S, Sen SK. Transgenic expression of an unedited mitochondrial orfB gene product from wild abortive (WA) cytoplasm of rice (Oryza sativa L.) generates male sterility in fertile rice lines. PLANTA 2015; 241:1463-1479. [PMID: 25754232 DOI: 10.1007/s00425-015-2269-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
Over-expression of the unedited mitochondrial orfB gene product generates male sterility in fertile indica rice lines in a dose-dependent manner. Cytoplasmic male sterility (CMS) and nuclear-controlled fertility restoration are widespread developmental features in plant reproductive systems. In self-pollinated crop plants, these processes often provide useful tools to exploit hybrid vigour. The wild abortive CMS has been employed in the majority of the "three-line" hybrid rice production since 1970s. In the present study, we provide experimental evidence for a positive functional relationship between the 1.1-kb unedited orfB gene transcript, and its translated product in the mitochondria with male sterility. The generation of the 1.1-kb unedited orfB gene transcripts increased during flowering, resulting in low ATP synthase activity in sterile plants. Following insertion of the unedited orfB gene into the genome of male-fertile plants, the plants became male sterile in a dose-dependent manner with concomitant reduction of ATPase activity of F1F0-ATP synthase (complex V). Fertility of the transgenic lines and normal activity of ATP synthase were restored by down-regulation of the unedited orfB gene expression through RNAi-mediated silencing. The genetic elements deciphered in this study could further be tested for their use in hybrid rice development.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Govindarajulu R, Parks M, Tennessen JA, Liston A, Ashman TL. Comparison of nuclear, plastid, and mitochondrial phylogenies and the origin of wild octoploid strawberry species. AMERICAN JOURNAL OF BOTANY 2015; 102:544-554. [PMID: 25878088 DOI: 10.3732/ajb.1500026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
PREMISE OF THE STUDY Molecular phylogenies derived from all three plant genomes can provide insight into the evolutionary history of plant groups influenced by reticulation. We sought to reconstruct mitochondrial exome, chloroplast, and nuclear genome phylogenies for octoploid Fragaria and their diploid ancestors and to document patterns of incongruence between and within the cytoplasmic genomes and interpret these in the context of evolutionary origin of the octoploid strawberries. METHODS Using a genome-skimming approach, we assembled chloroplast genomes and mitochondrial exomes, and we used the POLiMAPS method to assemble nuclear sequence for octoploid species and constructed phylogenies from all three genomes. We assessed incongruence between and within cytoplasmic genomes using topology-based phylogenetic incongruence tests. KEY RESULTS The incongruent cytoplasmic genome phylogeny with respect to the placement of octoploids suggests potential breakage in linkage disequilibrium of cytoplasmic genomes during allopolyploid origin of the octoploids. Furthermore, a single mitochondrial chimeric gene with a putative role in cytoplasmic male sterility yields a phylogeny that is inconsistent with the rest of the mitochondrial genome but consistent with the chloroplast phylogeny, suggesting intracellular gene transfer between heteroplasmic mitochondria, possibly driven by selection to overcome the effects of mito-nuclear incompatibility in octoploid origins. CONCLUSIONS This work expands on the current understanding of evolutionary history of the octoploid ancestors of cultivated strawberry. It demonstrates phylogenetic incongruence between cytoplasmic genomes in octoploids with respect to diploid ancestors, indicating breakage in linkage disequilibrium of cytoplasmic genomes. We discuss potential organism-level processes that may have contributed to the observed incongruence in Fragaria.
Collapse
Affiliation(s)
| | - Matthew Parks
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 USA
| | - Jacob A Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon 97331 USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 USA
| |
Collapse
|
33
|
Huang JZ, E ZG, Zhang HL, Shu QY. Workable male sterility systems for hybrid rice: Genetics, biochemistry, molecular biology, and utilization. RICE (NEW YORK, N.Y.) 2014; 7:13. [PMID: 26055995 PMCID: PMC4883997 DOI: 10.1186/s12284-014-0013-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/28/2014] [Indexed: 05/05/2023]
Abstract
The exploitation of male sterility systems has enabled the commercialization of heterosis in rice, with greatly increased yield and total production of this major staple food crop. Hybrid rice, which was adopted in the 1970s, now covers nearly 13.6 million hectares each year in China alone. Various types of cytoplasmic male sterility (CMS) and environment-conditioned genic male sterility (EGMS) systems have been applied in hybrid rice production. In this paper, recent advances in genetics, biochemistry, and molecular biology are reviewed with an emphasis on major male sterility systems in rice: five CMS systems, i.e., BT-, HL-, WA-, LD- and CW- CMS, and two EGMS systems, i.e., photoperiod- and temperature-sensitive genic male sterility (P/TGMS). The interaction of chimeric mitochondrial genes with nuclear genes causes CMS, which may be restored by restorer of fertility (Rf) genes. The PGMS, on the other hand, is conditioned by a non-coding RNA gene. A survey of the various CMS and EGMS lines used in hybrid rice production over the past three decades shows that the two-line system utilizing EGMS lines is playing a steadily larger role and TGMS lines predominate the current two-line system for hybrid rice production. The findings and experience gained during development and application of, and research on male sterility in rice not only advanced our understanding but also shed light on applications to other crops.
Collapse
Affiliation(s)
- Jian-Zhong Huang
- />State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029 China
| | - Zhi-Guo E
- />China National Rice Research Institute, 28 Shuidaosuo Road, Fuyang, 311401 Zhejiang, China
| | - Hua-Li Zhang
- />State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029 China
| | - Qing-Yao Shu
- />State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029 China
| |
Collapse
|
34
|
Jo YD, Choi Y, Kim DH, Kim BD, Kang BC. Extensive structural variations between mitochondrial genomes of CMS and normal peppers (Capsicum annuum L.) revealed by complete nucleotide sequencing. BMC Genomics 2014; 15:561. [PMID: 24996600 PMCID: PMC4108787 DOI: 10.1186/1471-2164-15-561] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/20/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. RESULTS We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. CONCLUSIONS Although large portion of sequence context was shared by mitochondrial genomes of CMS and male-fertile pepper lines, extensive genome rearrangements were detected. CMS candidate genes located on the edges of highly-rearranged CMS-specific DNA regions and near to repeat sequences. These characteristics were detected among CMS-associated genes in other species, implying a common mechanism might be involved in the evolution of CMS-associated genes.
Collapse
Affiliation(s)
- Yeong Deuk Jo
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Institute of Green BioScience and Technology, Seoul National University, Seoul, 151-921 South Korea
- />Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185 South Korea
| | - Yoomi Choi
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Institute of Green BioScience and Technology, Seoul National University, Seoul, 151-921 South Korea
| | - Dong-Hwan Kim
- />Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Byung-Dong Kim
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Institute of Green BioScience and Technology, Seoul National University, Seoul, 151-921 South Korea
| | - Byoung-Cheorl Kang
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Institute of Green BioScience and Technology, Seoul National University, Seoul, 151-921 South Korea
| |
Collapse
|
35
|
Heng S, Wei C, Jing B, Wan Z, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Comparative analysis of mitochondrial genomes between the hau cytoplasmic male sterility (CMS) line and its iso-nuclear maintainer line in Brassica juncea to reveal the origin of the CMS-associated gene orf288. BMC Genomics 2014; 15:322. [PMID: 24884490 PMCID: PMC4035054 DOI: 10.1186/1471-2164-15-322] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 04/23/2014] [Indexed: 11/10/2022] Open
Abstract
Background Cytoplasmic male sterility (CMS) is not only important for exploiting heterosis in crop plants, but also as a model for investigating nuclear-cytoplasmic interaction. CMS may be caused by mutations, rearrangement or recombination in the mitochondrial genome. Understanding the mitochondrial genome is often the first and key step in unraveling the molecular and genetic basis of CMS in plants. Comparative analysis of the mitochondrial genome of the hau CMS line and its maintainer line in B. juneca (Brassica juncea) may help show the origin of the CMS-associated gene orf288. Results Through next-generation sequencing, the B. juncea hau CMS mitochondrial genome was assembled into a single, circular-mapping molecule that is 247,903 bp in size and 45.08% in GC content. In addition to the CMS associated gene orf288, the genome contains 35 protein-encoding genes, 3 rRNAs, 25 tRNA genes and 29 ORFs of unknown function. The mitochondrial genome sizes of the maintainer line and another normal type line “J163-4” are both 219,863 bp and with GC content at 45.23%. The maintainer line has 36 genes with protein products, 3 rRNAs, 22 tRNA genes and 31 unidentified ORFs. Comparative analysis the mitochondrial genomes of the hau CMS line and its maintainer line allowed us to develop specific markers to separate the two lines at the seedling stage. We also confirmed that different mitotypes coexist substoichiometrically in hau CMS lines and its maintainer lines in B. juncea. The number of repeats larger than 100 bp in the hau CMS line (16 repeats) are nearly twice of those found in the maintainer line (9 repeats). Phylogenetic analysis of the CMS-associated gene orf288 and four other homologous sequences in Brassicaceae show that orf288 was clearly different from orf263 in Brassica tournefortii despite of strong similarity. Conclusion The hau CMS mitochondrial genome was highly rearranged when compared with its iso-nuclear maintainer line mitochondrial genome. This study may be useful for studying the mechanism of natural CMS in B. juncea, performing comparative analysis on sequenced mitochondrial genomes in Brassicas, and uncovering the origin of the hau CMS mitotype and structural and evolutionary differences between different mitotypes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-322) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P,R, China.
| |
Collapse
|
36
|
Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 2014; 19 Pt B:198-205. [PMID: 24732436 DOI: 10.1016/j.mito.2014.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 11/24/2022]
Abstract
Cytoplasmic male sterility and its fertility restoration via nuclear genes offer the possibility to understand the role of mitochondria during microsporogenesis. In most cases rearrangements in the mitochondrial DNA involving known mitochondrial genes as well as unknown sequences result in the creation of new chimeric open reading frames, which encode proteins containing transmembrane domains. So far, most of the CMS systems have been characterized via restriction fragment polymorphisms followed by transcript analysis. However, whole mitochondrial genome sequence analyses comparing male sterile and fertile cytoplasm open options for deeper insights into mitochondrial genome rearrangements. We more and more start to unravel how mitochondria are involved in triggering death of the male reproductive organs. Reduced levels of ATP accompanied by increased concentrations of reactive oxygen species, which are produced more under conditions of mitochondrial dysfunction, seem to play a major role in the fate of pollen production. Nuclear genes, so called restorer-of-fertility are able to restore the male fertility. Fertility restoration can occur via pentatricopeptide repeat (PPR) proteins or via different mechanisms involving non-PPR proteins.
Collapse
|
37
|
Araújo WL, Nunes-Nesi A, Fernie AR. On the role of plant mitochondrial metabolism and its impact on photosynthesis in both optimal and sub-optimal growth conditions. PHOTOSYNTHESIS RESEARCH 2014; 119:141-156. [PMID: 23456269 DOI: 10.1007/s11120-013-9807-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/18/2013] [Indexed: 06/01/2023]
Abstract
Given that the pathways of photosynthesis and respiration catalyze partially opposing processes, it follows that their relative activities must be carefully regulated within plant cells. Recent evidence has shown that the components of the mitochondrial electron transport chain are essential for the proper maintenance of intracellular redox gradients, to allow considerable rates of photorespiration and in turn efficient photosynthesis. Thus considerable advances have been made in understanding the interaction between respiration and photosynthesis during the last decades and the potential mechanisms linking mitochondrial function and photosynthetic efficiency will be reviewed. Despite the fact that manipulation of various steps of mitochondrial metabolism has been demonstrated to alter photosynthesis under optimal growth conditions, it is likely that these changes will, by and large, not be maintained under sub-optimal situations. Therefore producing plants to meet this aim remains a critical challenge. It is clear, however, that although there have been a range of studies analysing changes in respiratory and photosynthetic rates in response to light, temperature and CO2, our knowledge of the environmental impact on these processes and its linkage still remains fragmented. We will also discuss the metabolic changes associated to plant respiration and photosynthesis as important components of the survival strategy as they considerably extend the period that a plant can withstand to a stress situation.
Collapse
Affiliation(s)
- Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | |
Collapse
|
38
|
Noyszewski AK, Ghavami F, Alnemer LM, Soltani A, Gu YQ, Huo N, Meinhardt S, Kianian PMA, Kianian SF. Accelerated evolution of the mitochondrial genome in an alloplasmic line of durum wheat. BMC Genomics 2014; 15:67. [PMID: 24460856 PMCID: PMC3942274 DOI: 10.1186/1471-2164-15-67] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 01/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheat is an excellent plant species for nuclear mitochondrial interaction studies due to availability of large collection of alloplasmic lines. These lines exhibit different vegetative and physiological properties than their parents. To investigate the level of sequence changes introduced into the mitochondrial genome under the alloplasmic condition, three mitochondrial genomes of the Triticum-Aegilops species were sequenced: 1) durum alloplasmic line with the Ae. longissima cytoplasm that carries the T. turgidum nucleus designated as (lo) durum, 2) the cytoplasmic donor line, and 3) the nuclear donor line. RESULTS The mitochondrial genome of the T. turgidum was 451,678 bp in length with high structural and nucleotide identity to the previously characterized T. aestivum genome. The assembled mitochondrial genome of the (lo) durum and the Ae. longissima were 431,959 bp and 399,005 bp in size, respectively. The high sequence coverage for all three genomes allowed analysis of heteroplasmy within each genome. The mitochondrial genome structure in the alloplasmic line was genetically distant from both maternal and paternal genomes. The alloplasmic durum and the Ae. longissima carry the same versions of atp6, nad6, rps19-p, cob and cox2 exon 2 which are different from the T. turgidum parent. Evidence of paternal leakage was also observed by analyzing nad9 and orf359 among all three lines. Nucleotide search identified a number of open reading frames, of which 27 were specific to the (lo) durum line. CONCLUSIONS Several heteroplasmic regions were observed within genes and intergenic regions of the mitochondrial genomes of all three lines. The number of rearrangements and nucleotide changes in the mitochondrial genome of the alloplasmic line that have occurred in less than half a century was significant considering the high sequence conservation between the T. turgidum and the T. aestivum that diverged from each other 10,000 years ago. We showed that the changes in genes were not limited to paternal leakage but were sufficiently significant to suggest that other mechanisms, such as recombination and mutation, were responsible. The newly formed ORFs, differences in gene sequences and copy numbers, heteroplasmy, and substoichiometric changes show the potential of the alloplasmic condition to accelerate evolution towards forming new mitochondrial genomes.
Collapse
|
39
|
Okazaki M, Kazama T, Murata H, Motomura K, Toriyama K. Whole mitochondrial genome sequencing and transcriptional analysis to uncover an RT102-type cytoplasmic male sterility-associated candidate Gene Derived from Oryza rufipogon. PLANT & CELL PHYSIOLOGY 2013; 54:1560-8. [PMID: 23852329 DOI: 10.1093/pcp/pct102] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytoplasmic male sterility (CMS) is a maternally inherited trait in which plants fail to produce functional pollen and is associated with the expression of a novel open reading frame (orf) gene encoded by the mitochondrial genome. An RT102A CMS line and an RT102C fertility restorer line were obtained by successive backcrossing between Oryza rufipogon W1125 and O. sativa Taichung 65. Using next-generation pyrosequencing, we determined whole-genome sequences of the mitochondria in RT102-CMS cytoplasm. To identify candidates for the CMS-associated gene in RT102 mitochondria, we screened the mitochondrial genome for the presence of specific orf genes that were chimeric or whose products carried predicted transmembrane domains. One of these orf genes, orf352, which showed different transcript sizes depending on whether the restorer of fertility (Rf) gene was present or not, was identified. The orf352 gene was co-transcribed with the ribosomal protein gene rpl5, and the 2.8 kb rpl5-orf352 transcripts were processed into 2.6 kb transcripts with a cleavage at the inside of the orf352 coding region in the presence of the Rf gene. The orf352 gene is an excellent candidate for the CMS-associated gene for RT102-CMS.
Collapse
Affiliation(s)
- Masayuki Okazaki
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, 981-8555 Japan
| | | | | | | | | |
Collapse
|
40
|
Park JY, Lee YP, Lee J, Choi BS, Kim S, Yang TJ. Complete mitochondrial genome sequence and identification of a candidate gene responsible for cytoplasmic male sterility in radish (Raphanus sativus L.) containing DCGMS cytoplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1763-74. [PMID: 23539087 DOI: 10.1007/s00122-013-2090-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 03/19/2013] [Indexed: 05/03/2023]
Abstract
A novel cytoplasmic male sterility (CMS) conferred by Dongbu cytoplasmic and genic male-sterility (DCGMS) cytoplasm and its restorer-of-fertility gene (Rfd1) was previously reported in radish (Raphanus sativus L.). Its inheritance of fertility restoration and profiles of mitochondrial DNA (mtDNA)-based molecular markers were reported to be different from those of Ogura CMS, the first reported CMS in radish. The complete mitochondrial genome sequence (239,186 bp; GenBank accession No. KC193578) of DCGMS mitotype is reported in this study. Thirty-four protein-coding genes and three ribosomal RNA genes were identified. Comparative analysis of a mitochondrial genome sequence of DCGMS and previously reported complete sequences of normal and Ogura CMS mitotypes revealed various recombined structures of seventeen syntenic sequence blocks. Short-repeat sequences were identified in almost all junctions between syntenic sequence blocks. Phylogenetic analysis of three radish mitotypes showed that DCGMS was more closely related to the normal mitotype than to the Ogura mitotype. A single 1,551-bp unique region was identified in DCGMS mtDNA sequences and a novel chimeric gene, designated orf463, consisting of 128-bp partial sequences of cox1 gene and 1,261-bp unidentified sequences were found in the unique region. No other genes with a chimeric structure, a major feature of most characterized CMS-associated genes in other plant species, were found in rearranged junctions of syntenic sequence blocks. Like other known CMS-associated mitochondrial genes, the predicted gene product of orf463 contained 12 transmembrane domains. Thus, this gene product might be integrated into the mitochondrial membrane. In total, the results indicate that orf463 is likely to be a casual factor for CMS induction in radish containing the DCGMS cytoplasm.
Collapse
Affiliation(s)
- Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | |
Collapse
|
41
|
Tuteja R, Saxena RK, Davila J, Shah T, Chen W, Xiao YL, Fan G, Saxena KB, Alverson AJ, Spillane C, Town C, Varshney RK. Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes. DNA Res 2013; 20:485-95. [PMID: 23792890 PMCID: PMC3789559 DOI: 10.1093/dnares/dst025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The hybrid pigeonpea (Cajanus cajan) breeding technology based on cytoplasmic male sterility (CMS) is currently unique among legumes and displays major potential for yield increase. CMS is defined as a condition in which a plant is unable to produce functional pollen grains. The novel chimeric open reading frames (ORFs) produced as a results of mitochondrial genome rearrangements are considered to be the main cause of CMS. To identify these CMS-related ORFs in pigeonpea, we sequenced the mitochondrial genomes of three C. cajan lines (the male-sterile line ICPA 2039, the maintainer line ICPB 2039, and the hybrid line ICPH 2433) and of the wild relative (Cajanus cajanifolius ICPW 29). A single, circular-mapping molecule of length 545.7 kb was assembled and annotated for the ICPA 2039 line. Sequence annotation predicted 51 genes, including 34 protein-coding and 17 RNA genes. Comparison of the mitochondrial genomes from different Cajanus genotypes identified 31 ORFs, which differ between lines within which CMS is present or absent. Among these chimeric ORFs, 13 were identified by comparison of the related male-sterile and maintainer lines. These ORFs display features that are known to trigger CMS in other plant species and to represent the most promising candidates for CMS-related mitochondrial rearrangements in pigeonpea.
Collapse
Affiliation(s)
- Reetu Tuteja
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Rachit K. Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Jaime Davila
- Center for Plant Science Innovation, University of Nebraska, Lincoln, USA
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, USA
| | - Trushar Shah
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Wenbin Chen
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Yong-Li Xiao
- J. Craig Venter Institute (JCVI), Rockville, USA
| | - Guangyi Fan
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - K. B. Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Andrew J. Alverson
- Department of Biological Sciences, University of Arkansas, Arkansas, USA
| | - Charles Spillane
- Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- To whom correspondence should be addressed. Tel. +914030713305. Fax. +914030713071. E-mail:
| |
Collapse
|
42
|
Liu C, Ma N, Wang PY, Fu N, Shen HL. Transcriptome sequencing and de novo analysis of a cytoplasmic male sterile line and its near-isogenic restorer line in chili pepper (Capsicum annuum L.). PLoS One 2013; 8:e65209. [PMID: 23750245 PMCID: PMC3672106 DOI: 10.1371/journal.pone.0065209] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 04/23/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The use of cytoplasmic male sterility (CMS) in F1 hybrid seed production of chili pepper is increasingly popular. However, the molecular mechanisms of cytoplasmic male sterility and fertility restoration remain poorly understood due to limited transcriptomic and genomic data. Therefore, we analyzed the difference between a CMS line 121A and its near-isogenic restorer line 121C in transcriptome level using next generation sequencing technology (NGS), aiming to find out critical genes and pathways associated with the male sterility. RESULTS We generated approximately 53 million sequencing reads and assembled de novo, yielding 85,144 high quality unigenes with an average length of 643 bp. Among these unigenes, 27,191 were identified as putative homologs of annotated sequences in the public protein databases, 4,326 and 7,061 unigenes were found to be highly abundant in lines 121A and 121C, respectively. Many of the differentially expressed unigenes represent a set of potential candidate genes associated with the formation or abortion of pollen. CONCLUSIONS Our study profiled anther transcriptomes of a chili pepper CMS line and its restorer line. The results shed the lights on the occurrence and recovery of the disturbances in nuclear-mitochondrial interaction and provide clues for further investigations.
Collapse
Affiliation(s)
- Chen Liu
- China Agricultural University, Beijing, China
| | - Ning Ma
- China Agricultural University, Beijing, China
| | | | - Nan Fu
- China Agricultural University, Beijing, China
| | | |
Collapse
|
43
|
Wang K, Peng X, Ji Y, Yang P, Zhu Y, Li S. Gene, protein, and network of male sterility in rice. FRONTIERS IN PLANT SCIENCE 2013; 4:92. [PMID: 23596452 PMCID: PMC3622893 DOI: 10.3389/fpls.2013.00092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/26/2013] [Indexed: 05/18/2023]
Abstract
Rice is one of the most important model crop plants whose heterosis has been well-exploited in commercial hybrid seed production via a variety of types of male-sterile lines. Hybrid rice cultivation area is steadily expanding around the world, especially in Southern Asia. Characterization of genes and proteins related to male sterility aims to understand how and why the male sterility occurs, and which proteins are the key players for microspores abortion. Recently, a series of genes and proteins related to cytoplasmic male sterility (CMS), photoperiod-sensitive male sterility, self-incompatibility, and other types of microspores deterioration have been characterized through genetics or proteomics. Especially the latter, offers us a powerful and high throughput approach to discern the novel proteins involving in male-sterile pathways which may help us to breed artificial male-sterile system. This represents an alternative tool to meet the critical challenge of further development of hybrid rice. In this paper, we reviewed the recent developments in our understanding of male sterility in rice hybrid production across gene, protein, and integrated network levels, and also, present a perspective on the engineering of male-sterile lines for hybrid rice production.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, People's Republic of China
| | - Xiaojue Peng
- Key Laboratory of Molecular Biology and Gene Engineering, College of Life Science, Nanchang UniversityNanchang, People's Republic of China
| | - Yanxiao Ji
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, People's Republic of China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| |
Collapse
|
44
|
Müller K, Storchova H. Transcription of atp1 is influenced by both genomic configuration and nuclear background in the highly rearranged mitochondrial genomes of Silene vulgaris. PLANT MOLECULAR BIOLOGY 2013; 81:495-505. [PMID: 23361622 DOI: 10.1007/s11103-013-0018-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/19/2013] [Indexed: 06/01/2023]
Abstract
An extraordinary variation in mitochondrial DNA sequence exists in angiosperm Silene vulgaris. The atp1 gene is flanked by very variable regions, as deduced from four completely sequenced mitochondrial genomes of this species. This diversity contributed to a highly variable transcript profile of this gene observed across S. vulgaris populations. We examined the atp1 transcript in the KOV mitochondrial genome and found three 5' ends, created most likely by the combination of transcription initiation and RNA processing. Most atp1 transcripts terminated about 70 bp upstream of the translation stop codon, which was present in only 10 % of them. Controlled crosses between a KOV mother and a geographically distant pollen donor (Krasnoyarsk, Russia) showed that nuclear background also affected atp1 transcription. The distant pollen donor introduced the factor(s) preventing the formation of a long 2,100 nt-transcript, because this long atp1 transcript reappeared in the progeny from self-crosses. The highly rearranged mitochondrial genomes with a variation in gene flanking regions make S. vulgaris an excellent model for the study of mitochondrial gene expression in plants.
Collapse
Affiliation(s)
- Karel Müller
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Lysolaje, 16502, Czech Republic
| | | |
Collapse
|
45
|
Igarashi K, Kazama T, Motomura K, Toriyama K. Whole genomic sequencing of RT98 mitochondria derived from Oryza rufipogon and northern blot analysis to uncover a cytoplasmic male sterility-associated gene. PLANT & CELL PHYSIOLOGY 2013; 54:237-43. [PMID: 23248202 DOI: 10.1093/pcp/pcs177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cytoplasmic male sterility (CMS) is a maternally inherited trait resulting in the failure to produce functional pollen and is often observed when an alien cytoplasm is transferred into a cultivated species. An RT98A CMS line and an RT98C fertility restorer line were obtained by successive backcrossing between Oryza rufipogon W1109 and Oryza sativa cultivar Taichung 65. To uncover the CMS-associated mitochondrial genes, we determined the complete sequence of the RT98-CMS mitochondrial genome using next-generation pyrosequencing, and searched new open reading frames (orfs) absent in a reported mitochondrial genome of O. sativa Nipponbare. Then, six candidates were selected for the CMS-associated genes based on the criteria in which they were chimeric in structure or encoded a peptide with transmembrane domains. One of the candidates, orf113, showed different transcript sizes between RT98A and RT98C on Northern blot analysis. The orf113 gene was shown to be co-transcribed with atp4 and cox3 encoding ATP synthase F0 subunit 4 and Cyt c oxidase subunit 3, respectively, and their transcripts were distinctly processed in the presence of a fertility restorer gene. Our results indicate that orf113 is a CMS-associated gene of RT98-CMS.
Collapse
Affiliation(s)
- Keisuke Igarashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
46
|
Toda T, Toriyama K. Re-sequencing of mitochondrial genes in a standard rice cultivar Nipponbare. RICE (NEW YORK, N.Y.) 2013; 6:2. [PMID: 24280589 PMCID: PMC5394982 DOI: 10.1186/1939-8433-6-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/28/2012] [Indexed: 06/02/2023]
Abstract
BACKGROUND Genomic sequence of a rice cultivar Nipponbare has been often used as a reference sequence since a whole-genomic sequence was first determined in 2005 by the International Rice Genome Sequencing Project. As for mitochondrial genomic sequence of Nipponbare, two groups have deposited their sequences into DDBJ/EMBL/GenBank under the accession numbers BA000029 and DQ167400. However, there are 19 discrepancies in the nucleotide sequences of 7 genes between BA000029 and DQ167400. FINDINGS We performed PCR to amplify these 7 genes and to perform direct sequencing. Nucleotides of the discrepant sites were all identical to those in DQ167400.1. The sequence in BA000029.3 is thought to contain sequencing errors. CONCLUSION Nucleotide sequences of the mitochondrial genes in BA000029.3 need to be updated using the data in this study when used as a reference genome.
Collapse
Affiliation(s)
- Takushi Toda
- Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555 Japan
| | - Kinya Toriyama
- Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555 Japan
| |
Collapse
|
47
|
Sloan DB, Müller K, McCauley DE, Taylor DR, Štorchová H. Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. THE NEW PHYTOLOGIST 2012; 196:1228-1239. [PMID: 23009072 DOI: 10.1111/j.1469-8137.2012.04340.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/17/2012] [Indexed: 05/04/2023]
Abstract
In angiosperms, mitochondrial-encoded genes can cause cytoplasmic male sterility (CMS), resulting in the coexistence of female and hermaphroditic individuals (gynodioecy). We compared four complete mitochondrial genomes from the gynodioecious species Silene vulgaris and found unprecedented amounts of intraspecific diversity for plant mitochondrial DNA (mtDNA). Remarkably, only about half of overall sequence content is shared between any pair of genomes. The four mtDNAs range in size from 361 to 429 kb and differ in gene complement, with rpl5 and rps13 being intact in some genomes but absent or pseudogenized in others. The genomes exhibit essentially no conservation of synteny and are highly repetitive, with evidence of reciprocal recombination occurring even across short repeats (< 250 bp). Some mitochondrial genes exhibit atypically high degrees of nucleotide polymorphism, while others are invariant. The genomes also contain a variable number of small autonomously mapping chromosomes, which have only recently been identified in angiosperm mtDNA. Southern blot analysis of one of these chromosomes indicated a complex in vivo structure consisting of both monomeric circles and multimeric forms. We conclude that S. vulgaris harbors an unusually large degree of variation in mtDNA sequence and structure and discuss the extent to which this variation might be related to CMS.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Karel Müller
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Lysolaje, 16502, Czech Republic
| | - David E McCauley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Douglas R Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Helena Štorchová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Lysolaje, 16502, Czech Republic
| |
Collapse
|
48
|
Comparative transcript profiling of a male sterile cybrid pummelo and its fertile type revealed altered gene expression related to flower development. PLoS One 2012; 7:e43758. [PMID: 22952758 PMCID: PMC3429507 DOI: 10.1371/journal.pone.0043758] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/25/2012] [Indexed: 11/19/2022] Open
Abstract
Male sterile and seedless characters are highly desired for citrus cultivar improvement. In our breeding program, a male sterile cybrid pummelo, which could be considered as a variant of male fertile pummelo, was produced by protoplast fusion. Herein, ecotopic stamen primordia initiation and development were detected in this male sterile cybrid pummelo. Histological studies revealed that the cybrid showed reduced petal development in size and width, and retarded stamen primordia development. Additionally, disorganized cell proliferation was also detected in stamen-like structures (fused to petals and/or carpel). To gain new insight into the underlying mechanism, we compared, by RNA-Seq analysis, the nuclear gene expression profiles of floral buds of the cybrid with that of fertile pummelo. Gene expression profiles which identified a large number of differentially expressed genes (DEGs) between the two lines were captured at both petal primordia and stamen primordia distinguishable stages. For example, nuclear genes involved in nucleic acid binding and response to hormone synthesis and metabolism, genes required for floral bud identification and expressed in particular floral whorls. Furthermore, in accordance with flower morphology of the cybrid, expression of PISTILLATA (PI) was reduced in stamen-like structures, even though it was restricted to correct floral whorls. Down-regulated expression of APETALA3 (AP3) coincided with that of PI. These finding indicated that, due to their whorl specific effects in flower development, citrus class-B MADS-box genes likely constituted ‘perfect targets’ for CMS retrograde signaling, and that dysfunctional mitochondria seemed to cause male sterile phenotype in the cybrid pummelo.
Collapse
|
49
|
RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing. Proc Natl Acad Sci U S A 2012; 109:E1453-61. [PMID: 22566615 DOI: 10.1073/pnas.1121465109] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcripts of plant organelle genes are modified by cytidine-to-uridine (C-to-U) RNA editing, often changing the encoded amino acid predicted from the DNA sequence. Members of the PLS subclass of the pentatricopeptide repeat (PPR) motif-containing family are site-specific recognition factors for either chloroplast or mitochondrial C targets of editing. However, other than PPR proteins and the cis-elements on the organelle transcripts, no other components of the editing machinery in either organelle have previously been identified. The Arabidopsis chloroplast PPR protein Required for AccD RNA Editing 1 (RARE1) specifies editing of a C in the accD transcript. RARE1 was detected in a complex of >200 kDa. We immunoprecipitated epitope-tagged RARE1, and tandem MS/MS analysis identified a protein of unknown function lacking PPR motifs; we named it RNA-editing factor interacting protein 1 (RIP1). Yeast two-hybrid analysis confirmed RIP1 interaction with RARE1, and RIP1-GFP fusions were found in both chloroplasts and mitochondria. Editing assays for all 34 known Arabidopsis chloroplast targets in a rip1 mutant revealed altered efficiency of 14 editing events. In mitochondria, 266 editing events were found to have reduced efficiency, with major loss of editing at 108 C targets. Virus-induced gene silencing of RIP1 confirmed the altered editing efficiency. Transient introduction of a WT RIP1 allele into rip1 improved the defective RNA editing. The presence of RIP1 in a protein complex along with chloroplast editing factor RARE1 indicates that RIP1 is an important component of the RNA editing apparatus that acts on many chloroplast and mitochondrial C targets.
Collapse
|