1
|
Chen Y, Zhang H, Chen W, Gao Y, Xu K, Sun X, Huo L. The role of ethylene in the regulation of plant response mechanisms to waterlogging stress. PLANT CELL REPORTS 2024; 43:278. [PMID: 39531178 DOI: 10.1007/s00299-024-03367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Waterlogging stands as a common environmental challenge, significantly affecting plant growth, yield, and, in severe cases, survival. In response to waterlogging stress, plants exhibit a series of intricate physiologic, metabolic, and morphologic adaptations. Notably, the gaseous phytohormone ethylene is rapidly accumulated in the plant submerged tissues, assuming an important regulatory factor in plant-waterlogging tolerance. In this review, we summarize recent advances in research on the mechanisms of ethylene in the regulation of plant responses to waterlogging stress. Recent advances found that both ethylene biosynthesis and signal transduction make indispensable contributions to modulating plant adaptation mechanisms to waterlogged condition. Ethylene was also discovered to play an important role in plant physiologic metabolic responses to waterlogging stress, including the energy mechanism, morphologic adaptation, ROS regulation and interactions with other phytohormones. The comprehensive exploration of ethylene and its associated genes provides valuable insights into the precise strategies to leverage ethylene metabolism for enhancing plant resistance to waterlogging stress.
Collapse
Affiliation(s)
- Yunyun Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Hao Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Wenxin Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yongbin Gao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Liuqing Huo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
2
|
Zhou L, Li X, Hao S, Hong L, Chen L, Li QQ. Distinct molecular responses of mangrove plants to hypoxia and reoxygenation stresses contribute to their resilience in coastal wetland environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177357. [PMID: 39500460 DOI: 10.1016/j.scitotenv.2024.177357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/10/2024]
Abstract
Mangroves adapt to periodical submergence and constitute resilient ecosystems in coastal environments. The question is whether they can sustain long submergence stress when sea level rises as a consequence of climate change. To address this, seedlings of two representative mangrove species that acclimate to low to mid tide (Avicennia marina) and mid to high tide (Kandelia obovata) conditions were treated with continual submergence for 7 days as extended hypoxia, or semi-diurnal cyclic submergence and reoxygenation for 7 days. At specific time points, leaves were collected to construct RNA-Sequencing libraries for gene expression analysis. Through the lens of transcriptome, the initial response of A. marina to submergence was mild but more dramatic after prolong immersion. However, the initial response of K. obovata was drastic and reduced in latitude later, suggesting distinct species-specific responses. After adapting to diurnal cycles, both species minimized transcriptome fluctuations similarly. Metabolically, during initial response, sucrose and starch were converted into glucose for fermentation to increase glycolytic flux, coupled with regeneration of NAD+. The energy amelioration was accompanied by longer term phytohormone regulations where ethylene signal transduction pathway was enhanced, but abscisic acid biosynthesis was reduced. Notably, gibberellic acids biosynthesis increased in A. marina but decreased in K. obovata as a unique feature. Genomic level analysis indicated that only about 30 % of the conserved plant submergence responsive genes were expressed during submergence in these mangroves. The function of an ethylene responsive gene was validated in transgenic Arabidopsis. This research elucidates distinct molecular mechanisms and metabolic pathways that empower A. marina and K. obovata to endure prolonged submergence and hypoxia. By highlighting their unique adaptive strategies in response to rising sea levels, these findings enhance our understanding of mangrove resilience and provide insights for the conservation and management of these essential coastal ecosystems in the face of climate change.
Collapse
Affiliation(s)
- Lichun Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Saiqi Hao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Liwei Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Luzhen Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
3
|
Jiang Z, Yao L, Zhu X, Hao G, Ding Y, Zhao H, Wang S, Wen CK, Xu X, Xin XF. Ethylene signaling modulates air humidity responses in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:653-668. [PMID: 37997486 DOI: 10.1111/tpj.16556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Air humidity significantly impacts plant physiology. However, the upstream elements that mediate humidity sensing and adaptive responses in plants remain largely unexplored. In this study, we define high humidity-induced cellular features of Arabidopsis plants and take a quantitative phosphoproteomics approach to obtain a high humidity-responsive landscape of membrane proteins, which we reason are likely the early checkpoints of humidity signaling. We found that a brief high humidity exposure (i.e., 0.5 h) is sufficient to trigger extensive changes in membrane protein abundance and phosphorylation. Enrichment analysis of differentially regulated proteins reveals high humidity-sensitive processes such as 'transmembrane transport', 'response to abscisic acid', and 'stomatal movement'. We further performed a targeted screen of mutants, in which high humidity-responsive pathways/proteins are disabled, to uncover genes mediating high humidity sensitivity. Interestingly, ethylene pathway mutants (i.e., ein2 and ein3eil1) display a range of altered responses, including hyponasty, reactive oxygen species level, and responsive gene expression, to high humidity. Furthermore, we observed a rapid induction of ethylene biosynthesis genes and ethylene evolution after high humidity treatment. Our study sheds light on the potential early signaling events in humidity perception, a fundamental but understudied question in plant biology, and reveals ethylene as a key modulator of high humidity responses in plants.
Collapse
Affiliation(s)
- Zeyu Jiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingya Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangmei Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanxia Ding
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hangwei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences (CAS) and CAS John Innes Centre of Excellence for Plant and Microbial Sciences, Shanghai, China
| |
Collapse
|
4
|
Yin CC, Huang YH, Zhang X, Zhou Y, Chen SY, Zhang JS. Ethylene-mediated regulation of coleoptile elongation in rice seedlings. PLANT, CELL & ENVIRONMENT 2023; 46:1060-1074. [PMID: 36397123 DOI: 10.1111/pce.14492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Rice is an important food crop in the world and the study of its growth and plasticity has a profound influence on sustainable development. Ethylene modulates multiple agronomic traits of rice as well as abiotic and biotic stresses during its lifecycle. It has diverse roles, depending on the organs, developmental stages and environmental conditions. Compared to Arabidopsis (Arabidopsis thaliana), rice ethylene signalling pathway has its own unique features due to its special semiaquatic living environment and distinct plant structure. Ethylene signalling and responses are part of an intricate network in crosstalk with internal and external factors. This review will summarize the current progress in the mechanisms of ethylene-regulated coleoptile growth in rice, with a special focus on ethylene signaling and interaction with other hormones. Insights into these molecular mechanisms may shed light on ethylene biology and should be beneficial for the genetic improvement of rice and other crops.
Collapse
Affiliation(s)
- Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Yi-Hua Huang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Xun Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Liu Z, Hartman S, van Veen H, Zhang H, Leeggangers HACF, Martopawiro S, Bosman F, de Deugd F, Su P, Hummel M, Rankenberg T, Hassall KL, Bailey-Serres J, Theodoulou FL, Voesenek LACJ, Sasidharan R. Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration. PLANT PHYSIOLOGY 2022; 190:1365-1383. [PMID: 35640551 PMCID: PMC9516759 DOI: 10.1093/plphys/kiac245] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/29/2022] [Indexed: 05/20/2023]
Abstract
Flooded plants experience impaired gas diffusion underwater, leading to oxygen deprivation (hypoxia). The volatile plant hormone ethylene is rapidly trapped in submerged plant cells and is instrumental for enhanced hypoxia acclimation. However, the precise mechanisms underpinning ethylene-enhanced hypoxia survival remain unclear. We studied the effect of ethylene pretreatment on hypoxia survival of Arabidopsis (Arabidopsis thaliana) primary root tips. Both hypoxia itself and re-oxygenation following hypoxia are highly damaging to root tip cells, and ethylene pretreatments reduced this damage. Ethylene pretreatment alone altered the abundance of transcripts and proteins involved in hypoxia responses, root growth, translation, and reactive oxygen species (ROS) homeostasis. Through imaging and manipulating ROS abundance in planta, we demonstrated that ethylene limited excessive ROS formation during hypoxia and subsequent re-oxygenation and improved oxidative stress survival in a PHYTOGLOBIN1-dependent manner. In addition, we showed that root growth cessation via ethylene and auxin occurred rapidly and that this quiescence behavior contributed to enhanced hypoxia tolerance. Collectively, our results show that the early flooding signal ethylene modulates a variety of processes that all contribute to hypoxia survival.
Collapse
Affiliation(s)
| | | | | | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Hendrika A C F Leeggangers
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Shanice Martopawiro
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Femke Bosman
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Florian de Deugd
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Peng Su
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Maureen Hummel
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Tom Rankenberg
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Kirsty L Hassall
- Intelligent Data Ecosystems, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Julia Bailey-Serres
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | | | - Laurentius A C J Voesenek
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | | |
Collapse
|
6
|
Ethylene Signaling under Stressful Environments: Analyzing Collaborative Knowledge. PLANTS 2022; 11:plants11172211. [PMID: 36079592 PMCID: PMC9460115 DOI: 10.3390/plants11172211] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Ethylene is a gaseous plant growth hormone that regulates various plant developmental processes, ranging from seed germination to senescence. The mechanisms underlying ethylene biosynthesis and signaling involve multistep mechanisms representing different control levels to regulate its production and response. Ethylene is an established phytohormone that displays various signaling processes under environmental stress in plants. Such environmental stresses trigger ethylene biosynthesis/action, which influences the growth and development of plants and opens new windows for future crop improvement. This review summarizes the current understanding of how environmental stress influences plants’ ethylene biosynthesis, signaling, and response. The review focuses on (a) ethylene biosynthesis and signaling in plants, (b) the influence of environmental stress on ethylene biosynthesis, (c) regulation of ethylene signaling for stress acclimation, (d) potential mechanisms underlying the ethylene-mediated stress tolerance in plants, and (e) summarizing ethylene formation under stress and its mechanism of action.
Collapse
|
7
|
Changes in Ethylene, ABA and Sugars Regulate Freezing Tolerance under Low-Temperature Waterlogging in Lolium perenne. Int J Mol Sci 2021; 22:ijms22136700. [PMID: 34206693 PMCID: PMC8268127 DOI: 10.3390/ijms22136700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/02/2022] Open
Abstract
Plant overwintering may be affected in the future by climate change. Low-temperature waterlogging, associated with a predicted increase in rainfall during autumn and winter, can affect freezing tolerance, which is the main component of winter hardiness. The aim of this study was to elucidate the mechanism of change in freezing tolerance caused by low-temperature waterlogging in Lolium perenne, a cool-season grass that is well adapted to a cold climate. The work included: (i) a freezing tolerance test (plant regrowth after freezing); (ii) analysis of plant phytohormones production (abscisic acid [ABA] content and ethylene emission); (iii) measurement of leaf water content and stomatal conductance; (iv) carbohydrate analysis; and (v) analysis of Aco1, ABF2, and FT1 transcript accumulation. Freezing tolerance may be improved as a result of cold waterlogging. The mechanism of this change is reliant on multifaceted actions of phytohormones and carbohydrates, whereas ethylene may counteract ABA signaling. The regulation of senescence processes triggered by concerted action of phytohormones and glucose signaling may be an essential component of this mechanism.
Collapse
|
8
|
Hartman S, Sasidharan R, Voesenek LACJ. The role of ethylene in metabolic acclimations to low oxygen. THE NEW PHYTOLOGIST 2021; 229:64-70. [PMID: 31856295 PMCID: PMC7754284 DOI: 10.1111/nph.16378] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/06/2019] [Indexed: 05/20/2023]
Abstract
Submerged plants ultimately suffer from shortage in cellular oxygen availability (hypoxia) as a result of impaired gas diffusion underwater. The gaseous plant hormone ethylene is rapidly entrapped in submerged plant tissues and is an established regulator of morphological and anatomical flood-adaptive responses. Multiple recent discoveries suggest that ethylene also plays a crucial role in hypoxia anticipation and metabolic acclimation during plant submergence. Ethylene was shown to accelerate and enhance the hypoxic response through enhanced stability of specific transcription factors (group VII ethylene response factors). Moreover, we suggest that ethylene could play an important role in the induction of autophagy and promote reactive oxygen species amelioration, thereby contributing to enhanced survival during flooding, hypoxia, and reoxygenation stress.
Collapse
Affiliation(s)
- Sjon Hartman
- Plant EcophysiologyInstitute of Environmental BiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Rashmi Sasidharan
- Plant EcophysiologyInstitute of Environmental BiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | | |
Collapse
|
9
|
Puértolas J, Pardos M, de Ollas C, Albacete A, Dodd IC. Soil moisture heterogeneity regulates water use in Populus nigra L. by altering root and xylem sap phytohormone concentrations. TREE PHYSIOLOGY 2020; 40:762-773. [PMID: 32193548 DOI: 10.1093/treephys/tpaa037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Soil moisture heterogeneity in the root zone is common both during the establishment of tree seedlings and in experiments aiming to impose semi-constant soil moisture deficits, but its effects on regulating plant water use compared with homogenous soil drying are not well known in trees. Pronounced vertical soil moisture heterogeneity was imposed on black poplar (Populus nigra L.) grown in soil columns by altering irrigation frequency, to test whether plant water use, hydraulic responses, root phytohormone concentrations and root xylem sap chemical composition differed between wet (well-watered, WW), and homogeneously (infrequent deficit irrigation, IDI) and heterogeneously dry soil (frequent deficit irrigation, FDI). At the same bulk soil water content, FDI plants had greater water use than IDI plants, probably because root abscisic acid (ABA) concentration was low in the upper wetter layer of FDI plants, which maintained root xylem sap ABA concentration at basal levels in contrast with IDI. Soil drying did not increase root xylem concentration of any other hormone. Nevertheless, plant-to-plant variation in xylem jasmonic acid (JA) concentration was negatively related to leaf stomatal conductance within WW and FDI plants. However, feeding detached leaves with high (1200 nM) JA concentrations via the transpiration stream decreased transpiration only marginally. Xylem pH and sulphate concentration decreased in FDI plants compared with well-watered plants. Frequent deficit irrigation increased root accumulation of the cytokinin trans-zeatin (tZ), especially in the dry lower layer, and of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), in the wet upper soil layer. Root hormone accumulation might explain the maintenance of high root hydraulic conductance and water use in FDI plants (similar to well-watered plants) compared with IDI plants. In irrigated tree crops, growers could vary irrigation scheduling to control water use by altering the hormone balance.
Collapse
Affiliation(s)
- Jaime Puértolas
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Marta Pardos
- Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación Agraria y Alimentaria (INIA), Crta A Coruña s/n, Madrid E-28040, Spain
| | - Carlos de Ollas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, Castelló de la Plana E-12071, Spain
| | - Alfonso Albacete
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Nacional de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Espinardo, Murcia E-30100, Spain
- Departamento de Producción Vegetal y Agrotecnologýa, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), C/Mayor s/n, La Alberca, Murcia E-30150, Spain
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
10
|
Wang X, Ma Q, Wang R, Wang P, Liu Y, Mao T. Submergence stress-induced hypocotyl elongation through ethylene signaling-mediated regulation of cortical microtubules in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1067-1077. [PMID: 31638649 DOI: 10.1093/jxb/erz453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/29/2019] [Indexed: 05/21/2023]
Abstract
Plant growth is significantly altered in response to submergence stress. However, the molecular mechanisms used by seedlings in response to this stress, especially for hypocotyl growth, are largely unknown in terrestrial plants such as Arabidopsis thaliana. The microtubule cytoskeleton participates in plant cell growth, but it remains unclear whether submergence-mediated plant growth involves the microtubule cytoskeleton. We demonstrated that in Arabidopsis submergence induced underwater hypocotyl elongation through the activation of ethylene signaling, which modulated cortical microtubule reorganization. Submergence enhanced ethylene signaling, which then activated and stabilized its downstream transcription factor, phytochrome-interacting factor 3 (PIF3), to promote hypocotyl elongation. In particular, the regulation of microtubule organization was important for this physiological process. Microtubule-destabilizing protein 60 (MDP60), which was previously identified as a downstream effector of PIF3, played a positive role in submergence-induced hypocotyl elongation. Submergence induced MDP60 expression through ethylene signaling. The effects of submergence on hypocotyl elongation and cortical microtubule reorganization were suppressed in mdp60 mutants. These data suggest a potential mechanism by which submergence activates ethylene signaling to promote underwater hypocotyl elongation via alteration of the microtubule cytoskeleton in Arabidopsis.
Collapse
Affiliation(s)
- Xiaohong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Ma
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ran Wang
- Zhengzhou Tabacco Research Institute, Zhengzhou, Henan, China
| | - Pan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yimin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Emerick K, Ronald PC. Sub1 Rice: Engineering Rice for Climate Change. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034637. [PMID: 31182543 DOI: 10.1101/cshperspect.a034637] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
By the year 2100, the number of people on Earth is expected to increase by ∼50%, placing increasing demands on food production in a time when a changing climate is predicted to compromise crop yields. Feeding this future world requires scientifically informed innovations in agriculture. Here, we describe how a rice gene conferring tolerance to prolonged submergence has helped farmers in South and Southeast Asia mitigate rice crop failure during floods. We discuss how planting of this new variety benefited socially disadvantaged groups. This example indicates that investment in agricultural improvement can protect farmers from risks associated with a changing climate.
Collapse
Affiliation(s)
- Kyle Emerick
- Department of Economics, Tufts University, Medford, Massachusetts 02155-6722
| | - Pamela C Ronald
- Department of Plant Pathology, College of Agricultural and Environmental Sciences Genome Center, University of California, Davis, California 95616
| |
Collapse
|
12
|
Yang X, Jansen MJ, Zhang Q, Sergeeva L, Ligterink W, Mariani C, Rieu I, Visser EJW. A disturbed auxin signaling affects adventitious root outgrowth in Solanum dulcamara under complete submergence. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:11-18. [PMID: 29574325 DOI: 10.1016/j.jplph.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 05/09/2023]
Abstract
Flooding negatively affects the growth and even survival of most terrestrial plants. Upon flooding, the excess water quickly decreases the gas exchange between atmosphere and the submerged plant tissues, which leads to oxygen deficiency resulting in a plant cell energy crisis, and eventually plant death. Solanum dulcamara survives flooding by producing aerenchymatous adventitious roots (ARs) from pre-formed primordia on the stem, which replace the original flood-sensitive root system. However, we found that under complete submergence, AR outgrowth was impaired in S. dulcamara. In the present work, we tried to elucidate the mechanisms behind this phenomenon in particular the involvement of the phytohormones auxin, abscisic acid and jasmonic acid. Abscisic acid (ABA) is a negative regulator of AR outgrowth, but surprisingly the ABA content and signaling were decreased to a similar extent under both partial and complete submergence, suggesting that ABA might not be responsible for the difference in AR outgrowth. Auxin, which is necessary for AR outgrowth, was at similar concentrations in either partially or completely submerged primordia, but complete submergence resulted in a decrease of auxin signaling in the primordia. Application of 1-naphthaleneacetic acid (NAA) to completely submerged plants restored AR outgrowth, implying that auxin response in the rooting tissues of completely submerged plants was reduced. Furthermore, jasmonic acid (JA) concentrations did not differ between partial and complete submergence. To conclude, a disruption in the auxin signaling within S. dulcamara AR primordia may result in the abortion of AR outgrowth under complete submergence.
Collapse
Affiliation(s)
- Xinping Yang
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands.
| | - Martijn J Jansen
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands
| | - Qian Zhang
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands
| | - Lidiya Sergeeva
- Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Wilco Ligterink
- Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Celestina Mariani
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands
| | - Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands
| | - Eric J W Visser
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands
| |
Collapse
|
13
|
Yin X, Komatsu S. Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress. J Proteomics 2017; 169:225-232. [PMID: 28137666 DOI: 10.1016/j.jprot.2017.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, which markedly reduces its growth and yield. Morphological and biochemical changes such as an increase of fresh weight and a decrease of ATP content happen in early-stage soybean at initial-flooding stress, indicating that soybean responses to flooding stress are keys for its survival and seedling growth. Phosphoproteomics and nuclear proteomics are useful tools to detect protein-phosphorylation status and to identify transcriptional factors. In the review, the effect of flooding on soybean response to initial flooding stress is discussed based on recent results of proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies. In addition, soybean survival under flooding stress, which is defined as tolerance mechanism, is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. BIOLOGICAL SIGNIFICANCE Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, especially soybean responses to initial flooding stress is key for its survival and seedling growth. Recently, proteomic techniques are applied to investigate the response and tolerant mechanisms of soybean at initial flooding condition. In this review, the progress in proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies about the initial-flooding response mechanism in early-stage soybean is presented. In addition, the tolerant mechanism in soybean is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. Through this review, the key proteins and genes involved in initial flooding response and tolerance at early stage soybean are summarized and they contribute greatly to uncover response and tolerance mechanism at early stage under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
14
|
Yamauchi T, Tanaka A, Mori H, Takamure I, Kato K, Nakazono M. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize. PLANT, CELL & ENVIRONMENT 2016; 39:2145-57. [PMID: 27169562 DOI: 10.1111/pce.12766] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 05/25/2023]
Abstract
In roots of gramineous plants, lysigenous aerenchyma is created by the death and lysis of cortical cells. Rice (Oryza sativa) constitutively forms aerenchyma under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. However, maize (Zea mays) develops aerenchyma only under oxygen-deficient conditions. Ethylene is involved in lysigenous aerenchyma formation. Here, we investigated how ethylene-dependent aerenchyma formation is differently regulated between rice and maize. For this purpose, in rice, we used the reduced culm number1 (rcn1) mutant, in which ethylene biosynthesis is suppressed. Ethylene is converted from 1-aminocyclopropane-1-carboxylic acid (ACC) by the action of ACC oxidase (ACO). We found that OsACO5 was highly expressed in the wild type, but not in rcn1, under aerobic conditions, suggesting that OsACO5 contributes to aerenchyma formation in aerated rice roots. By contrast, the ACO genes in maize roots were weakly expressed under aerobic conditions, and thus ACC treatment did not effectively induce ethylene production or aerenchyma formation, unlike in rice. Aerenchyma formation in rice roots after the initiation of oxygen-deficient conditions was faster and greater than that in maize. These results suggest that the difference in aerenchyma formation in rice and maize is due to their different mechanisms for regulating ethylene biosynthesis.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan.
| | - Akihiro Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Itsuro Takamure
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Kiyoaki Kato
- Department of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
15
|
Yin X, Sakata K, Komatsu S. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress. J Proteome Res 2014; 13:5618-34. [PMID: 25316100 DOI: 10.1021/pr500621c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flooding has severe negative effects on soybean growth. To explore the flooding-responsive mechanisms in early-stage soybean, a phosphoproteomic approach was used. Two-day-old soybean plants were treated without or with flooding for 3, 6, 12, and 24 h, and root tip proteins were then extracted and analyzed at each time point. After 3 h of flooding exposure, the fresh weight of soybeans increased, whereas the ATP content of soybean root tips decreased. Using a gel-free proteomic technique, a total of 114 phosphoproteins were identified in the root tip samples, and 34 of the phosphoproteins were significantly changed with respect to phosphorylation status after 3 h of flooding stress. Among these phosphoproteins, eukaryotic translation initiation factors were dephosphorylated, whereas several protein synthesis-related proteins were phosphorylated. The mRNA expression levels of sucrose phosphate synthase 1F and eukaryotic translation initiation factor 4 G were down-regulated, whereas UDP-glucose 6-dehydrogenase mRNA expression was up-regulated during growth but down-regulated under flooding stress. Furthermore, bioinformatic protein interaction analysis of flooding-responsive proteins based on temporal phosphorylation patterns indicated that eukaryotic translation initiation factor 4 G was located in the center of the network during flooding. Soybean eukaryotic translation initiation factor 4 G has homology to programmed cell death 4 protein and is implicated in ethylene signaling. The weight of soybeans was increased with treatment by an ethylene-releasing agent under flooding condition, but it was decreased when plants were exposed to an ethylene receptor antagonist. These results suggest that the ethylene signaling pathway plays an important role, via the protein phosphorylation, in mechanisms of plant tolerance to the initial stages of flooding stress in soybean root tips.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
| | | | | |
Collapse
|
16
|
Rauf M, Arif M, Fisahn J, Xue GP, Balazadeh S, Mueller-Roeber B. NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in Arabidopsis. THE PLANT CELL 2013; 25:4941-55. [PMID: 24363315 PMCID: PMC3903997 DOI: 10.1105/tpc.113.117861] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/09/2013] [Accepted: 11/30/2013] [Indexed: 05/18/2023]
Abstract
In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor speedy hyponastic growth (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several expansin and xyloglucan endotransglycosylase/hydrolase genes encoding cell wall-loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC oxidase5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging.
Collapse
Affiliation(s)
- Mamoona Rauf
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Muhammad Arif
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Joachim Fisahn
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Gang-Ping Xue
- Commonwealth Scientific and Industrial Research Organization Plant Industry, St. Lucia, Queensland 4067, Australia
| | - Salma Balazadeh
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
17
|
Voesenek LACJ, Sasidharan R. Ethylene--and oxygen signalling--drive plant survival during flooding. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:426-35. [PMID: 23574304 DOI: 10.1111/plb.12014] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/12/2013] [Indexed: 05/20/2023]
Abstract
Flooding is a widely occurring environmental stress both for natural and cultivated plant species. The primary problems associated with flooding arise due to restricted gas diffusion underwater. This hampers gas exchange needed for the critical processes of photosynthesis and respiration. Plant acclimation to flooding includes the adaptation of a suite of traits that helps alleviate or avoid these stressful conditions and improves or restores exchange of O2 and CO2 . The manifestation of these traits is, however, reliant on the timely perception of signals that convey the underwater status. Flooding-associated reduced gas diffusion imposes a drastic change in the internal gas composition within submerged plant organs. One of the earliest changes is an increase in the levels of the gaseous plant hormone ethylene. Depending on the species, organ, flooding conditions and time of the day, plants will also subsequently experience a reduction in oxygen levels. This review provides a comprehensive overview on the roles of ethylene and oxygen as critical signals of flooding stress. It includes a discussion of the dynamics of these gases in plants when underwater, their interaction, current knowledge of their perception mechanisms and the resulting downstream changes that mediate important acclimative processes that allow endurance and survival under flooded conditions.
Collapse
Affiliation(s)
- L A C J Voesenek
- Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
18
|
Polko JK, Voesenek LACJ, Peeters AJM, Pierik R. Petiole hyponasty: an ethylene-driven, adaptive response to changes in the environment. AOB PLANTS 2011; 2011:plr031. [PMID: 22476501 PMCID: PMC3249691 DOI: 10.1093/aobpla/plr031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/05/2011] [Indexed: 05/23/2023]
Abstract
BACKGROUND Many plant species can actively reorient their organs in response to dynamic environmental conditions. Organ movement can be an integral part of plant development or can occur in response to unfavourable external circumstances. These active reactions take place with or without a directional stimulus and can be driven either by changes in turgor pressure or by asymmetric growth. Petiole hyponasty is upward movement driven by a higher rate of cell expansion on the lower (abaxial) compared with the upper (adaxial) side. Hyponasty is common among rosette species facing environmental stresses such as flooding, proximity of neighbours or elevated ambient temperature. The complex regulatory mechanism of hyponasty involves activation of pathways at molecular and developmental levels, with ethylene playing a crucial role. SCOPE We present current knowledge on the mechanisms that promote hyponasty in the context of other organ movements, including tropic and nastic reactions together with circumnutation. We describe major environmental cues resulting in hyponasty and briefly discuss their perception and signal transduction. Since ethylene is a central agent triggering hyponasty, we focus on ethylene in controlling different stages during plant development and summarize current knowledge on the relationship between ethylene and cell growth.
Collapse
Affiliation(s)
| | | | | | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
19
|
Heydarian Z, Sasidharan R, Cox MCH, Pierik R, Voesenek LACJ, Peeters AJM. A kinetic analysis of hyponastic growth and petiole elongation upon ethylene exposure in Rumex palustris. ANNALS OF BOTANY 2010; 106:429-35. [PMID: 20603244 PMCID: PMC2924831 DOI: 10.1093/aob/mcq138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/18/2010] [Accepted: 05/24/2010] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Complete submergence is an important stress factor for many terrestrial plants, and a limited number of species have evolved mechanisms to deal with these conditions. Rumex palustris is one such species and manages to outgrow the water, and thus restore contact with the atmosphere, through upward leaf growth (hyponasty) followed by strongly enhanced petiole elongation. These responses are initiated by the gaseous plant hormone ethylene, which accumulates inside plants due to physical entrapment. This study aimed to investigate the kinetics of ethylene-induced leaf hyponasty and petiole elongation. METHODS Leaf hyponasty and petiole elongation was studied using a computerized digital camera set-up followed by image analyses. Linear variable displacement transducers were used for fine resolution monitoring and measurement of petiole growth rates. KEY RESULTS We show that submergence-induced hyponastic growth and petiole elongation in R. palustris can be mimicked by exposing plants to ethylene. The petiole elongation response to ethylene is shown to depend on the initial angle of the petiole. When petiole angles were artificially kept at 0 degrees, rather than the natural angle of 35 degrees, ethylene could not induce enhanced petiole elongation. This is very similar to submergence studies and confirms the idea that there are endogenous, angle-dependent signals that influence the petiole elongation response to ethylene. CONCLUSIONS Our data suggest that submergence and ethylene-induced hyponastic growth and enhanced petiole elongation responses in R. palustris are largely similar. However, there are some differences that may relate to the complexity of the submergence treatment as compared with an ethylene treatment.
Collapse
Affiliation(s)
| | | | | | | | - Laurentius A. C. J. Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
20
|
McDonnell L, Plett JM, Andersson-Gunnerås S, Kozela C, Dugardeyn J, Van Der Straeten D, Glick BR, Sundberg B, Regan S. Ethylene levels are regulated by a plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase. PHYSIOLOGIA PLANTARUM 2009; 136:94-109. [PMID: 19508369 DOI: 10.1111/j.1399-3054.2009.01208.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Control of the levels of the plant hormone ethylene is crucial in the regulation of many developmental processes and stress responses. Ethylene production can be controlled by altering endogenous levels of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor to ethylene or by altering its conversion to ethylene. ACC is known to be irreversibly broken down by bacterial or fungal ACC deaminases (ACDs). Sequence analysis revealed two putative ACD genes encoded for in the genome of Arabidopsis thaliana (A. thaliana) and we detected ACD activity in plant extracts. Expression of one of these A. thaliana genes (AtACD1) in bacteria indicated that it had ACD activity. Moreover, transgenic plants harboring antisense constructs of the gene decreased ACD activity to 70% of wild-type (WT) levels, displayed an increased sensitivity to ACC and produced significantly more ethylene. Taken together, these results show that AtACD1 can act as a regulator of ACC levels in A. thaliana.
Collapse
Affiliation(s)
- Lisa McDonnell
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bailey-Serres J, Voesenek LACJ. Flooding stress: acclimations and genetic diversity. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:313-39. [PMID: 18444902 DOI: 10.1146/annurev.arplant.59.032607.092752] [Citation(s) in RCA: 733] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flooding is an environmental stress for many natural and man-made ecosystems worldwide. Genetic diversity in the plant response to flooding includes alterations in architecture, metabolism, and elongation growth associated with a low O(2) escape strategy and an antithetical quiescence scheme that allows endurance of prolonged submergence. Flooding is frequently accompanied with a reduction of cellular O(2) content that is particularly severe when photosynthesis is limited or absent. This necessitates the production of ATP and regeneration of NAD(+) through anaerobic respiration. The examination of gene regulation and function in model systems provides insight into low-O(2)-sensing mechanisms and metabolic adjustments associated with controlled use of carbohydrate and ATP. At the developmental level, plants can escape the low-O(2) stress caused by flooding through multifaceted alterations in cellular and organ structure that promote access to and diffusion of O(2). These processes are driven by phytohormones, including ethylene, gibberellin, and abscisic acid. This exploration of natural variation in strategies that improve O(2) and carbohydrate status during flooding provides valuable resources for the improvement of crop endurance of an environmental adversity that is enhanced by global warming.
Collapse
Affiliation(s)
- J Bailey-Serres
- Center for Plant Cell Biology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
22
|
Jackson MB. Ethylene-promoted elongation: an adaptation to submergence stress. ANNALS OF BOTANY 2008; 101:229-48. [PMID: 17956854 PMCID: PMC2711016 DOI: 10.1093/aob/mcm237] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 06/26/2007] [Accepted: 07/13/2007] [Indexed: 05/20/2023]
Abstract
BACKGROUND A sizeable minority of taxa is successful in areas prone to submergence. Many such plants elongate with increased vigour when underwater. This helps to restore contact with the aerial environment by shortening the duration of inundation. Poorly adapted species are usually incapable of this underwater escape. SCOPE Evidence implicating ethylene as the principal factor initiating fast underwater elongation by leaves or stems is evaluated comprehensively along with its interactions with other hormones and gases. These interactions make up a sequence of events that link the perception of submergence to a prompt acceleration of extension. The review encompasses whole plant physiology, cell biology and molecular genetics. It includes assessments of how submergence threatens plant life and of the extent to which the submergence escape demonstrably improves the likelihood of survival. CONCLUSIONS Experimental testing over many years establishes ethylene-promoted underwater extension as one of the most convincing examples of hormone-mediated stress adaptation by plants. The research has utilized a wide range of species that includes numerous angiosperms, a fern and a liverwort. It has also benefited from detailed physiological and molecular studies of underwater elongation by rice (Oryza sativa) and the marsh dock (Rumex palustris). Despite complexities and interactions, the work reveals that the signal transduction pathway is initiated by the simple expediency of physical entrapment of ethylene within growing cells by a covering of water.
Collapse
Affiliation(s)
- Michael B Jackson
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| |
Collapse
|
23
|
Fukao T, Xu K, Ronald PC, Bailey-Serres J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. THE PLANT CELL 2006; 18:2021-34. [PMID: 16816135 PMCID: PMC1533987 DOI: 10.1105/tpc.106.043000] [Citation(s) in RCA: 385] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/20/2006] [Accepted: 06/07/2006] [Indexed: 05/10/2023]
Abstract
Submergence-1 (Sub1), a major quantitative trait locus affecting tolerance to complete submergence in lowland rice (Oryza sativa), contains two or three ethylene response factor (ERF)-like genes whose transcripts are regulated by submergence. In the submergence-intolerant japonica cultivar M202, this locus encodes two ERF genes, Sub1B and Sub1C. In the tolerant near-isogenic line containing the Sub1 locus from the indica FR13A, M202(Sub1), the locus additionally encodes the ERF gene Sub1A. During submergence, the tolerant M202(Sub1) displayed restrained leaf and internode elongation, chlorophyll degradation, and carbohydrate consumption, whereas the enzymatic activities of pyruvate decarboxylase and alcohol dehydrogenase were increased significantly compared with the intolerant M202. Transcript levels of genes associated with carbohydrate consumption, ethanolic fermentation, and cell expansion were distinctly regulated in the two lines. Sub1A and Sub1C transcript levels were shown to be upregulated by submergence and ethylene, with the Sub1C allele in M202 also upregulated by treatment with gibberellic acid (GA). These findings demonstrate that the Sub1 region haplotype determines ethylene- and GA-mediated metabolic and developmental responses to submergence through differential expression of Sub1A and Sub1C. Submergence tolerance in lowland rice is conferred by a specific allele variant of Sub1A that dampens ethylene production and GA responsiveness, causing quiescence in growth that correlates with the capacity for regrowth upon desubmergence.
Collapse
Affiliation(s)
- Takeshi Fukao
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
24
|
Jackson MB. Plant Survival in Wet Environments: Resilience and Escape Mediated by Shoot Systems. WETLANDS: FUNCTIONING, BIODIVERSITY CONSERVATION, AND RESTORATION 2006. [DOI: 10.1007/978-3-540-33189-6_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM. How plants cope with complete submergence. THE NEW PHYTOLOGIST 2006; 170:213-26. [PMID: 16608449 DOI: 10.1111/j.1469-8137.2006.01692.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Flooding is a widespread phenomenon that drastically reduces the growth and survival of terrestrial plants. The dramatic decrease of gas diffusion in water compared with in air is a major problem for terrestrial plants and limits the entry of CO(2) for photosynthesis and of O(2) for respiration. Responses to avoid the adverse effects of submergence are the central theme in this review. These include underwater photosynthesis, aerenchyma formation and enhanced shoot elongation. Aerenchyma facilitates gas diffusion inside plants so that shoot-derived O(2) can diffuse to O(2)-deprived plant parts, such as the roots. The underwater gas-exchange capacity of leaves can be greatly enhanced by a thinner cuticle, reorientation of the chloroplasts towards the epidermis and increased specific leaf area (i.e. thinner leaves). At the same time, plants can outgrow the water through increased shoot elongation, which in some species is preceded by an adjustment of leaf angle to a more vertical position. The molecular regulatory networks involved in these responses, including the putative signals to sense submergence, are discussed and suggestions made on how to unravel the mechanistic basis of the induced expression of various adaptations that alleviate O(2) shortage underwater.
Collapse
Affiliation(s)
- L A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, the Netherlands.
| | | | | | | | | |
Collapse
|
26
|
IGAMBERDIEV ABIRU, BARON KEVIN, MANAC'H-LITTLE NATHALIE, STOIMENOVA MARIA, HILL ROBERTD. The haemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling. ANNALS OF BOTANY 2005; 96:557-64. [PMID: 16027133 PMCID: PMC4247025 DOI: 10.1093/aob/mci210] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 11/16/2004] [Accepted: 04/07/2005] [Indexed: 05/03/2023]
Abstract
BACKGROUND Class 1 haemoglobins (Hbs) are induced in plant cells under hypoxic conditions. They have a high affinity for oxygen, which is two orders of magnitude lower than that of cytochrome oxidase, permitting the utilization of oxygen by the molecule at extremely low oxygen concentrations. Their presence reduces the levels of nitric oxide (NO) that is produced from nitrate ion during hypoxia and improves the redox and energy status of the hypoxic cell. SCOPE The mechanism by which Hb interacts with NO under hypoxic conditions in plants is examined, and the effects of Hb expression on metabolism and signal transduction are discussed. CONCLUSIONS The accumulated evidence suggests that a metabolic pathway involving NO and Hb provides an alternative type of respiration to mitochondrial electron transport under limited oxygen. Hb in hypoxic plants acts as part of a soluble, terminal, NO dioxygenase system, yielding nitrate ion from the reaction of oxyHb with NO. NO is mainly formed due to anaerobic accumulation of nitrite. The overall reaction sequence, referred to as the Hb/NO cycle, consumes NADH and maintains ATP levels via an as yet unknown mechanism. Hb gene expression appears to influence signal transduction pathways, possibly through its effect on NO, as evidenced by phenotypic changes in normoxic Hb-varying transgenic plants. Ethylene levels are elevated when Hb gene expression is suppressed, which could be a factor leading to root aerenchyma formation during hypoxic stress.
Collapse
Affiliation(s)
- ABIR U. IGAMBERDIEV
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - KEVIN BARON
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | | | - MARIA STOIMENOVA
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - ROBERT D. HILL
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| |
Collapse
|
27
|
Bailey-Serres J, Chang R. Sensing and signalling in response to oxygen deprivation in plants and other organisms. ANNALS OF BOTANY 2005; 96:507-18. [PMID: 16051633 PMCID: PMC4247021 DOI: 10.1093/aob/mci206] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 03/11/2005] [Accepted: 04/19/2005] [Indexed: 05/03/2023]
Abstract
AIMS AND SCOPE All aerobic organisms require molecular di-oxygen (O2) for efficient production of ATP though oxidative phosphorylation. Cellular depletion of oxygen results in rapid molecular and physiological acclimation. The purpose of this review is to consider the processes of low oxygen sensing and response in diverse organisms, with special consideration of plant cells. CONCLUSIONS The sensing of oxygen deprivation in bacteria, fungi, metazoa and plants involves multiple sensors and signal transduction pathways. Cellular responses result in a reprogramming of gene expression and metabolic processes that enhance transient survival and can enable long-term tolerance to sub-optimal oxygen levels. The mechanism of sensing can involve molecules that directly bind or react with oxygen (direct sensing), or recognition of altered cellular homeostasis (indirect sensing). The growing knowledge of the activation of genes in response to oxygen deprivation has provided additional information on the response and acclimation processes. Conservation of calcium fluxes and reactive oxygen species as second messengers in signal transduction pathways in metazoa and plants may reflect the elemental importance of rapid sensing of cellular restriction in oxygen by aerobic organisms.
Collapse
Affiliation(s)
- Julia Bailey-Serres
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA.
| | | |
Collapse
|
28
|
Vreeburg RAM, Benschop JJ, Peeters AJM, Colmer TD, Ammerlaan AHM, Staal M, Elzenga TM, Staals RHJ, Darley CP, McQueen-Mason SJ, Voesenek LACJ. Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:597-610. [PMID: 16098112 DOI: 10.1111/j.1365-313x.2005.02477.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The semi-aquatic dicot Rumex palustris responds to complete submergence by enhanced elongation of young petioles. This elongation of petiole cells brings leaf blades above the water surface, thus reinstating gas exchange with the atmosphere and increasing survival in flood-prone environments. We already know that an enhanced internal level of the gaseous hormone ethylene is the primary signal for underwater escape in R. palustris. Further downstream, concentration changes in abscisic acid (ABA), gibberellin (GA) and auxin are required to gain fast cell elongation under water. A prerequisite for cell elongation in general is cell wall loosening mediated by proteins such as expansins. Expansin genes might, therefore, be important target genes in submergence-induced and plant hormone-mediated petiole elongation. To test this hypothesis we have studied the identity, kinetics and regulation of expansin A mRNA abundance and protein activity, as well as examined pH changes in cell walls associated with this adaptive growth. We found a novel role of ethylene in triggering two processes affecting cell wall loosening during submergence-induced petiole elongation. First, ethylene was shown to promote fast net H(+) extrusion, leading to apoplastic acidification. Secondly, ethylene upregulates one expansin A gene (RpEXPA1), as measured with real-time RT-PCR, out of a group of 13 R. palustris expansin A genes tested. Furthermore, a significant accumulation of expansin proteins belonging to the same size class as RpEXPA1, as well as a strong increase in expansin activity, were apparent within 4-6 h of submergence. Regulation of RpEXPA1 transcript levels depends on ethylene action and not on GA and ABA, demonstrating that ethylene evokes at least three, parallel operating pathways that, when integrated at the whole petiole level, lead to coordinated underwater elongation. The first pathway involves ethylene-modulated changes in ABA and GA, these acting on as yet unknown downstream components, whereas the second and third routes encompass ethylene-induced apoplastic acidification and ethylene-induced RpEXPA1 upregulation.
Collapse
Affiliation(s)
- Robert A M Vreeburg
- Plant Ecophysiology, Faculty of Biology, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Manac'h-Little N, Igamberdiev AU, Hill RD. Hemoglobin expression affects ethylene production in maize cell cultures. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:485-9. [PMID: 15914016 DOI: 10.1016/j.plaphy.2005.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 03/09/2005] [Indexed: 05/02/2023]
Abstract
The formation of ethylene under different O(2) concentrations and upon addition of nitric oxide (NO) donor, sodium nitroprusside (SNP), was determined using maize (Zea mays L.) cell lines over-expressing (Hb+) or down-regulating (Hb-) hypoxically inducible (class-1) hemoglobin (Hb). Under all treatments, ethylene levels in the Hb- line were 5 to 6.5 times the levels in Hb+ and four to five times the levels in the wild type. Low oxygen partial pressures impaired ethylene formation in maize cell suspension cultures. 1-Amino-cyclopropane-1-carboxylic acid (ACC) oxidase (E.C. 1.14.17.4) mRNA levels did not vary, either between lines or between treatments. There was, however, significantly enhanced ACC oxidase (ACO) activity in the Hb- line relative to the wild type and the Hb+ line. ACO activity in the Hb- line increased under hypoxic conditions and significantly increased upon treatment with NO under normoxic conditions. The results suggest that limiting class-1 hemoglobin protein synthesis increases ethylene formation in maize suspension cells, possibly via the modulation of NO levels.
Collapse
|
30
|
Voesenek LACJ, Rijnders JHGM, Peeters AJM, van de Steeg HM, de Kroon H. PLANT HORMONES REGULATE FAST SHOOT ELONGATION UNDER WATER: FROM GENES TO COMMUNITIES. Ecology 2004. [DOI: 10.1890/02-740] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Voesenek LACJ, Jackson MB, Toebes AHW, Huibers W, Vriezen WH, Colmer TD. De-submergence-induced ethylene production in Rumex palustris: regulation and ecophysiological significance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:341-352. [PMID: 12535347 DOI: 10.1046/j.1365-313x.2003.01632.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rumex palustris responds to total submergence by increasing the elongation rate of young petioles. This favours survival by shortening the duration of submergence. Underwater elongation is stimulated by ethylene entrapped within the plant by surrounding water. However, abnormally fast extension rates were found to be maintained even when leaf tips emerged above the floodwater. This fast post-submergence growth was linked to a promotion of ethylene production that is presumed to compensate for losses brought about by ventilation. Three sources of ACC contributed to post-submergence ethylene production in R. palustris: (i) ACC that had accumulated in the roots during submergence and was transported in xylem sap to the shoot when stomata re-opened and transpiration resumed, (ii) ACC that had accumulated in the shoot during the preceding period of submergence and (iii) ACC produced de novo in the shoot following de-submergence. This new production of ethylene was associated with increased expression of an ACC synthase gene (RP-ACS1) and an ACC oxidase gene (RP-ACO1), increased ACC synthase activity and a doubling of ACC oxidase activity, measured in vitro. Out of seven species of Rumex examined, a de-submergence upsurge in ethylene production was seen only in shoots of those that had the ability to elongate fast when submerged.
Collapse
Affiliation(s)
- L A C J Voesenek
- Plant Ecophysiology, Faculty of Biology, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Voesenek LACJ, Benschop JJ, Bou J, Cox MCH, Groeneveld HW, Millenaar FF, Vreeburg RAM, Peeters AJM. Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. ANNALS OF BOTANY 2003; 91 Spec No:205-11. [PMID: 12509341 PMCID: PMC4244986 DOI: 10.1093/aob/mcf116] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rumex palustris has the capacity to respond to complete submergence with hyponastic (upward) growth and stimulated elongation of petioles. These adaptive responses allow survival of this plant in habitats with sustained high water levels by re-establishing contact with the aerial environment. Accumulated ethylene in submerged petioles interacts with ethylene receptor proteins and operates as a reliable sensor for the under-water environment. Further downstream in the transduction pathway, a fast and substantial decrease of the endogenous abscisic acid concentration and a certain threshold level of endogenous auxin and gibberellin are required for hyponastic growth and petiole elongation. Interactions of these plant hormones results in a significant increase of the in vitro cell wall extensibility in submerged petioles. Furthermore, the pattern of transcript accumulation of a R. palustris alpha-expansin gene correlated with the pattern of petiole elongation upon submergence.
Collapse
Affiliation(s)
- L A C J Voesenek
- Plant Ecophysiology, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Fiorani F, Bögemann GM, Visser EJW, Lambers H, Voesenek LACJ. Ethylene emission and responsiveness to applied ethylene vary among Poa species that inherently differ in leaf elongation rates. PLANT PHYSIOLOGY 2002; 129:1382-90. [PMID: 12114591 PMCID: PMC166531 DOI: 10.1104/pp.001198] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Revised: 02/16/2002] [Accepted: 03/20/2002] [Indexed: 05/17/2023]
Abstract
A plant's ability to produce and respond to ethylene is essential for its vegetative growth. We studied whole-shoot ethylene emission and leaf growth responses to applied ethylene in four Poa spp. that differ inherently in leaf elongation rate and whole-plant relative growth rate. Compared with the fast-growing Poa annua and Poa trivialis, the shoots of the slow-growing species Poa alpina and Poa compressa emitted daily 30% to 50% less ethylene, and their leaf elongation rate was more strongly inhibited when ethylene concentration was increased up to 1 microL L(-1). To our surprise, however, low ethylene concentrations (0.02-0.03 microL L(-1)) promoted leaf growth in the two slow-growing species; at the same concentrations, leaf elongation rate of the two fast-growing species was only slightly inhibited. All responses were observed within 20 min after ethylene applications. Although ethylene generally inhibits growth, our results show that in some species, it may actually stimulate growth. Moreover, in the two slow-growing Poa spp., both growth stimulation and inhibition occurred in a narrow ethylene concentration range, and this effect was associated with a much lower ethylene emission. These findings suggest that the regulation of ethylene production rates and perception of the gas may be more crucial during leaf expansion of these species under non-stressful conditions and that endogenous ethylene concentrations are not large enough to saturate leaf growth responses. In the two fast-growing species, a comparatively higher ethylene endogenous concentration may conversely be present and sufficiently high to saturate leaf elongation responses, invariably leading to growth inhibition.
Collapse
Affiliation(s)
- Fabio Fiorani
- Plant Ecophysiology, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Peeters AJM, Cox MCH, Benschop JJ, Vreeburg RAM, Bou J, Voesenek LACJ. Submergence research using Rumex palustris as a model; looking back and going forward. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:391-398. [PMID: 11847236 DOI: 10.1093/jexbot/53.368.391] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Flooding is a phenomenon that destroys many crops worldwide. During evolution several plant species evolved specialized mechanisms to survive short- or long-term waterlogging and even complete submergence. One of the plant species that evolved such a mechanism is Rumex palustris. When flooded, this plant species is capable to elongate its petioles to reach the surface of the water. Thereby it restores normal gas exchange which leads to a better survival rate. Enhanced levels of ethylene, due to physical entrapment, is the key signal for the plant that its environment has changed from air to water. Subsequently, a signal transduction cascade involving at least four (classical) plant hormones, ethylene, auxin, abscisic acid, and gibberellic acid, is activated. This results in hyponastic growth of the leaves accompanied by a strongly enhanced elongation rate of the petioles enabling them to reach the surface. Other factors, among them cell wall loosening enzymes have been shown to play a role as well.
Collapse
Affiliation(s)
- Anton J M Peeters
- Department of Plant Ecophysiology, University Utrecht, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Peng HP, Chan CS, Shih MC, Yang SF. Signaling events in the hypoxic induction of alcohol dehydrogenase gene in Arabidopsis. PLANT PHYSIOLOGY 2001; 126:742-9. [PMID: 11402202 PMCID: PMC111164 DOI: 10.1104/pp.126.2.742] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2000] [Revised: 12/15/2000] [Accepted: 01/09/2001] [Indexed: 05/19/2023]
Abstract
Expression of the alcohol dehydrogenase gene (ADH) of Arabidopsis is induced during hypoxia. Because many plants increase their ethylene production in response to hypoxic stress, we examined in this report whether ethylene is involved in the hypoxic induction of ADH in Arabidopsis. We found that the hypoxic induction of ADH can be partially inhibited by aminooxy acetic acid, an inhibitor of ethylene biosynthesis. This partial inhibition can be reversed by the addition of 1-aminocyclopropane-1-carboxylic acid, a direct precursor of ethylene. In addition, the hypoxic induction of the ADH gene is also reduced in etr1-1 and ein2-1, two ethylene insensitive mutants in ethylene-signaling pathways, whereas the addition of exogenous ethylene or an increase in cellular ethylene alone does not induce ADH under normoxic conditions. Kinetic analyses of ADH mRNA accumulation indicated that an ethylene signal is required for the induction of ADH during later stages of hypoxia. Therefore, we conclude that ethylene is needed, but not sufficient for, the induction of ADH in Arabidopsis during hypoxia.
Collapse
Affiliation(s)
- H P Peng
- Department of Biological Sciences, 204 Chemistry Building, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
36
|
Vriezen WH, Hulzink R, Mariani C, Voesenek LA. 1-aminocyclopropane-1-carboxylate oxidase activity limits ethylene biosynthesis in Rumex palustris during submergence. PLANT PHYSIOLOGY 1999; 121:189-96. [PMID: 10482674 PMCID: PMC59367 DOI: 10.1104/pp.121.1.189] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/1999] [Accepted: 06/06/1999] [Indexed: 05/18/2023]
Abstract
Submergence strongly stimulates petiole elongation in Rumex palustris, and ethylene accumulation initiates and maintains this response in submerged tissues. cDNAs from R. palustris corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene (RP-ACO1) were isolated from elongating petioles and used to study the expression of the corresponding gene. An increase in RP-ACO1 messenger was observed in the petioles and lamina of elongating leaves 2 h after the start of submergence. ACC oxidase enzyme activity was measured in homogenates of R. palustris shoots, and a relevant increase was observed within 12 h under water with a maximum after 24 h. We have shown previously that the ethylene production rate of submerged shoots does not increase significantly during the first 24 h of submergence (L.A.C.J. Voesenek, M. Banga, R. H. Thier, C.M. Mudde, F.M. Harren, G.W.M. Barendse, C.W.P.M. Blom [1993] Plant Physiol 103: 783-791), suggesting that under these conditions ACC oxidase activity is inhibited in vivo. We found evidence that this inhibition is caused by a reduction of oxygen levels. We hypothesize that an increased ACC oxidase enzyme concentration counterbalances the reduced enzyme activity caused by low oxygen concentration during submergence, thus sustaining ethylene production under these conditions. Therefore, ethylene biosynthesis seems to be limited at the level of ACC oxidase activity rather than by ACC synthase in R. palustris during submergence.
Collapse
Affiliation(s)
- W H Vriezen
- Departments of Experimental Botany and Ecology, University of Nijmegen, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Abstract
The gaseous hormone ethylene induces diverse effects in plants throughout their life cycle. Ethylene response is regulated at multiple levels, from hormone synthesis and perception to signal transduction and transcriptional regulation. As more genes in the ethylene response pathway are cloned and characterized, they illustrate the precision with which signaling can be controlled. Wounding, pathogenic attack, flooding, fruit ripening, development, senescence, and ethylene treatment itself induce ethylene production. Ethylene binding to receptors with homology to two-component regulators triggers a kinase cascade that is propagated through the CTR1 Raf-like kinase and other components to the nucleus. Activation of the EIN3 family of nuclear proteins leads to induction of the relevant ethylene-responsive genes via other transcription factors, eliciting a response appropriate to the original stimulus.
Collapse
Affiliation(s)
- P R Johnson
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018, USA.
| | | |
Collapse
|