1
|
Qin T, Shi X, Yin J, Qu Y, Deng Y, Wei X, Zhao N, Gao Y, Mace WJ, Ren A. Fungal endophytes enhanced insect resistance by improving the defenses of Achnatherum sibiricum before locust feeding. PEST MANAGEMENT SCIENCE 2024. [PMID: 39660583 DOI: 10.1002/ps.8599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Epichloë endophytes provide many benefits to host plants, including enhanced insect resistance. Fungal alkaloids are usually thought to be responsible for the endophyte-conferred herbivore resistance. Nonetheless, the fungal alkaloid profiles and concentrations may vary considerably among grass-endophyte systems. This indicates that apart from fungal alkaloids, additional mechanisms such as endophyte-mediated host defense are likely contributed to endophyte-grass-insect interactions. In this study, we addressed this issue by investigating the effect of Epichloë on the defense responses of Achnatherum sibiricum against locusts. RESULTS The results showed that Epichloë endophytes increased locust resistance of A. sibiricum in both choice and non-choice feeding experiments. In no feeding groups, endophyte infection increased the content of jasmonic acid (JA) and ethylene (ET), chitinase activity, and the biosynthetic gene expression of the relevant pathways. Endophyte infection also increased the content of total phenolics and condensed tannins. These indicators were negatively correlated with leaf consumption. In locust feeding groups, endophyte infection increased trypsin inhibitor activity. Exogenous application of phytohormones further proved that JA and ET reduced the consumption of A. sibiricum by locusts. CONCLUSION The present study showed that endophyte-conferred host defense was mainly constitutive, that is, the defense characteristics of host plants were mainly manifested in no feeding groups. Endophyte presence enhanced locust resistance of the host by activating the JA/ET signaling pathway, elevating chitinase activity and phenolic compounds content, thereby improving the defense ability of host plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianzi Qin
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xinjian Shi
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jiaqi Yin
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yaobing Qu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yongkang Deng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xianqin Wei
- College of Life Sciences, Nankai University, Tianjin, China
| | - Nianxi Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yubao Gao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wade J Mace
- AgResearch Ltd, Grasslands Research Center, Palmerston North, New Zealand
| | - Anzhi Ren
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Wang H, Zhang Y, Zhang L, Li X, Yao X, Hao D, Guo H, Liu J, Li J. Genome-Wide Identification and Characterization of the TIFY Gene Family and Their Expression Patterns in Response to MeJA and Aluminum Stress in Centipedegrass ( Eremochloa ophiuroides). PLANTS (BASEL, SWITZERLAND) 2024; 13:462. [PMID: 38337994 PMCID: PMC10857321 DOI: 10.3390/plants13030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
The TIFY family is a group of novel plant-specific transcription factors involved in plant development, signal transduction, and responses to stress and hormones. TIFY genes have been found and functionally characterized in a number of plant species. However, there is no information about this family in warm-season grass plants. The current study identified 24 TIFY genes in Eremochloa ophiuroides, a well-known perennial warm-season grass species with a high tolerance to aluminum toxicity and good adaptability to the barren acidic soils. All of the 24 EoTIFYs were unevenly located on six out of nine chromosomes and could be classified into two subfamilies (ZIM/ZML and JAZ), consisting of 3 and 21 genes, respectively, with the JAZ subfamily being further divided into five subgroups (JAZ I to JAZ V). The amino acids of 24 EoTIFYs showed apparent differences between the two subfamilies based on the analysis of gene structures and conserved motifs. MCScanX analysis revealed the tandem duplication and segmental duplication of several EoTIFY genes occurred during E. ophiuroides genome evolution. Syntenic analyses of TIFY genes between E. ophiuroides and other five plant species (including A. thaliana, O. sativa, B. distachyon, S. biocolor, and S. italica) provided valuable clues for understanding the potential evolution of the EoTIFY family. qRT-PCR analysis revealed that EoTIFY genes exhibited different spatial expression patterns in different tissues. In addition, the expressions of EoTIFY genes were highly induced by MeJA and all of the EoTIFY family members except for EoJAZ2 displayed upregulated expression by MeJA. Ten EoTIFY genes (EoZML1, EoZML1, EoJAZ1, EoJAZ3, EoJAZ5, EoJAZ6, EoJAZ8, EoJAZ9, EoJAZ10, and EoJAZ21) were observed to be highly expressed under both exogenous MeJA treatment and aluminum stress, respectively. These results suggest that EoTIFY genes play a role in the JA-regulated pathway of plant growth and aluminum resistance as well. The results of this study laid a foundation for further understanding the function of TIFY genes in E. ophiuroides, and provided useful information for future aluminum tolerance related breeding and gene function research in warm-season grass plants.
Collapse
Affiliation(s)
- Haoran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Yuan Zhang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Ling Zhang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Xiaohui Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Xiang Yao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Dongli Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Jianxiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| | - Jianjian Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (H.W.); (D.H.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China
| |
Collapse
|
3
|
Li Y, Zhang Q, Wang L, Wang X, Qiao J, Wang H. New Insights into the TIFY Gene Family of Brassica napus and Its Involvement in the Regulation of Shoot Branching. Int J Mol Sci 2023; 24:17114. [PMID: 38069438 PMCID: PMC10707187 DOI: 10.3390/ijms242317114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
As plant-specific transcription factors, the TIFY family genes are involved in the responses to a series of biotic and abiotic stresses and the regulation of the development of multiple organs. To explore the potential roles of the TIFY gene family in shoot branching, which can shape plant architecture and finally determine seed yield, we conducted comprehensive genome-wide analyses of the TIFY gene family in Brassica napus. Here, HMMER search and BLASTp were used to identify the TIFY members. A total of 70 TIFY members were identified and divided into four subfamilies based on the conserved domains and motifs. These TIFY genes were distributed across 19 chromosomes. The predicted subcellular localizations revealed that most TIFY proteins were located in the nucleus. The tissue expression profile analyses indicated that TIFY genes were highly expressed in the stem, flower bud, and silique at the transcriptional level. High-proportioned activation of the dormant axillary buds on stems determined the branch numbers of rapeseed plants. Here, transcriptome analyses were conducted on axillary buds in four sequential developing stages, that is, dormant, temporarily dormant, being activated, and elongating (already activated). Surprisingly, the transcription of the majority of TIFY genes (65 of the 70) significantly decreased on the activation of buds. GO enrichment analysis and hormone treatments indicated that the transcription of TIFY family genes can be strongly induced by jasmonic acid, implying that the TIFY family genes may be involved in the regulation of jasmonic acid-mediated branch development. These results shed light on the roles of TIFY family genes in plant architecture.
Collapse
Affiliation(s)
| | | | | | | | - Jiangwei Qiao
- Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (Y.L.); (Q.Z.); (L.W.); (X.W.); (H.W.)
| | | |
Collapse
|
4
|
Ray R, Halitschke R, Gase K, Leddy SM, Schuman MC, Rodde N, Baldwin IT. A persistent major mutation in canonical jasmonate signaling is embedded in an herbivory-elicited gene network. Proc Natl Acad Sci U S A 2023; 120:e2308500120. [PMID: 37607232 PMCID: PMC10466192 DOI: 10.1073/pnas.2308500120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
When insect herbivores attack plants, elicitors from oral secretions and regurgitants (OS) enter wounds during feeding, eliciting defense responses. These generally require plant jasmonate (JA) signaling, specifically, a jasmonoyl-L-isoleucine (JA-Ile) burst, for their activation and are well studied in the native tobacco Nicotiana attenuata. We used intraspecific diversity captured in a 26-parent MAGIC population planted in nature and an updated genome assembly to impute natural variation in the OS-elicited JA-Ile burst linked to a mutation in the JA-Ile biosynthetic gene NaJAR4. Experiments revealed that NaJAR4 variants were associated with higher fitness in the absence of herbivores but compromised foliar defenses, with two NaJAR homologues (4 and 6) complementing each other spatially and temporally. From decade-long seed collections of natural populations, we uncovered enzymatically inactive variants occurring at variable frequencies, consistent with a balancing selection regime maintaining variants. Integrative analyses of OS-induced transcriptomes and metabolomes of natural accessions revealed that NaJAR4 is embedded in a nonlinear complex gene coexpression network orchestrating responses to OS, which we tested by silencing four hub genes in two connected coexpressed networks and examining their OS-elicited metabolic responses. Lines silenced in two hub genes (NaGLR and NaFB67) co-occurring in the NaJAR4/6 module showed responses proportional to JA-Ile accumulations; two from an adjacent module (NaERF and NaFB61) had constitutively expressed defenses with high resistance. We infer that mutations with large fitness consequences can persist in natural populations due to compensatory responses from gene networks, which allow for diversification in conserved signaling pathways and are generally consistent with predictions of an omnigene model.
Collapse
Affiliation(s)
- Rishav Ray
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Klaus Gase
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Sabrina M. Leddy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14850
| | - Meredith C. Schuman
- Department of Geography, University of Zurich, 8006Zurich, Switzerland
- Department of Chemistry, University of Zurich, 8006Zurich, Switzerland
| | - Nathalie Rodde
- Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Centre National de Resources Génomiques Végétales, French Plant Genomic Resource Center, Castanet TolosanF-31326, France
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| |
Collapse
|
5
|
Savchenko T, Degtyaryov E, Radzyukevich Y, Buryak V. Therapeutic Potential of Plant Oxylipins. Int J Mol Sci 2022; 23:14627. [PMID: 36498955 PMCID: PMC9741157 DOI: 10.3390/ijms232314627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
For immobile plants, the main means of protection against adverse environmental factors is the biosynthesis of various secondary (specialized) metabolites. The extreme diversity and high biological activity of these metabolites determine the researchers' interest in plants as a source of therapeutic agents. Oxylipins, oxygenated derivatives of fatty acids, are particularly promising in this regard. Plant oxylipins, which are characterized by a diversity of chemical structures, can exert protective and therapeutic properties in animal cells. While the therapeutic potential of some classes of plant oxylipins, such as jasmonates and acetylenic oxylipins, has been analyzed thoroughly, other oxylipins are barely studied in this regard. Here, we present a comprehensive overview of the therapeutic potential of all major classes of plant oxylipins, including derivatives of acetylenic fatty acids, jasmonates, six- and nine-carbon aldehydes, oxy-, epoxy-, and hydroxy-derivatives of fatty acids, as well as spontaneously formed phytoprostanes and phytofurans. The presented analysis will provide an impetus for further research investigating the beneficial properties of these secondary metabolites and bringing them closer to practical applications.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Evgeny Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Puschchino State Institute of Natural Sciences, Prospect Nauki st., 3, 142290 Pushchino, Russia
| | - Yaroslav Radzyukevich
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vlada Buryak
- Faculty of Biotechnology, Moscow State University, Leninskie Gory 1, str. 51, 119991 Moscow, Russia
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
6
|
Ma P, Pei T, Lv B, Wang M, Dong J, Liang Z. Functional pleiotropism, diversity, and redundancy of Salvia miltiorrhiza Bunge JAZ family proteins in jasmonate-induced tanshinone and phenolic acid biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhac166. [PMID: 36204204 PMCID: PMC9531341 DOI: 10.1093/hr/uhac166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Jasmonate (JA) signaling regulates plant growth and development, biotic and abiotic stress tolerance, and primary and secondary metabolism biosynthesis. It is extensively modulated by JA-ZIM-domain (JAZ) family genes. In previous work, we obtained nine SmJAZ genes of Salvia miltiorrhiza and proved that SmJAZ8 was the core repressor of JA-induced tanshinone and phenolic acid biosynthesis. Here, we demonstrate that SmJAZ3 and SmJAZ4 act as repressors of JA-induced biosynthesis of tanshinones and salvianolic acid B (Sal B). This suggests that SmJAZ3/4 are functionally redundant in tanshinone and Sal B biosynthesis. SmJAZ1/2/5/6/9 are activators of JA-induced tanshinone biosynthesis and repressors of JA-induced Sal B biosynthesis. This demonstrates the redundancy and diversity of SmJAZ1/2/5/6/9 functions. Besides, SmJAZ10 inhibited JA-induced Sal B synthesis, but had no effect on the synthesis of tanshinone. Two-hybrid screening (Y2H) showed that SmJAZs formed homologous or heterogeneous dimers. Y2H and firefly luciferase complementation imaging (LCI) assays revealed that SmJAZs also formed a complex regulatory network with SmMYC2a, SmMYC2b, SmMYB39, and SmPAP1. Quantitative reverse transcription-PCR (qRT-PCR) indicated that SmJAZs regulated each other at the transcriptional level. Herein, we prove that SmJAZs have functional pleiotropism, diversity, and redundancy in JA-induced tanshinone and phenolic acid biosynthesis. This study provides an important clue for further understanding the inherent biological significance and molecular mechanisms of the JAZ family as the gene number increases during plant evolution.
Collapse
Affiliation(s)
| | | | | | - Mei Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | | | | |
Collapse
|
7
|
Sun B, Shang L, Li Y, Zhang Q, Chu Z, He S, Yang W, Ding X. Ectopic Expression of OsJAZs Alters Plant Defense and Development. Int J Mol Sci 2022; 23:ijms23094581. [PMID: 35562972 PMCID: PMC9103030 DOI: 10.3390/ijms23094581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
A key step in jasmonic acid (JA) signaling is the ligand-dependent assembly of a coreceptor complex comprising the F-box protein COI1 and JAZ transcriptional repressors. The assembly of this receptor complex results in proteasome-mediated degradation of JAZ repressors, which in turn bind and repress MYC transcription factors. Many studies on JAZs have been performed in Arabidopsis thaliana, but the function of JAZs in rice is largely unknown. To systematically reveal the function of OsJAZs, in this study, we compared the various phenotypes resulting from 13 OsJAZs via ectopic expression in Arabidopsis thaliana and the phenotypes of 12 AtJAZs overexpression (OE) lines. Phylogenetic analysis showed that the 25 proteins could be divided into three major groups. Yeast two-hybrid (Y2H) assays revealed that most OsJAZ proteins could form homodimers or heterodimers. The statistical results showed that the phenotypes of the OsJAZ OE plants were quite different from those of AtJAZ OE plants in terms of plant growth, development, and immunity. As an example, compared with other JAZ OE plants, OsJAZ11 OE plants exhibited a JA-insensitive phenotype and enhanced resistance to Pst DC3000. The protein stability after JA treatment of OsJAZ11 emphasized the specific function of the protein. This study aimed to explore the commonalities and characteristics of different JAZ proteins functions from a genetic perspective, and to screen genes with disease resistance value. Overall, the results of this study provide insights for further functional analysis of rice JAZ family proteins.
Collapse
Affiliation(s)
- Baolong Sun
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Luyue Shang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Qiang Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Shengyang He
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Wei Yang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
- Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, College of Modern Agricultural, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (W.Y.); (X.D.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
- Correspondence: (W.Y.); (X.D.)
| |
Collapse
|
8
|
Zhang X, Ran W, Li X, Zhang J, Ye M, Lin S, Liu M, Sun X. Exogenous Application of Gallic Acid Induces the Direct Defense of Tea Plant Against Ectropis obliqua Caterpillars. FRONTIERS IN PLANT SCIENCE 2022; 13:833489. [PMID: 35211143 PMCID: PMC8861190 DOI: 10.3389/fpls.2022.833489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 06/02/2023]
Abstract
Gallic acid (GA), an important polyphenolic compound in the plant, is a well-known antioxidant, antihyperglycemic, and anti-lipid peroxidative agent. Recently, GA treatment exhibited ameliorative effects on plants in response to some abiotic stresses. However, the elicitation effect of GA on plant defense against herbivorous insects has not yet been reported. In this study, we found that the exogenous application of GA induced the direct defense of tea plant (Camellia sinensis) against tea geometrid (Ectropis obliqua) larvae, through activating jasmonic acid (JA) signaling and phenylpropanoid pathways. These signaling cascades resulted in the efficient induction of several defensive compounds. Among them, astragalin, naringenin, and epigallocatechin-3-gallate were the three of the most active anti-feeding compounds. However, the exogenous GA treatment did not affect the preference of E. obliqua female moths and larval parasitoid Apanteles sp. Our study suggests that GA may serve as an elicitor that triggers a direct defense response against tea geometrid larvae in tea plants. This study will help to deepen the understanding of the interaction between plants and phytophagous insects and also provide theoretical and technical guidance for the development of plant defense elicitors.
Collapse
Affiliation(s)
- Xin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Wei Ran
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xiwang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Meng Ye
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Songbo Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Miaomiao Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
9
|
Bai Y, Yang C, Halitschke R, Paetz C, Kessler D, Burkard K, Gaquerel E, Baldwin IT, Li D. Natural history-guided omics reveals plant defensive chemistry against leafhopper pests. Science 2022; 375:eabm2948. [PMID: 35113706 DOI: 10.1126/science.abm2948] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although much is known about plant traits that function in nonhost resistance against pathogens, little is known about nonhost resistance against herbivores, despite its agricultural importance. Empoasca leafhoppers, serious agricultural pests, identify host plants by eavesdropping on unknown outputs of jasmonate (JA)-mediated signaling. Forward- and reverse-genetics lines of a native tobacco plant were screened in native habitats with native herbivores using high-throughput genomic, transcriptomic, and metabolomic tools to reveal an Empoasca-elicited JA-JAZi module. This module induces an uncharacterized caffeoylputrescine-green leaf volatile compound, catalyzed by a polyphenol oxidase in a Michael addition reaction, which we reconstitute in vitro; engineer in crop plants, where it requires a berberine bridge enzyme-like 2 (BBL2) for its synthesis; and show that it confers resistance to leafhoppers. Natural history-guided forward genetics reveals a conserved nonhost resistance mechanism useful for crop protection.
Collapse
Affiliation(s)
- Yuechen Bai
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Christian Paetz
- Department of Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Danny Kessler
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Konrad Burkard
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Dapeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Key Genes in the JAZ Signaling Pathway Are Up-Regulated Faster and More Abundantly in Caterpillar-Resistant Maize. J Chem Ecol 2022; 48:179-195. [PMID: 34982368 DOI: 10.1007/s10886-021-01342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Jasmonic acid (JA) and its derivatives, collectively known as jasmonates (JAs), are important signaling hormones for plant responses against chewing herbivores. In JA signaling networks, jasmonate ZIM-domain (JAZ) proteins are transcriptional repressors that regulate JA-modulated downstream herbivore defenses. JAZ repressors are widely presented in land plants, however, there is only limited information about the regulation/function of JAZ proteins in maize. In this study, we performed a comprehensive expression analysis of ZmJAZ genes with other selected genes in the jasmonate pathway in response to feeding by fall armyworm (Spodoptera frugiperda, FAW), mechanical wounding, and exogenous hormone treatments in two maize genotypes differing in FAW resistance. Results showed that transcript levels of JAZ genes and several key genes in JA-signaling and biosynthesis pathways were rapidly and abundantly expressed in both genotypes in response to these various treatments. However, there were key differences between the two genotypes in the expression of ZmJAZ1 and ZmCOI1a, these two genes were expressed significantly rapidly and abundantly in the resistant line which was tightly regulated by endogenous JA level upon feeding. For instance, transcript levels of ZmJAZ1 increase dramatically within 30 min of FAW-fed Mp708 but not Tx601, correlating with the JA accumulation. The results also demonstrated that wounding or JA treatment alone was not as effective as FAW feeding; this suggests that insect-derived factors are required for optimal defense responses.
Collapse
|
11
|
Joo Y, Kim H, Kang M, Lee G, Choung S, Kaur H, Oh S, Choi JW, Ralph J, Baldwin IT, Kim SG. Pith-specific lignification in Nicotiana attenuata as a defense against a stem-boring herbivore. THE NEW PHYTOLOGIST 2021; 232:332-344. [PMID: 34171146 DOI: 10.1111/nph.17583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Plants have developed tissue-specific defense strategies in response to various herbivores with different feeding habits. Although defense responses to leaf-chewing insects have been well studied, little is known about stem-specific responses, particularly in the pith, to stem-boring herbivores. To understand the stem-specific defense, we first conducted a comparative transcriptomic analysis of the wild tobacco Nicotiana attenuata before and after attack by the leaf-chewing herbivore Manduca sexta and the stem borer Trichobaris mucorea. When the stem-boring herbivore attacked, lignin-associated genes were upregulated specifically in the inner parenchymal cells of the stem, the pith; lignin also accumulated highly in the attacked pith. Silencing the lignin biosynthetic gene cinnamyl alcohol dehydrogenase enhanced the performance of the stem-boring herbivore but had no effect on the growth of the leaf-chewing herbivore. Two-dimensional nuclear magnetic resonance results revealed that lignified pith contains feruloyltyramine as an unusual lignin component in the cell wall, as a response against stem-boring herbivore attack. Pith-specific lignification induced by the stem-boring herbivore was modulated by both jasmonate and ethylene signaling. These results suggest that lignin provides a stem-specific inducible barrier, protecting plants against stem-boring insects.
Collapse
Affiliation(s)
- Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Korea
- Department of Biology, Chungbuk National University, Cheongju, 28644, Korea
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave., Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, 1552 University Ave., Madison, WI, 53726, USA
| | - Moonyoung Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Korea
| | - Gisuk Lee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Korea
| | - Sungjun Choung
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Korea
| | - Harleen Kaur
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Shinyoung Oh
- Graduate School of International Agricultural Technology, Seoul National University, Pyoeng-Chang, 25354, Korea
| | - Jun Weon Choi
- Graduate School of International Agricultural Technology, Seoul National University, Pyoeng-Chang, 25354, Korea
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave., Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, 1552 University Ave., Madison, WI, 53726, USA
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Korea
| |
Collapse
|
12
|
Zhao C, Geng X, Yang Y, Chai Y, Song Z, Xi C, Liu K, Zhao H, Wang Y, Wang B, Timko MP, Han S. NtAIDP1, a novel NtJAZ interacting protein, binds to an AT-rich region to activate the transcription of jasmonate-inducible genes in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153452. [PMID: 34098414 DOI: 10.1016/j.jplph.2021.153452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
In plants, jasmonate ZIM-domain proteins (JAZs) act as critical regulators, interacting physically with transcription factors (TFs) and other transcriptional regulators to modulate jasmonate (JA)-responsive gene expression and participate in crosstalk with other hormone signalling pathways. Identifying novel JAZ-interacting proteins will provide new insights into JA signalling cascades in plants. Here, we performed yeast two-hybrid screening to identify 70 NtJAZ1-interacting proteins, including an A/T-rich interaction domain containing protein 1 (NtAIDP1) from JA-treated tobacco Bright Yellow-2 (BY-2) cells. NtAIDP1 is localised in the nucleus and interacts with NtJAZ1 via its C-terminal heat shock protein 20 (HSP) domain. Aside from NtJAZ1, NtAIDP1 also interacts with other JA-inducible NtJAZs, including NtJAZ2b, NtJAZ2b.2, NtJAZ5, NtJAZ7, NtJAZ11 and NtJAZ12, but not with NtJAZ3, NtJAZ3b or NtJAZ10, and interacts with NtNINJA, NtDELLA1 and NtDELLA2 in the yeast two-hybrid assay. Furthermore, NtAIDP1 binds to the AT-rich region of the GAG fragment of the putrescine N-methyltransferase 1a (NtPMT1a) promoter and activates the transcriptional activity of the GAG fragment, whereas NtMYC2a interacts with and competitively inhibits the transactivational activity of NtAIDP1 in Arabidopsis mesophyll protoplasts. Overexpression of NtAIDP1 promotes the transcription of NtPDF1.2 and NtJAZ1, but has little effect on the expression of NtPMT1a, quinolinate phosphoribosyltransferase 2 (NtQPT2), and NtMYC2a in tobacco. These results indicate that NtAIDP1 is a new component of the JA signalling pathway and is involved in JA-regulated gene expression.
Collapse
Affiliation(s)
- Caiyun Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaoqing Geng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuping Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Yuhui Chai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, 650021, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Kai Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, 650021, China.
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA.
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
13
|
Han Y, Luthe D. Identification and evolution analysis of the JAZ gene family in maize. BMC Genomics 2021; 22:256. [PMID: 33838665 PMCID: PMC8037931 DOI: 10.1186/s12864-021-07522-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background Jasmonates (JAs) are important for plants to coordinate growth, reproduction, and defense responses. In JA signaling, jasmonate ZIM-domain (JAZ) proteins serve as master regulators at the initial stage of herbivores attacks. Although discovered in many plant species, little in-depth characterization of JAZ gene expression has been reported in the agronomically important crop, maize (Zea mays L.). Results In this study 16 JAZ genes from the maize genome were identified and classified. Phylogenetic analyses were performed from maize, rice, sorghum, Brachypodium, and Arabidopsis using deduced protein sequences, total six clades were proposed and conservation was observed in each group, such as similar gene exon/intron structures. Synteny analysis across four monocots indicated these JAZ gene families had a common ancestor, and duplication events in maize genome may drive the expansion of JAZ gene family, including genome-wide duplication (GWD), transposon, and/or tandem duplication. Strong purifying selection acted on all JAZ genes except those in group 4, which were under neutral selection. Further, we cloned three paralogous JAZ gene pairs from two maize inbreds differing in JA levels and insect resistance, and gene polymorphisms were observed between two inbreds. Conclusions Here we analyzed the composition and evolution of JAZ genes in maize with three other monocot plants. Extensive phylogenetic and synteny analysis revealed the expansion and selection fate of maize JAZ. This is the first study comparing the difference between two inbreds, and we propose genotype-specific JAZ gene expression might be present in maize plants. Since genetic redundancy in JAZ gene family hampers our understanding of their role in response to specific elicitors, we hope this research could be pertinent to elucidating the defensive responses in plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07522-4.
Collapse
Affiliation(s)
- Yang Han
- The Pennsylvania State University, Plant Science, University Park, PA, USA
| | - Dawn Luthe
- The Pennsylvania State University, Plant Science, University Park, PA, USA.
| |
Collapse
|
14
|
Genome-Wide Identification of the Tify Gene Family and Their Expression Profiles in Response to Biotic and Abiotic Stresses in Tea Plants ( Camellia sinensis). Int J Mol Sci 2020; 21:ijms21218316. [PMID: 33167605 PMCID: PMC7664218 DOI: 10.3390/ijms21218316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
The TIFY family is a plant-specific gene family that is involved in regulating a variety of plant processes, including developmental and defense responses. The chromosome-level genome of the tea plant (Camellia sinensis) has recently been released, but a comprehensive view of the TIFY family in C. sinensis (the CsTIFY genes) is lacking. The current study performed an extensive genome-wide identification of CsTIFY genes. The phylogenetics, chromosome location, exon/intron structure, and conserved domains of these genes were analyzed to characterize the members of the CsTIFY family. The expression profiles of the CsTIFY genes in four organs were analyzed, and they showed different spatial expression patterns. All CsJAZ genes were observed to be induced by jasmonate acid (JA) and exhibited different responses to abiotic and biotic stresses. Six of seven CsJAZ genes (CsJAZ1, CsJAZ2, CsJAZ3, CsJAZ4, CsJAZ7, and CsJAZ8) were upregulated by mechanical wounding and infestation with the tea geometrid (Ectropis obliqua), while infection with tea anthracnose (Colletotrichum camelliae) primarily upregulated the expression levels of CsJAZ1 and CsJAZ10. In addition, CsJAZs were observed to interact with CsMYC2 and AtMYC2. Therefore, the results of this study may contribute to the functional characterization of the CsTIFY genes, especially the members of the JAZ subfamily, as regulators of the JA-mediated defense response in tea plant.
Collapse
|
15
|
Singh AP, Pandey BK, Mehra P, Heitz T, Giri J. OsJAZ9 overexpression modulates jasmonic acid biosynthesis and potassium deficiency responses in rice. PLANT MOLECULAR BIOLOGY 2020; 104:397-410. [PMID: 32803476 DOI: 10.1007/s11103-020-01047-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Enhanced bioactive JA (JA-Ile) accumulation in OsJAZ9 overexpressing rice helps plants tolerate K deficiency. Potassium (K) represents up to 10% of the plant's total dry biomass, and its deficiency makes plants highly susceptible to both abiotic and biotic stresses. K shortage results in the inhibition of root and shoots growth, but the underlying mechanism of this response is unclear. Our RNA-Seq and qPCR analysis suggested leading roles for JA pathway genes under K deficiency in rice. Notably, K deficiency and JA application produced similar phenotypic and transcriptional responses. Here, we integrated molecular, physiological and morphological studies to analyze the role of OsJAZ9 in JA homeostasis and K deficiency responses. We raised OsJAZ9 over-expression, knockdown, transcriptional reporter, translational reporter and C-terminal deleted translational reporter lines in rice to establish the role of JA signaling in K ion homeostasis. JA profiling revealed significantly increased JA-Ile levels in OsJAZ9 OE lines under K deficiency. Furthermore, we established that OsJAZ9 overexpression and knockdown result in K deficiency tolerance and sensitivity, respectively, by modulating various K transporters and root system architecture. Our data provide evidence on the crucial roles of OsJAZ9 for improving K deficiency tolerance in rice by altering JA levels and JA responses.
Collapse
Affiliation(s)
- Ajit Pal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Bipin K Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Poonam Mehra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
16
|
Mujiono K, Tohi T, Sobhy IS, Hojo Y, Ho NT, Shinya T, Galis I. Ethylene functions as a suppressor of volatile production in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6491-6511. [PMID: 32697299 DOI: 10.1093/jxb/eraa341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
We examined the role of ethylene in the production of rice (Oryza sativa) volatile organic compounds (VOCs), which act as indirect defense signals against herbivores in tritrophic interactions. Rice plants were exposed to exogenous ethylene (1 ppm) after simulated herbivory, which consisted of mechanical wounding supplemented with oral secretions (WOS) from the generalist herbivore larva Mythimna loreyi. Ethylene treatment highly suppressed VOCs in WOS-treated rice leaves, which was further corroborated by the reduced transcript levels of major VOC biosynthesis genes in ethylene-treated rice. In contrast, the accumulation of jasmonates (JA), known to control VOCs in higher plants, and transcript levels of primary JA response genes, including OsMYC2, were not largely affected by ethylene application. At the functional level, flooding is known to promote internode elongation in young rice via ethylene signaling. Consistent with the negative role of ethylene on VOC genes, the accumulation of VOCs in water-submerged rice leaves was suppressed. Furthermore, in mature rice plants, which naturally produce less volatiles, VOCs could be rescued by the application of the ethylene perception inhibitor 1-methylcyclopropene. Our data suggest that ethylene acts as an endogenous suppressor of VOCs in rice plants during development and under stress.
Collapse
Affiliation(s)
- Kadis Mujiono
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Faculty of Agriculture, Mulawarman University, Samarinda, Indonesia
| | - Tilisa Tohi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Islam S Sobhy
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Nhan Thanh Ho
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Cuu Long Delta Rice Research Institute, Can Tho, Vietnam
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
17
|
Pradhan M, Pandey P, Baldwin IT, Pandey SP. Argonaute4 Modulates Resistance to Fusarium brachygibbosum Infection by Regulating Jasmonic Acid Signaling. PLANT PHYSIOLOGY 2020; 184:1128-1152. [PMID: 32723807 PMCID: PMC7536687 DOI: 10.1104/pp.20.00171] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/14/2020] [Indexed: 05/06/2023]
Abstract
Argonautes (AGOs) associate with noncoding RNAs to regulate gene expression during development and stress adaptation. Their role in plant immunity against hemibiotrophic fungal infection remains poorly understood. Here, we explore the function of AGOs in the interaction of wild tobacco (Nicotiana attenuata) with a naturally occurring hemibiotrophic pathogen, Fusarium brachygibbosum Among all AGOs, only transcripts of AGO4 were elicited after fungal infection. The disease progressed more rapidly in AGO4-silenced (irAGO4) plants than in wild type, and small RNA (smRNA) profiling revealed that 24-nucleotide smRNA accumulation was severely abrogated in irAGO4 plants. Unique microRNAs (miRNAs: 130 conserved and 208 novel, including 11 canonical miRNA sequence variants known as "isomiRs") were identified in infected plants; silencing of AGO4 strongly changed miRNA accumulation dynamics. Time-course studies revealed that infection increased accumulation of abscisic acid, jasmonates, and salicylic acid in wild type; in irAGO4 plants, infection accumulated lower jasmonate levels and lower transcripts of jasmonic acid (JA) biosynthesis genes. Treating irAGO4 plants with JA, methyl jasmonate, or cis-(+)-12-oxo-phytodienoic acid restored wild-type levels of resistance. Silencing expression of RNA-directed RNA polymerases RdR1 and RdR2 (but not RdR3) and Dicer-like3 (DCL3, but not DCL2 or DCL4) increased susceptibility to F brachygibbosum The relevance of AGO4, RdR1, RdR2, and DCL3 in a natural setting was revealed when plants individually silenced in their expression (and their binary combinations) were planted in a diseased field plot in the Great Basin Desert of Utah. These plants were more susceptible to infection and accumulated lower JA levels than wild type. We infer that AGO4-dependent smRNAs play a central role in modulating JA biogenesis and signaling during hemibiotrophic fungal infections.
Collapse
Affiliation(s)
- Maitree Pradhan
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Priyanka Pandey
- National Institute of Biomedical Genomics, Kalyani, 741251 West Bengal, India
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Shree P Pandey
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
18
|
OsJAZ13 Negatively Regulates Jasmonate Signaling and Activates Hypersensitive Cell Death Response in Rice. Int J Mol Sci 2020; 21:ijms21124379. [PMID: 32575555 PMCID: PMC7352843 DOI: 10.3390/ijms21124379] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Jasmonate ZIM-domain (JAZ) proteins belong to the subgroup of TIFY family and act as key regulators of jasmonate (JA) responses in plants. To date, only a few JAZ proteins have been characterized in rice. Here, we report the identification and function of rice OsJAZ13 gene. The gene encodes three different splice variants: OsJAZ13a, OsJAZ13b, and OsJAZ13c. The expression of OsJAZ13 was mainly activated in vegetative tissues and transiently responded to JA and ethylene. Subcellular localization analysis indicated OsJAZ13a is a nuclear protein. Yeast two-hybrid assays revealed OsJAZ13a directly interacts with OsMYC2, and also with OsCOI1, in a COR-dependent manner. Furthermore, OsJAZ13a recruited a general co-repressor OsTPL via an adaptor protein OsNINJA. Remarkably, overexpression of OsJAZ13a resulted in the attenuation of root by methyl JA. Furthermore, OsJAZ13a-overexpressing plants developed lesion mimics in the sheath after approximately 30–45 days of growth. Tillers with necrosis died a few days later. Gene-expression analysis suggested the role of OsJAZ13 in modulating the expression of JA/ethylene response-related genes to regulate growth and activate hypersensitive cell death. Taken together, these observations describe a novel regulatory mechanism in rice and provide the basis for elucidating the function of OsJAZ13 in signal transduction and cell death in plants.
Collapse
|
19
|
Shen J, Zou Z, Xing H, Duan Y, Zhu X, Ma Y, Wang Y, Fang W. Genome-Wide Analysis Reveals Stress and Hormone Responsive Patterns of JAZ Family Genes in Camellia Sinensis. Int J Mol Sci 2020; 21:ijms21072433. [PMID: 32244526 PMCID: PMC7177655 DOI: 10.3390/ijms21072433] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/17/2023] Open
Abstract
JAZ (Jasmonate ZIM-domain) proteins play pervasive roles in plant development and defense reaction. However, limited information is known about the JAZ family in Camellia sinensis. In this study, 12 non-redundant JAZ genes were identified from the tea plant genome database. Phylogenetic analysis showed that the 12 JAZ proteins belong to three groups. The cis-elements in promoters of CsJAZ genes and CsJAZ proteins interaction networks were also analyzed. Quantitative RT–PCR analysis showed that 7 CsJAZ genes were preferentially expressed in roots. Furthermore, the CsJAZ expressions were differentially induced by cold, heat, polyethylene glycol (PEG), methyl jasmonate (MeJA), and gibberellin (GA) stimuli. The Pearson correlations analysis based on expression levels showed that the CsJAZ gene pairs were differentially expressed under different stresses, indicating that CsJAZs might exhibit synergistic effects in response to various stresses. Subcellular localization assay demonstrated that CsJAZ3, CsJAZ10, and CsJAZ11 fused proteins were localized in the cell nucleus. Additionally, the overexpression of CsJAZ3, CsJAZ10, and CsJAZ11 in E. coli enhanced the growth of recombinant cells under abiotic stresses. In summary, this study will facilitate the understanding of the CsJAZ family in Camellia sinensis and provide new insights into the molecular mechanism of tea plant response to abiotic stresses and hormonal stimuli.
Collapse
Affiliation(s)
- Jiazhi Shen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.S.); (H.X.); (Y.D.); (X.Z.); (Y.M.); (Y.W.)
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Hongqing Xing
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.S.); (H.X.); (Y.D.); (X.Z.); (Y.M.); (Y.W.)
| | - Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.S.); (H.X.); (Y.D.); (X.Z.); (Y.M.); (Y.W.)
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.S.); (H.X.); (Y.D.); (X.Z.); (Y.M.); (Y.W.)
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.S.); (H.X.); (Y.D.); (X.Z.); (Y.M.); (Y.W.)
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.S.); (H.X.); (Y.D.); (X.Z.); (Y.M.); (Y.W.)
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.S.); (H.X.); (Y.D.); (X.Z.); (Y.M.); (Y.W.)
- Correspondence: ; Tel.: +86-25-8439-5182; Fax: +86-25-84395182
| |
Collapse
|
20
|
Zhang G, Yan X, Zhang S, Zhu Y, Zhang X, Qiao H, van Nocker S, Li Z, Wang X. The jasmonate-ZIM domain gene VqJAZ4 from the Chinese wild grape Vitis quinquangularis improves resistance to powdery mildew in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:329-339. [PMID: 31539762 DOI: 10.1016/j.plaphy.2019.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/02/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Grape (Vitis vinifera L.) is one of the most widely cultivated and economically important fruits. Most cultivated varieties of grape are highly susceptible to fungal diseases, and one of the most pervasive is powdery mildew, caused by Uncinula necator. The jasmonate-ZIM domain (JAZ) family proteins are critical for plant responses to environmental stresses. Here, we report the characterization of VqJAZ4, a jasmonate-ZIM domain gene isolated from Vitis quinquangularis, a Chinese wild Vitis species that exhibits high tolerance to several kinds of fungi. Subcellular localization assay indicated that the VqJAZ4 protein is targeted to the nucleus. The VqJAZ4 gene was strongly induced by U. necator inoculation, as well as by the defense-related hormones methyl jasmonate (MeJA) and salicylic acid (SA). The upregulation of VqJAZ4 after inoculation was dependent on its promoter sequences. Expression of VqJAZ4 in Arabidopsis thaliana improved resistance to powdery mildew. Histochemical staining assays indicated that plants expressing VqJAZ4 displayed a larger number of dead cells and stronger reactive oxygen species (ROS) burst than non-transgenic control (NTC) plants. Expression analysis of several disease-related genes suggested that VqJAZ4 expression enhanced defense responses though SA and/or JA signaling pathways. We also found that VqJAZ4-expressing Arabidopsis showed increased susceptibility to Botrytis cinerea. Taken together, these results provide evidence that VqJAZ4 may play an important role in response to fungal pathogens in grape, and may represent a candidate for future grape molecular breeding for disease resistance.
Collapse
Affiliation(s)
- Guofeng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxiao Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanxun Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiuming Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hengbo Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
21
|
Ray R, Li D, Halitschke R, Baldwin IT. Using natural variation to achieve a whole-plant functional understanding of the responses mediated by jasmonate signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:414-425. [PMID: 30927293 DOI: 10.1111/tpj.14331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
The dramatic advances in our understanding of the molecular biology and biochemistry of jasmonate (JA) signaling have been the subject of several excellent recent reviews that have highlighted the phytohormonal function of this signaling pathway. Here, we focus on the responses mediated by JA signaling which have consequences for a plant's Darwinian fitness, i.e. the organism-level function of JA signaling. The most diverse module in the signaling cascade, the JAZ proteins, and their interactions with other proteins and transcription factors, allow this canonical signaling cascade to mediate a bewildering array of traits in different tissues at different times; the functional coherence of these diverse responses are best appreciated in an organismal/ecological context. From published work, it appears that jasmonates can function as the 'Swiss Army knife' of plant signaling, mediating many different biotic and abiotic stress and developmental responses that allow plants to contextualize their responses to their frequently changing local environments and optimize their fitness. We propose that a deeper analysis of the natural variation in both within-plant and within-population JA signaling components is a profitable means of attaining a coherent whole-plant functional perspective of this signaling cascade, and provide examples of this approach from the Nicotiana attenuata system.
Collapse
Affiliation(s)
- Rishav Ray
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| |
Collapse
|
22
|
Zhang H, Li W, Niu D, Wang Z, Yan X, Yang X, Yang Y, Cui H. Tobacco transcription repressors NtJAZ: Potential involvement in abiotic stress response and glandular trichome induction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:388-397. [PMID: 31226508 DOI: 10.1016/j.plaphy.2019.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Members of the Jasmonate ZIM domain (JAZ) proteins act as transcriptional repressors in the jasmonate (JA) hormonal response. To characterize the potential roles of JAZ gene family in plant development and abiotic stress response, fifteen JAZs were identified based on the genome of Nicotiana tabacum. Structural analysis confirmed the presence of single Jas and TIFY motif. Tissue expression pattern analysis indicated that NtJAZ-2, -3, -5, and -10 were highly expressed in roots and NtJAZ-11 was expressed only in the cotyledons. The transcript level of NtJAZ-3, -5, -9, and -10 in the stem epidermis was higher than that in the stem without epidermis. Dynamic expression of NtJAZs exposed to abiotic stress and phytohormone indicated that the expression of most NtJAZs was activated by salicylic acid, methyl jasmonate, gibberellic acid, cold, salt, and heat stresses. With abscisic acid treatment, NtJAZ-1, -2, and -3 were not activated; NtJAZ-4, -5, and -6 were up-regulated; and the remaining NtJAZ genes were inhibited. With drought stress, the expression of NtJAZ-1, -2, -3, -4, -5, -6, -7, and -8 was up-regulated, whereas the transcript of the remaining genes was inhibited. Moreover, high concentration MeJA (more than 1 mM MeJA) had an effect on secreting trichome induction, but inhabited the plant growth. Nine NtJAZs may play important role in secreting trichome induction. These results indicate that the JAZ proteins are convergence points for various phytohormone signal networks, which are involved in abiotic stress responses.
Collapse
Affiliation(s)
- Hongying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenjiao Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dexin Niu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhaojun Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoxiao Yan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinling Yang
- Technology Center, China Tobacco Henan Industrial Co, Ltd., Zhengzhou, 450000, China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co, Ltd., Zhengzhou, 450000, China
| | - Hong Cui
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
23
|
Joo Y, Schuman MC, Goldberg JK, Wissgott A, Kim SG, Baldwin IT. Herbivory elicits changes in green leaf volatile production via jasmonate signaling and the circadian clock. PLANT, CELL & ENVIRONMENT 2019; 42:972-982. [PMID: 30378135 DOI: 10.1111/pce.13474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
The timing of plant volatile emissions is important for a robust indirect defense response. Green leaf volatiles (GLVs) are emitted by plants upon damage but can be suppressed by herbivore-associated elicitors, and the abundance and composition of GLVs vary depending on the timing of herbivore attack. We show that the GLV biosynthetic enzyme HYDROPEROXIDE LYASE (HPL) is transcriptionally regulated by the circadian clock in Nicotiana attenuata. In accordance with transcript abundance of NaHPL, GLV aldehyde pools in intact leaves peaked at night and at subjective night under diurnal and continuous light conditions, respectively. Moreover, although the basal abundance of NaHPL transcripts is upregulated by jasmonate (JA) signaling, JA does not regulate the reduction of NaHPL transcript abundance in damaged leaves by simulated herbivore treatment. Unexpectedly, the plant circadian clock was strongly altered when Manduca sexta larvae fed on N. attenuata, and this was also independent of JA signaling. Lastly, the temporal dynamics of NaHPL transcripts and total GLV emissions were strongly altered by M. sexta larval feeding. Our data suggest that the temporal dynamics of emitted GLV blends result from a combination of damage, JA signaling, herbivore-associated elicitors, and the plant circadian clock.
Collapse
Affiliation(s)
- Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jay K Goldberg
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Antje Wissgott
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
24
|
Guo Q, Yoshida Y, Major IT, Wang K, Sugimoto K, Kapali G, Havko NE, Benning C, Howe GA. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E10768-E10777. [PMID: 30348775 PMCID: PMC6233084 DOI: 10.1073/pnas.1811828115] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plant immune responses mediated by the hormone jasmonoyl-l-isoleucine (JA-Ile) are metabolically costly and often linked to reduced growth. Although it is known that JA-Ile activates defense responses by triggering the degradation of JASMONATE ZIM DOMAIN (JAZ) transcriptional repressor proteins, expansion of the JAZ gene family in vascular plants has hampered efforts to understand how this hormone impacts growth and other physiological tasks over the course of ontogeny. Here, we combined mutations within the 13-member Arabidopsis JAZ gene family to investigate the effects of chronic JAZ deficiency on growth, defense, and reproductive output. A higher-order mutant (jaz decuple, jazD) defective in 10 JAZ genes (JAZ1-7, -9, -10, and -13) exhibited robust resistance to insect herbivores and fungal pathogens, which was accompanied by slow vegetative growth and poor reproductive performance. Metabolic phenotypes of jazD discerned from global transcript and protein profiling were indicative of elevated carbon partitioning to amino acid-, protein-, and endoplasmic reticulum body-based defenses controlled by the JA-Ile and ethylene branches of immunity. Resource allocation to a strong defense sink in jazD leaves was associated with increased respiration and hallmarks of carbon starvation but no overt changes in photosynthetic rate. Depletion of the remaining JAZ repressors in jazD further exaggerated growth stunting, nearly abolished seed production and, under extreme conditions, caused spreading necrotic lesions and tissue death. Our results demonstrate that JAZ proteins promote growth and reproductive success at least in part by preventing catastrophic metabolic effects of an unrestrained immune response.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Yuki Yoshida
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Ian T Major
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Kun Wang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Koichi Sugimoto
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - George Kapali
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| | - Nathan E Havko
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| | - Christoph Benning
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Gregg A Howe
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824;
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
25
|
Pei T, Ma P, Ding K, Liu S, Jia Y, Ru M, Dong J, Liang Z. SmJAZ8 acts as a core repressor regulating JA-induced biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1663-1678. [PMID: 29281115 DOI: 10.1093/jxb/erx484] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 05/19/2023]
Abstract
Jasmonates (JAs) are important plant hormones that regulate a variety of plant development and defense processes, including biosynthesis of secondary metabolites. The JASMONATE ZIM DOMAIN (JAZ) proteins act as negative regulators in the JA signaling pathways of plants. We first verified that methyl jasmonate (MeJA) enhanced the accumulation of both salvianolic acids and tanshinones in Salvia miltiorrhiza (Danshen) hairy roots by inducing the expression of their biosynthetic pathway genes. Nine JAZ genes were cloned from Danshen and their expression levels in hairy roots were all increased by treatment with MeJA. When analyzed in detail, however, SmJAZ8 showed the strongest expression in the induced hairy roots. Overexpression or RNAi of SmJAZ8 deregulated or up-regulated the yields of salvianolic acids and tanshinones in the MeJA-induced transgenic hairy roots, respectively, and transcription factors and biosynthetic pathway genes showed an expression pattern that mirrored the production of the compounds. Genetic transformation of SmJAZ8 altered the expression of other SmJAZ genes, suggesting evidence of crosstalk occurring in JAZ-regulated secondary metabolism. Furthermore, the transcriptome analysis revealed a primary-secondary metabolism balance regulated by SmJAZ8. Altogether, we propose a novel role for SmJAZ8 as a negative feedback loop controller in the JA-induced biosynthesis of salvianolic acids and tanshinones.
Collapse
Affiliation(s)
- Tianlin Pei
- College of Life Sciences, Northwest A & F University, Yangling, China
| | - Pengda Ma
- College of Life Sciences, Northwest A & F University, Yangling, China
| | - Kai Ding
- College of Life Sciences, Northwest A & F University, Yangling, China
| | - Sijia Liu
- College of Life Sciences, Northwest A & F University, Yangling, China
| | - Yanyan Jia
- College of Life Sciences, Northwest A & F University, Yangling, China
| | - Mei Ru
- College of Life Sciences, Northwest A & F University, Yangling, China
| | - Juane Dong
- College of Life Sciences, Northwest A & F University, Yangling, China
| | - Zongsuo Liang
- College of Life Sciences, Northwest A & F University, Yangling, China
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
26
|
Schuman MC, Meldau S, Gaquerel E, Diezel C, McGale E, Greenfield S, Baldwin IT. The Active Jasmonate JA-Ile Regulates a Specific Subset of Plant Jasmonate-Mediated Resistance to Herbivores in Nature. FRONTIERS IN PLANT SCIENCE 2018; 9:787. [PMID: 29963064 PMCID: PMC6010948 DOI: 10.3389/fpls.2018.00787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/24/2018] [Indexed: 05/20/2023]
Abstract
The jasmonate hormones are essential regulators of plant defense against herbivores and include several dozen derivatives of the oxylipin jasmonic acid (JA). Among these, the conjugate jasmonoyl isoleucine (JA-Ile) has been shown to interact directly with the jasmonate co-receptor complex to regulate responses to jasmonate signaling. However, functional studies indicate that some aspects of jasmonate-mediated defense are not regulated by JA-Ile. Thus, it is not clear whether JA-Ile is best characterized as the master jasmonate regulator of defense, or if it regulates more specific aspects. We investigated possible functions of JA-Ile in anti-herbivore resistance of the wild tobacco Nicotiana attenuata, a model system for plant-herbivore interactions. We first analyzed the soluble and volatile secondary metabolomes of irJAR4xirJAR6, asLOX3, and WT plants, as well as an RNAi line targeting the jasmonate co-receptor CORONATINE INSENSITIVE 1 (irCOI1), following a standardized herbivory treatment. irJAR4xirJAR6 were the most similar to WT plants, having a ca. 60% overlap in differentially regulated metabolites with either asLOX3 or irCOI1. In contrast, while at least 25 volatiles differed between irCOI1 or asLOX3 and WT plants, there were few or no differences in herbivore-induced volatile emission between irJAR4xirJAR6 and WT plants, in glasshouse- or field-collected samples. We then measured the susceptibility of jasmonate-deficient vs. JA-Ile-deficient plants in nature, in comparison to wild-type (WT) controls, and found that JA-Ile-deficient plants (irJAR4xirJAR6) are much better defended even than a mildly jasmonate-deficient line (asLOX3). The differences among lines could be attributed to differences in damage from specific herbivores, which appeared to prefer either one or the other jasmonate-deficient phenotype. We further investigated the elicitation of one herbivore-induced volatile known to be jasmonate-regulated and to mediate resistance to herbivores: (E)-α-bergamotene. We found that JA was a more potent elicitor of (E)-α-bergamotene emission than was JA-Ile, and when treated with JA, irJAR4xirJAR6 plants emitted 20- to 40-fold as much (E)-α-bergamotene than WT. We conclude that JA-Ile regulates specific aspects of herbivore resistance in N. attenuata. This specificity may allow plants flexibility in their responses to herbivores and in managing trade-offs between resistance, vs. growth and reproduction, over the course of ontogeny.
Collapse
Affiliation(s)
- Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Meredith C. Schuman
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Celia Diezel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erica McGale
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sara Greenfield
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Plant Genetics, Brigham Young University, Provo, UT, United States
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
27
|
Lee G, Joo Y, Kim SG, Baldwin IT. What happens in the pith stays in the pith: tissue-localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:414-425. [PMID: 28805339 DOI: 10.1111/tpj.13663] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 05/09/2023]
Abstract
Herbivore attack is known to elicit systemic defense responses that spread throughout the host plant and influence the performance of other herbivores. While these plant-mediated indirect competitive interactions are well described, and the co-existence of herbivores from different feeding guilds is common, the mechanisms of co-existence are poorly understood. In both field and glasshouse experiments with a native tobacco, Nicotiana attenuata, we found no evidence of negative interactions when plants were simultaneously attacked by two spatially separated herbivores: a leaf chewer Manduca sexta and a stem borer Trichobaris mucorea. T. mucorea attack elicited jasmonic acid (JA) and jasmonoyl-l-isoleucine bursts in the pith of attacked stems similar to those that occur in leaves when M. sexta attacks N. attenuata leaves. Pith chlorogenic acid (CGA) levels increased 1000-fold to levels 6-fold higher than leaf levels after T. mucorea attack; these increases in pith CGA levels, which did not occur in M. sexta-attacked leaves, required JA signaling. With plants silenced in CGA biosynthesis (irHQT plants), CGA, as well as other caffeic acid conjugates, was demonstrated in both glasshouse and field experiments to function as a direct defense protecting piths against T. mucorea attack, but not against leaf chewers or sucking insects. T. mucorea attack does not systemically activate JA signaling in leaves, while M. sexta leaf-attack transiently induces detectable but minor pith JA levels that are dwarfed by local responses. We conclude that tissue-localized defense responses allow tissue-specialized herbivores to share the same host and occupy different chemical defense niches in the same hostplant.
Collapse
Affiliation(s)
- Gisuk Lee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| |
Collapse
|
28
|
Liu F, Sun T, Wang L, Su W, Gao S, Su Y, Xu L, Que Y. Plant jasmonate ZIM domain genes: shedding light on structure and expression patterns of JAZ gene family in sugarcane. BMC Genomics 2017; 18:771. [PMID: 29020924 PMCID: PMC5637078 DOI: 10.1186/s12864-017-4142-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sugarcane smut caused by Sporisorium scitamineum is one of the most severe fungal diseases in the sugarcane industry. Using a molecular biological technique to mine sugarcane resistance genes can provide gene resources for further genetic engineering of sugarcane disease-resistant breeding. Jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins, which involved in the responses to plant pathogens and abiotic stresses, are important signaling molecules of the jasmonic acid (JA) pathway. RESULTS Seven differentially expressed sugarcane JAZ genes, ScJAZ1-ScJAZ7, were mined from the transcriptome of sugarcane after inoculation with S. scitamineum. Bioinformatic analyses revealed that these seven ScJAZ genes encoded basic proteins that contain the TIFY and CCT_2 domains. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis demonstrated that the ScJAZ1-ScJAZ7 genes were tissue specific and differentially expressed under adverse stress. During S. scitamineum infection, the transcripts of ScJAZ4 and ScJAZ5 were both upregulated in the susceptible genotype ROC22 and the resistant genotype Yacheng05-179; ScJAZ1, ScJAZ2, ScJAZ3, and ScJAZ7 were downregulated in Yacheng05-179 and upregulated in ROC22; and the expression of ScJAZ6 did not change in ROC22, but was upregulated in Yacheng05-179. The transcripts of the seven ScJAZ genes were increased by the stimuli of salicylic acid and abscisic acid, particularly methyl jasmonate. The expression of the genes ScJAZ1-ScJAZ7 was immediately upregulated by the stressors hydrogen peroxide, sodium chloride, and copper chloride, whereas slightly induced after treatment with calcium chloride and polyethylene glycol. In addition, the expression of ScJAZ6, as well as seven tobacco immunity-associated marker genes were upregulated, and antimicrobial activity against Pseudomonas solanacearum and Fusarium solani var. coeruleum was observed during the transient overexpression of ScJAZ6 in Nicotiana benthamiana, suggesting that the ScJAZ6 gene is associated with plant immunity. CONCLUSIONS The different expression profiles of the ScJAZ1-ScJAZ7 genes during S. scitamineum infection, the positive response of ScJAZ1-ScJAZ7 to hormones and abiotic treatments, and the function analysis of the ScJAZ6 gene revealed their involvement in the defense against biotic and abiotic stresses. The findings of the present study facilitate further research on the ScJAZ gene family especially their regulatory mechanism in sugarcane.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ling Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
29
|
Pradhan M, Pandey P, Gase K, Sharaff M, Singh RK, Sethi A, Baldwin IT, Pandey SP. Argonaute 8 (AGO8) Mediates the Elicitation of Direct Defenses against Herbivory. PLANT PHYSIOLOGY 2017; 175:927-946. [PMID: 28811334 PMCID: PMC5619897 DOI: 10.1104/pp.17.00702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/11/2017] [Indexed: 05/04/2023]
Abstract
In Nicotiana attenuata, specific RNA-directed RNA polymerase (RdR1) and the Dicer-like (DCL3 and DCL4) proteins are recruited during herbivore attack to mediate the regulation of defense responses. However, the identity and role(s) of Argonautes (AGOs) involved in herbivory remain unknown. Of the 11 AGOs in the N. attenuata genome, we silenced the expression of 10. Plants silenced in NaAGO8 expression grew normally but were highly susceptible to herbivore attack. Larvae of Manduca sexta grew faster when consuming inverted-repeat stable transformants (irAGO8) plants but did not differ from the wild type when consuming plants silenced in AGO1 (a, b, and c), AGO2, AGO4 (a and b), AGO7, or AGO10 expression. irAGO8 plants were significantly compromised in herbivore-induced levels of defense metabolites such as nicotine, phenolamides, and diterpenoid glycosides. Time-course analyses revealed extensively altered microRNA profiles and the reduced accumulation of MYB8 transcripts and of the associated genes of the phenolamide and phenylpropanoid pathways as well as the nicotine biosynthetic pathway. A possible AGO8-modulated microRNA-messenger RNA target network was inferred. Furthermore, comparative analysis of domains revealed the diversity of AGO conformations, particularly in the small RNA-binding pocket, which may influence substrate recognition/binding and functional specificity. We infer that AGO8 plays a central role in the induction of direct defenses by modulating several regulatory nodes in the defense signaling network during herbivore response. Thus, our study identifies the effector AGO of the herbivore-induced small RNA machinery, which in N. attenuata now comprises RdR1, DCL3/4, and AGO8.
Collapse
Affiliation(s)
- Maitree Pradhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Priyanka Pandey
- National Institute of Biomedical Genomics, Kalyani, 741251 West Bengal, India
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Murali Sharaff
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Ravi K Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Avinash Sethi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Shree P Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| |
Collapse
|
30
|
Li R, Wang M, Wang Y, Schuman MC, Weinhold A, Schäfer M, Jiménez-Alemán GH, Barthel A, Baldwin IT. Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. Proc Natl Acad Sci U S A 2017; 114:E7205-E7214. [PMID: 28784761 PMCID: PMC5576791 DOI: 10.1073/pnas.1703463114] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optimal defense (OD) theory predicts that within a plant, tissues are defended in proportion to their fitness value and risk of predation. The fitness value of leaves varies greatly and leaves are protected by jasmonate (JA)-inducible defenses. Flowers are vehicles of Darwinian fitness in flowering plants and are attacked by herbivores and pathogens, but how they are defended is rarely investigated. We used Nicotiana attenuata, an ecological model plant with well-characterized herbivore interactions to characterize defense responses in flowers. Early floral stages constitutively accumulate greater amounts of two well-characterized defensive compounds, the volatile (E)-α-bergamotene and trypsin proteinase inhibitors (TPIs), which are also found in herbivore-induced leaves. Plants rendered deficient in JA biosynthesis or perception by RNA interference had significantly attenuated floral accumulations of defensive compounds known to be regulated by JA in leaves. By RNA-seq, we found a JAZ gene, NaJAZi, specifically expressed in early-stage floral tissues. Gene silencing revealed that NaJAZi functions as a flower-specific jasmonate repressor that regulates JAs, (E)-α-bergamotene, TPIs, and a defensin. Flowers silenced in NaJAZi are more resistant to tobacco budworm attack, a florivore. When the defensin was ectopically expressed in leaves, performance of Manduca sexta larvae, a folivore, decreased. NaJAZi physically interacts with a newly identified NINJA-like protein, but not the canonical NINJA. This NINJA-like recruits the corepressor TOPLESS that contributes to the suppressive function of NaJAZi on floral defenses. This study uncovers the defensive function of JA signaling in flowers, which includes components that tailor JA signaling to provide flower-specific defense.
Collapse
Affiliation(s)
- Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Yang Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Arne Weinhold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Andrea Barthel
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| |
Collapse
|
31
|
Yang Y, Yan P, Yi C, Li W, Chai Y, Fei L, Gao P, Zhao H, Wang Y, Timko MP, Wang B, Han S. Transcriptome-wide analysis of jasmonate-treated BY-2 cells reveals new transcriptional regulators associated with alkaloid formation in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:1-10. [PMID: 28527333 DOI: 10.1016/j.jplph.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 05/14/2023]
Abstract
Jasmonates (JAs) are well-known regulators of stress, defence, and secondary metabolism in plants, with JA perception triggering extensive transcriptional reprogramming, including both activation and/or repression of entire metabolic pathways. We performed RNA sequencing based transcriptomic profiling of tobacco BY-2 cells before and after treatment with methyl jasmonate (MeJA) to identify novel transcriptional regulators associated with alkaloid formation. A total of 107,140 unigenes were obtained through de novo assembly, and at least 33,213 transcripts (31%) encode proteins, in which 3419 transcription factors (TFs) were identified, representing 72 gene families, as well as 840 transcriptional regulators (TRs) distributed among 19 gene families. After MeJA treatment BY-2 cells, 7260 differentially expressed transcripts were characterised, which include 4443 MeJA-upregulated and 2817 MeJA-downregulated genes. Of these, 227 TFs/TRs in 36 families were specifically upregulated, and 102 TFs/TRs in 38 families were downregulated in MeJA-treated BY-2 cells. We further showed that the expression of 12 ethylene response factors and four basic helix-loop-helix factors increased at the transcriptional level after MeJA treatment in BY-2 cells and displayed specific expression patterns in nic mutants with or without MeJA treatments. Our data provide a catalogue of transcripts of tobacco BY-2 cells and benefit future study of JA-modulated regulation of secondary metabolism in tobacco.
Collapse
Affiliation(s)
- Yuping Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Pengcheng Yan
- Department of Computational Biology, Beijing Computing Center, Beijing 100094, China.
| | - Che Yi
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wenzheng Li
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, Yunnan 653100, China.
| | - Yuhui Chai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Lingling Fei
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Ping Gao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, Yunnan 653100, China.
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
32
|
Su X, Wei F, Huo Y, Xia Z. Comparative Physiological and Molecular Analyses of Two Contrasting Flue-Cured Tobacco Genotypes under Progressive Drought Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:827. [PMID: 28567053 PMCID: PMC5434153 DOI: 10.3389/fpls.2017.00827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/02/2017] [Indexed: 05/03/2023]
Abstract
Drought is a major environmental factor that limits crop growth and productivity. Flue-cured tobacco (Nicotiana tabacum) is one of the most important commercial crops worldwide and its productivity is vulnerable to drought. However, comparative analyses of physiological, biochemical and gene expression changes in flue-cured tobacco varieties differing in drought tolerance under long-term drought stress are scarce. In this study, drought stress responses of two flue-cured tobacco varieties, LJ851 and JX6007, were comparatively studied at the physiological and transcriptional levels. After exposing to progressive drought stress, the drought-tolerant LJ851 showed less growth inhibition and chlorophyll reduction than the drought-sensitive JX6007. Moreover, higher antioxidant enzyme activities and lower levels of H2O2, Malondialdehyde (MDA), and electrolyte leakage after drought stress were found in LJ851 when compared with JX6007. Further analysis showed that LJ851 plants had much less reductions than the JX6007 in the net photosynthesis rate and stomatal conductance during drought stress; indicating that LJ851 had better photosynthetic performance than JX6007 during drought. In addition, transcriptional expression analysis revealed that LJ851 exhibited significantly increased transcripts of several categories of drought-responsive genes in leaves and roots under drought conditions. Together, these results indicated that LJ851 was more drought-tolerant than JX6007 as evidenced by better photosynthetic performance, more powerful antioxidant system, and higher expression of stress defense genes during drought stress. This study will be valuable for the development of novel flue-cured tobacco varieties with improved drought tolerance by exploitation of natural genetic variations in the future.
Collapse
Affiliation(s)
- Xinhong Su
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
- Henan Institute of Tobacco ScienceZhengzhou, China
| | - Fengjie Wei
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
- Henan Institute of Tobacco ScienceZhengzhou, China
| | - Yongjin Huo
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Zongliang Xia
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
33
|
Genome-wide identification of the TIFY gene family in three cultivated Gossypium species and the expression of JAZ genes. Sci Rep 2017; 7:42418. [PMID: 28186193 PMCID: PMC5301204 DOI: 10.1038/srep42418] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/09/2017] [Indexed: 02/02/2023] Open
Abstract
TIFY proteins are plant-specific proteins containing TIFY, JAZ, PPD and ZML subfamilies. A total of 50, 54 and 28 members of the TIFY gene family in three cultivated cotton species—Gossypium hirsutum, Gossypium barbadense and Gossypium arboretum—were identified, respectively. The results of phylogenetic analysis showed that these TIFY genes were divided into eight clusters. The different clusters of gene family members often have similar gene structures, including the number of exons. The results of quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that different JAZ genes displayed distinct expression patterns in the leaves of upland cotton under treatment with Gibberellin (GA), methyl jasmonate (MeJA), Jasmonic acid (JA) and abscisic acid (ABA). Different groups of JAZ genes exhibited different expression patterns in cotton leaves infected with Verticillium dahliae. The results of the comparative analysis of TIFY genes in the three cultivated species will be useful for understanding the involvement of these genes in development and stress resistance in cotton.
Collapse
|
34
|
Brütting C, Schäfer M, Vanková R, Gase K, Baldwin IT, Meldau S. Changes in cytokinins are sufficient to alter developmental patterns of defense metabolites in Nicotiana attenuata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:15-30. [PMID: 27557345 PMCID: PMC5245775 DOI: 10.1111/tpj.13316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 05/05/2023]
Abstract
Plant defense metabolites are well known to be regulated developmentally. The optimal defense (OD) theory posits that a tssue's fitness values and probability of attack should determine defense metabolite allocations. Young leaves are expected to provide a larger fitness value to the plant, and therefore their defense allocations should be higher when compared with older leaves. The mechanisms that coordinate development with defense remain unknown and frequently confound tests of the OD theory predictions. Here we demonstrate that cytokinins (CKs) modulate ontogeny-dependent defenses in Nicotiana attenuata. We found that leaf CK levels highly correlate with inducible defense expressions with high levels in young and low levels in older leaves. We genetically manipulated the developmental patterns of two different CK classes by using senescence- and chemically inducible expression of CK biosynthesis genes. Genetically modifying the levels of different CKs in leaves was sufficient to alter ontogenic patterns of defense metabolites. We conclude that the developmental regulation of growth hormones that include CKs plays central roles in connecting development with defense and therefore in establishing optimal patterns of defense allocation in plants.
Collapse
Affiliation(s)
- Christoph Brütting
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Martin Schäfer
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Radomira Vanková
- Institute of Experimental Botany AS CR, Laboratory of Hormonal Regulations in Plants, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Klaus Gase
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Ian T. Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Stefan Meldau
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
- German Centre for integrative Biodiversity Research (iDiv), Deutscher Platz 5, Leipzig 04107, Germany
| |
Collapse
|
35
|
Adam N, Erler T, Kallenbach M, Kaltenpoth M, Kunert G, Baldwin IT, Schuman MC. Sex ratio of mirid populations shifts in response to hostplant co-infestation or altered cytokinin signaling . JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:44-59. [PMID: 27862998 PMCID: PMC5234700 DOI: 10.1111/jipb.12507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/08/2016] [Indexed: 05/11/2023]
Abstract
Herbivore species sharing a host plant often compete. In this study, we show that host plant-mediated interaction between two insect herbivores - a generalist and a specialist - results in a sex ratio shift of the specialist's offspring. We studied demographic parameters of the specialist Tupiocoris notatus (Hemiptera: Miridae) when co-infesting the host plant Nicotiana attenuata (Solanaceae) with the generalist leafhopper Empoasca sp. (Hemiptera: Cicadellidae). We show that the usually female-biased sex ratio of T. notatus shifts toward a higher male proportion in the offspring on plants co-infested by Empoasca sp. This sex ratio change did not occur after oviposition, nor is it due differential mortality of female and male nymphs. Based on pyrosequencing and PCR of bacterial 16S rRNA amplicons, we concluded that sex ratio shifts were unlikely to be due to infection with Wolbachia or other known sex ratio-distorting endosymbionts. Finally, we used transgenic lines of N. attenuata to evaluate if the sex ratio shift could be mediated by changes in general or specialized host plant metabolites. We found that the sex ratio shift occurred on plants deficient in two cytokinin receptors (irCHK2/3). Thus, cytokinin-regulated traits can alter the offspring sex ratio of the specialist T. notatus.
Collapse
Affiliation(s)
- Nora Adam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Theresa Erler
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Max Planck Research Group Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
36
|
Yang L, Li J, Ji J, Li P, Yu L, Abd_Allah EF, Luo Y, Hu L, Hu X. High Temperature Induces Expression of Tobacco Transcription Factor NtMYC2a to Regulate Nicotine and JA Biosynthesis. Front Physiol 2016; 7:465. [PMID: 27833561 PMCID: PMC5081390 DOI: 10.3389/fphys.2016.00465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/27/2016] [Indexed: 11/25/2022] Open
Abstract
Environmental stress elevates the level of jasmonic acid (JA) and activates the biosynthesis of nicotine and related pyridine alkaloids in tobacco (Nicotiana tabacum L.) by up-regulating the expression of putrescine N-methyltransferase 1 (NtPMT1), which encodes a putrescine N-methyl transferase that catalyzes nicotine formation. The JA signal suppressor JASMONATE ZIM DOMAIN 1 (NtJAZ1) and its target protein, NtMYC2a, also regulate nicotine biosynthesis; however, how these proteins interact to regulate abiotic-induced nicotine biosynthesis is poorly understood. In this study, we found that high-temperature (HT) treatment activated transcription of NtMYC2a, which subsequently stimulated the transcription of genes associated with JA biosynthesis, including Lipoxygenase (LOX), Allene oxide synthase (AOS), Allene oxide cyclase (AOC), and 12-oxophytodienodate reductase (OPR). Overexpression of NtMYC2a increased nicotine biosynthesis by enhancing its binding to the promoter of NtPMT1. Overexpression of either NtJAZ1 or proteasome-resistant NtJAZ1ΔC suppressed nicotine production under normal conditions, but overexpression only of the former resulted in low levels of nicotine under HT treatment. These data suggest that HT induces NtMYC2a accumulation through increased transcription to activate nicotine synthesis; meanwhile, HT-induced NtMYC2a can activate JA synthesis to promote additional NtMYC2a activity by degrading NtJAZ1 at the post-transcriptional level.
Collapse
Affiliation(s)
- Liming Yang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
- Department of Plant Pathology, University of GeorgiaTifton, GA, USA
| | - Junying Li
- Department of Agronomy, Yunnan Academy of Tobacco Agricultural SciencesKunming, China
| | - Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai UniversityShanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai UniversityShanghai, China
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Seed Pathology Department, Plant Pathology Research Institute, Agriculture Research CenterGiza, Egypt
| | - Yuming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
| | - Liwei Hu
- Laboratory of Tobacco Agriculture, Zhengzhou Tobacco Research Institute of CNTCZhengzhou, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai UniversityShanghai, China
| |
Collapse
|
37
|
Chen SP, Kuo CH, Lu HH, Lo HS, Yeh KW. The Sweet Potato NAC-Domain Transcription Factor IbNAC1 Is Dynamically Coordinated by the Activator IbbHLH3 and the Repressor IbbHLH4 to Reprogram the Defense Mechanism against Wounding. PLoS Genet 2016; 12:e1006397. [PMID: 27780204 PMCID: PMC5079590 DOI: 10.1371/journal.pgen.1006397] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/01/2016] [Indexed: 11/18/2022] Open
Abstract
IbNAC1 is known to activate the defense system by reprogramming a genetic network against herbivory in sweet potato. This regulatory activity elevates plant defense potential but relatively weakens plants by IbNAC1-mediated JA response. The mechanism controlling IbNAC1 expression to balance plant vitality and survival remains unclear. In this study, a wound-responsive G-box cis-element in the IbNAC1 promoter from -1484 to -1479 bp was identified. From a screen of wound-activated transcriptomic data, one transcriptional activator, IbbHLH3, and one repressor, IbbHLH4, were selected that bind to and activate or repress, respectively, the G-box motif in the IbNAC1 promoter to modulate the IbNAC1-mediated response. In the early wound response, the IbbHLH3-IbbHLH3 protein complex binds to the G-box motif to activate IbNAC1 expression. Thus, an elegant defense network is activated against wounding stress. Until the late stages of wounding, IbbHLH4 interacts with IbbHLH3, and the IbbHLH3-IbbHLH4 heterodimer competes with the IbbHLH3-IbbHLH3 complex to bind the G-box and suppress IbNAC1 expression and timely terminates the defense network. Moreover, the JAZs and IbEIL1 proteins interact with IbbHLH3 to repress the transactivation function of IbbHLH3 in non-wounded condition, but their transcription is immediately inhibited upon early wounding. Our work provides a genetic model that accurately switches the regulatory mechanism of IbNAC1 expression to adjust wounding physiology and represents a delicate defense regulatory network in plants.
Collapse
Affiliation(s)
- Shi-Peng Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsien Kuo
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Han Lu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hui-Shan Lo
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
38
|
Herden J, Meldau S, Kim SG, Kunert G, Joo Y, Baldwin IT, Schuman MC. Shifting Nicotiana attenuata's diurnal rhythm does not alter its resistance to the specialist herbivore Manduca sexta. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:656-68. [PMID: 26699809 PMCID: PMC5295642 DOI: 10.1111/jipb.12458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/17/2015] [Indexed: 05/07/2023]
Abstract
Arabidopsis thaliana plants are less resistant to attack by the generalist lepidopteran herbivore Trichoplusia ni when plants and herbivores are entrained to opposite, versus identical diurnal cycles and tested under constant conditions. This effect is associated with circadian fluctuations in levels of jasmonic acid, the transcription factor MYC2, and glucosinolate contents in leaves. We tested whether a similar effect could be observed in a different plant-herbivore system: the wild tobacco Nicotiana attenuata and its co-evolved specialist herbivore, Manduca sexta. We measured larval growth on plants under both constant and diurnal conditions following identical or opposite entrainment, profiled the metabolome of attacked leaf tissue, quantified specific metabolites known to reduce M. sexta growth, and monitored M. sexta feeding activity under all experimental conditions. Entrainment did not consistently affect M. sexta growth or plant defense induction. However, both were reduced under constant dark conditions, as was M. sexta feeding activity. Our data indicate that the response induced by M. sexta in N. attenuata is robust to diurnal cues and independent of plant or herbivore entrainment. We propose that while the patterns of constitutive or general damage-induced defense may undergo circadian fluctuation, the orchestration of specific induced responses is more complex.
Collapse
Affiliation(s)
- Jasmin Herden
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
39
|
Chen SP, Lin IW, Chen X, Huang YH, Chang SC, Lo HS, Lu HH, Yeh KW. Sweet potato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:234-248. [PMID: 26996980 DOI: 10.1111/tpj.13171] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Sporamin is a tuberous storage protein with trypsin inhibitory activity in sweet potato (Ipomoea batatas Lam.), which accounts for 85% of the soluble protein in tubers. It is constitutively expressed in tuberous roots but is expressed in leaves only after wounding. Thus far, its wound-inducible signal transduction mechanisms remain unclear. In the present work, a 53-bp DNA region, sporamin wound-response cis-element (SWRE), was identified in the sporamin promoter and was determined to be responsible for the wounding response. Using yeast one-hybrid screening, a NAC domain protein, IbNAC1, that specifically bound to the 5'-TACAATATC-3' sequence in SWRE was isolated from a cDNA library from wounded leaves. IbNAC1 was constitutively expressed in root tissues and was induced earlier than sporamin following the wounding of leaves. Transgenic sweet potato plants overexpressing IbNAC1 had greatly increased sporamin expression, increased trypsin inhibitory activity, and elevated resistance against Spodoptera litura. We further demonstrated that IbNAC1 has multiple biological functions in the jasmonic acid (JA) response, including the inhibition of root formation, accumulation of anthocyanin, regulation of aging processes, reduction of abiotic tolerance, and overproduction of reactive oxygen species (ROS). Thus, IbNAC1 is a core transcription factor that reprograms the transcriptional response to wounding via the JA-mediated pathway in sweet potato.
Collapse
Affiliation(s)
- Shi-Peng Chen
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - I Winnie Lin
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Xuanyang Chen
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yin-Hao Huang
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Shiao-Chi Chang
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Hui-Shan Lo
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Hseuh-Han Lu
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
40
|
Li D, Baldwin IT, Gaquerel E. Beyond the Canon: Within-Plant and Population-Level Heterogeneity in Jasmonate Signaling Engaged by Plant-Insect Interactions. PLANTS 2016; 5:plants5010014. [PMID: 27135234 PMCID: PMC4844416 DOI: 10.3390/plants5010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/16/2022]
Abstract
Plants have evolved sophisticated communication and defense systems with which they interact with insects. Jasmonates are synthesized from the oxylipin pathway and act as pivotal cellular orchestrators of many of the metabolic and physiological processes that mediate these interactions. Many of these jasmonate-dependent responses are tissue-specific and translate from modulations of the canonical jasmonate signaling pathway. Here we provide a short overview of within-plant heterogeneities in jasmonate signaling and dependent responses in the context of plant-insect interactions as illuminated by examples from recent work with the ecological model, Nicotiana attenuata. We then discuss means of manipulating jasmonate signaling by creating tissue-specific jasmonate sinks, and the micrografting of different transgenic plants. The metabolic phenotyping of these manipulations provides an integrative understanding of the functional significance of deviations from the canonical model of this hormonal pathway. Additionally, natural variation in jasmonate biosynthesis and signaling both among and within species can explain polymorphisms in resistance to insects in nature. In this respect, insect-guided explorations of population-level variations in jasmonate metabolism have revealed more complexity than previously realized and we discuss how different "omic" techniques can be used to exploit the natural variation that occurs in this important signaling pathway.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Emmanuel Gaquerel
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, Heidelberg 69120, Germany.
| |
Collapse
|
41
|
Schuman MC, Valim HA, Joo Y. Temporal Dynamics of Plant Volatiles: Mechanistic Bases and Functional Consequences. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Abstract
Plants collectively produce hundreds of thousands of specialized metabolites that are not required for growth or development. Each species has a qualitatively unique profile, with variation among individuals, growth stages, and tissues. By the 1950s, entomologists began to recognize the supreme importance of these metabolites in shaping insect herbivore communities. Plant defense theories arose to address observed patterns of variation, but provided few testable hypotheses because they did not distinguish clearly among proximate and ultimate causes. Molecular plant-insect interaction research has since revealed the sophistication of plant metabolic, developmental, and signaling networks. This understanding at the molecular level, rather than theoretical predictions, has driven the development of new hypotheses and tools and pushed the field forward. We reflect on the utility of the functional perspective provided by the optimal defense theory, and propose a conceptual model of plant defense as a series of layers each at a different level of analysis, illustrated by advances in the molecular ecology of plant-insect interactions.
Collapse
Affiliation(s)
- Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; ,
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; ,
| |
Collapse
|
43
|
Saha G, Park JI, Kayum MA, Nou IS. A Genome-Wide Analysis Reveals Stress and Hormone Responsive Patterns of TIFY Family Genes in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2016; 7:936. [PMID: 27446164 PMCID: PMC4923152 DOI: 10.3389/fpls.2016.00936] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/13/2016] [Indexed: 05/13/2023]
Abstract
The TIFY family is a plant-specific group of proteins with a diversity of functions and includes four subfamilies, viz. ZML, TIFY, PPD, and JASMONATE ZIM-domain (JAZ) proteins. TIFY family members, particularly JAZ subfamily proteins, play roles in biological processes such as development and stress and hormone responses in Arabidopsis, rice, chickpea, and grape. However, there is no information about this family in any Brassica crop. This study identifies 36 TIFY genes in Brassica rapa, an economically important crop species in the Brassicaceae. An extensive in silico analysis of phylogenetic grouping, protein motif organization and intron-exon distribution confirmed that there are four subfamilies of BrTIFY proteins. Out of 36 BrTIFY genes, we identified 21 in the JAZ subfamily, seven in the TIFY subfamily, six in ZML and two in PPD. Extensive expression profiling of 21 BrTIFY JAZs in various tissues, especially in floral organs and at different flower growth stages revealed constitutive expression patterns, which suggest that BrTIFY JAZ genes are important during growth and development of B. rapa flowers. A protein interaction network analysis also pointed to association of these proteins with fertility and defense processes of B. rapa. Using a low temperature-treated whole-genome microarray data set, most of the JAZ genes were found to have variable transcript abundance between the contrasting inbred lines Chiifu and Kenshin of B. rapa. Subsequently, the expression of all 21 BrTIFY JAZs in response to cold stress was characterized in the same two lines via qPCR, demonstrating that nine genes were up-regulated. Importantly, the BrTIFY JAZs showed strong and differential expression upon JA treatment, pointing to their probable involvement in JA-mediated growth regulatory functions, especially during flower development and stress responses. Additionally, BrTIFY JAZs were induced in response to salt, drought, Fusarium, ABA, and SA treatments, and six genes (BrTIFY3a, 3b, 6a, 9a, 9b, and 9c) were identified to have co-responsive expression patterns. The extensive annotation and transcriptome profiling reported in this study will be useful for understanding the involvement of TIFY genes in stress resistance and different developmental functions, which ultimately provides the basis for functional characterization and exploitation of the candidate TIFY genes for genetic engineering of B. rapa.
Collapse
|
44
|
Ge Q, Zhang Y, Hua WP, Wu YC, Jin XX, Song SH, Wang ZZ. Combination of transcriptomic and metabolomic analyses reveals a JAZ repressor in the jasmonate signaling pathway of Salvia miltiorrhiza. Sci Rep 2015; 5:14048. [PMID: 26388160 PMCID: PMC4585666 DOI: 10.1038/srep14048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022] Open
Abstract
Jasmonates (JAs) are plant-specific key signaling molecules that respond to various stimuli and are involved in the synthesis of secondary metabolites. However, little is known about the JA signal pathway, especially in economically significant medicinal plants. To determine the functions of novel genes that participate in the JA-mediated accumulation of secondary metabolites, we examined the metabolomic and transcriptomic signatures from Salvia miltiorrhiza. For the metabolome, 35 representative metabolites showing significant changes in rates of accumulation were extracted and identified. We also screened out 2131 differentially expressed unigenes, of which 30 were involeved in the phenolic secondary metabolic pathway, while 25 were in the JA biosynthesis and signal pathways. Among several MeJA-induced novel genes, SmJAZ8 was selected for detailed functional analysis. Transgenic plants over-expressing SmJAZ8 exhibited a JA-insensitive phenotype, suggesting that the gene is a transcriptional regulator in the JA signal pathway of S. miltiorrhiza. Furthermore, this transgenic tool revealed that JAZ genes have novel function in the constitutive accumulation of secondary metabolites. Based on these findings, we propose that the combined strategy of transcriptomic and metabolomic analyses is valuable for efficient discovery of novel genes in plants.
Collapse
Affiliation(s)
- Qian Ge
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wen-Ping Hua
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Cui Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xin-Xin Jin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shuang-Hong Song
- Co-Innovation Center for Qinba regions' sustainable development, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhe-Zhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
45
|
Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci U S A 2015; 112:E5013-20. [PMID: 26305938 PMCID: PMC4568709 DOI: 10.1073/pnas.1505765112] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants maintain microbial associations whose functions remain largely unknown. For the past 15 y, we have planted the annual postfire tobacco Nicotiana attenuata into an experimental field plot in the plant's native habitat, and for the last 8 y the number of plants dying from a sudden wilt disease has increased, leading to crop failure. Inadvertently we had recapitulated the common agricultural dilemma of pathogen buildup associated with continuous cropping for this native plant. Plants suffered sudden tissue collapse and black roots, symptoms similar to a Fusarium-Alternaria disease complex, recently characterized in a nearby native population and developed into an in vitro pathosystem for N. attenuata. With this in vitro disease system, different protection strategies (fungicide and inoculations with native root-associated bacterial and fungal isolates), together with a biochar soil amendment, were tested further in the field. A field trial with more than 900 plants in two field plots revealed that inoculation with a mixture of native bacterial isolates significantly reduced disease incidence and mortality in the infected field plot without influencing growth, herbivore resistance, or 32 defense and signaling metabolites known to mediate resistance against native herbivores. Tests in a subsequent year revealed that a core consortium of five bacteria was essential for disease reduction. This consortium, but not individual members of the root-associated bacteria community which this plant normally recruits during germination from native seed banks, provides enduring resistance against fungal diseases, demonstrating that native plants develop opportunistic mutualisms with prokaryotes that solve context-dependent ecological problems.
Collapse
Affiliation(s)
- Rakesh Santhanam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Van Thi Luu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Arne Weinhold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Jay Goldberg
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Youngjoo Oh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| |
Collapse
|
46
|
Schäfer M, Meza-Canales ID, Brütting C, Baldwin IT, Meldau S. Cytokinin concentrations and CHASE-DOMAIN CONTAINING HIS KINASE 2 (NaCHK2)- and NaCHK3-mediated perception modulate herbivory-induced defense signaling and defenses in Nicotiana attenuata. THE NEW PHYTOLOGIST 2015; 207:645-58. [PMID: 25919325 DOI: 10.1111/nph.13404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/11/2015] [Indexed: 05/23/2023]
Abstract
Herbivore attack elicits changes in cytokinins (CKs), but how these changes influence defense signaling remains poorly described. We investigated the influence of the CK pathway on the well-described inducible defense pathways of Nicotiana attenuata in response to wounding with and without elicitors from the specialist herbivore Manduca sexta. CK pathway manipulation often suffers from substantial side effects on plant growth and development. We therefore used multiple manipulation tools including spray application of CKs, chemically-inducible expression of the CK biosynthesis enzyme isopentenyltransferase, and transient and constitutive RNAi-mediated gene silencing of CK receptors to resolve the function of CKs in plant defense. The results demonstrated that CK concentrations in leaves and perception through CHASE-DOMAIN CONTAINING HIS KINASE 2 (NaCHK2) and NaCHK3 were important for the accumulation of jasmonic acid (JA) and phenolamides and proteinase inhibitor activity. By contrast, the CK pathway did not promote the accumulation of the active JA-isoleucine conjugate and negatively regulated the release of specific green leaf volatile esters. Interestingly, CK signaling also promotes the systemic phenolamide accumulation. We conclude that the CK pathway is an important regulator of herbivory-inducible defense signaling and chemistry, which expands its reported participation in adjusting a plant's physiology to abiotic and biotic stress responses.
Collapse
Affiliation(s)
- Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, Jena, 07745, Germany
| | - Ivan D Meza-Canales
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, Jena, 07745, Germany
| | - Christoph Brütting
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, Jena, 07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, Jena, 07745, Germany
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, Jena, 07745, Germany
- German Centre for integrative Biodiversity Research (iDiv), Deutscher Platz 5, Leipzig, 04107, Germany
- KWS SAAT AG, Grimsehlstraße 31, Einbeck, 37574, Germany
| |
Collapse
|
47
|
Schuman MC, Allmann S, Baldwin IT. Plant defense phenotypes determine the consequences of volatile emission for individuals and neighbors. eLife 2015; 4:e04490. [PMID: 25873033 PMCID: PMC4397498 DOI: 10.7554/elife.04490] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/11/2015] [Indexed: 11/29/2022] Open
Abstract
Plants are at the trophic base of terrestrial ecosystems, and the diversity of plant species in an ecosystem is a principle determinant of community structure. This may arise from diverse functional traits among species. In fact, genetic diversity within species can have similarly large effects. However, studies of intraspecific genetic diversity have used genotypes varying in several complex traits, obscuring the specific phenotypic variation responsible for community-level effects. Using lines of the wild tobacco Nicotiana attenuata genetically altered in specific well-characterized defense traits and planted into experimental populations in their native habitat, we investigated community-level effects of trait diversity in populations of otherwise isogenic plants. We conclude that the frequency of defense traits in a population can determine the outcomes of these traits for individuals. Furthermore, our results suggest that some ecosystem-level services afforded by genetically diverse plant populations could be recaptured in intensive monocultures engineered to be functionally diverse.
Collapse
Affiliation(s)
- Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Silke Allmann
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Plant Physiology, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
48
|
A maize jasmonate Zim-domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis. PLoS One 2015; 10:e0121824. [PMID: 25807368 PMCID: PMC4373942 DOI: 10.1371/journal.pone.0121824] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/04/2015] [Indexed: 12/24/2022] Open
Abstract
Jasmonate (JA) is an important signaling molecule involved in the regulation of many physiological and stress-related processes in plants. Jasmonate ZIM-domain (JAZ) proteins have been implicated in regulating JA signaling pathways and the cross talk between various phytohormones. Maize is not only an important cereal crop, but also a model plant for monocotyledon studies. Although many JAZ proteins have been characterized in Arabidopsis and rice, few reports have examined the function of JAZ proteins in maize. In this report, we examined the phylogenetic relationship and expression pattern of JAZ family genes in maize. In addition, a tassel and endosperm-specific JAZ gene, ZmJAZ14, was identified using microarray data analysis and real-time RT-PCR, and its expression was induced by polyethylene glycol (PEG), jasmonate (JA), abscisic acid (ABA), and gibberellins (GAs). ZmJAZ14 was shown to be localized in the nucleus and possessed no transcriptional activating activity, suggesting that it functions as a transcriptional regulator. We found that overexpression of ZmJAZ14 in Arabidopsis enhanced plant tolerance to JA and ABA treatment, as well as PEG stress, while it promoted growth under GA stimulus. Moreover, ZmJAZ14 interacted with a subset of transcription factors in Arabidopsis, and the accumulation of several marker genes involved in JA, ABA, and GA signaling pathways were altered in the overexpression lines. These results suggest that ZmJAZ14 may serve as a hub for the cross talk among the JA, ABA, and GA signaling pathways. Our results can be used to further characterize the function of JAZ family proteins in maize, and the gene cloned in this study may serve as a candidate for drought tolerance and growth promotion regulation in maize.
Collapse
|
49
|
Savchenko TV, Zastrijnaja OM, Klimov VV. Oxylipins and plant abiotic stress resistance. BIOCHEMISTRY (MOSCOW) 2015; 79:362-75. [PMID: 24910209 DOI: 10.1134/s0006297914040051] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.
Collapse
Affiliation(s)
- T V Savchenko
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
50
|
Schuman MC, Palmer-Young EC, Schmidt A, Gershenzon J, Baldwin IT. Ectopic terpene synthase expression enhances sesquiterpene emission in Nicotiana attenuata without altering defense or development of transgenic plants or neighbors. PLANT PHYSIOLOGY 2014; 166:779-97. [PMID: 25187528 PMCID: PMC4190577 DOI: 10.1104/pp.114.247130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/01/2014] [Indexed: 05/02/2023]
Abstract
Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat.
Collapse
Affiliation(s)
- Meredith C Schuman
- Departments of Molecular Ecology (M.C.S., I.T.B.) andBiochemistry (E.C.P.-Y., A.S., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Evan C Palmer-Young
- Departments of Molecular Ecology (M.C.S., I.T.B.) andBiochemistry (E.C.P.-Y., A.S., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Axel Schmidt
- Departments of Molecular Ecology (M.C.S., I.T.B.) andBiochemistry (E.C.P.-Y., A.S., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Departments of Molecular Ecology (M.C.S., I.T.B.) andBiochemistry (E.C.P.-Y., A.S., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ian T Baldwin
- Departments of Molecular Ecology (M.C.S., I.T.B.) andBiochemistry (E.C.P.-Y., A.S., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|