1
|
Zhang Y, Bisaro DM, Wu J. Recent advances in viroid research. Virology 2025; 604:110424. [PMID: 39889478 DOI: 10.1016/j.virol.2025.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Viroids are circular, single-stranded non-coding RNAs that rely entirely on their sequences and structures for activity. Decades of research have uncovered molecular mechanisms of viroid infection, replication, and their interactions with host factors. Notably, viroid-derived small RNAs (vd-RNAs) activate host defenses, while essential host factors and RNA motifs linked to trafficking and quasispecies evolution have been well studied. In this review, we examine key aspects of viroid biology, including the structural motifs and host factors that influence the replication cycle, as well as the mechanisms behind intra- and intercellular movement. We explore the role of vd-RNAs in activating host defense responses. Additionally, we present current perspectives on viroid quasispecies evolution and address the emergence of viroid-like RNAs across various kingdoms. These insights are crucial for deepening our understanding of the viroid replication cycle and their complex interactions with host plants.
Collapse
Affiliation(s)
- Yuhong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - David M Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Lezzhov AA, Atabekova AK, Chergintsev DA, Lazareva EA, Solovyev AG, Morozov SY. Viroids and Retrozymes: Plant Circular RNAs Capable of Autonomous Replication. PLANTS (BASEL, SWITZERLAND) 2024; 14:61. [PMID: 39795321 PMCID: PMC11722881 DOI: 10.3390/plants14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes. Based on a number of common features, viroids and retrozymes are considered to be evolutionarily related. Here, we provide an overview of the biogenesis mechanisms and regulatory functions of non-replicating circRNAs produced by back-splicing and further discuss in detail the currently available data on viroids and retrozymes, focusing on their structural features, replication mechanisms, interaction with cellular components, and transport in plants. In addition, biotechnological approaches involving replication-capable plant circRNAs are discussed, as well as their potential applications in research and agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.A.L.); (A.K.A.); (D.A.C.); (E.A.L.); (A.G.S.)
| |
Collapse
|
3
|
Eiras M, Aragonés V, Marqués J, Gómez MD, Daròs JA. Eggplant latent viroid is located in the chloroplasts and nuclei of eggplant infected cells. Virol J 2024; 21:254. [PMID: 39407314 PMCID: PMC11476940 DOI: 10.1186/s12985-024-02530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Viroids that belong to genera Avsunviroid and Pelamovirod (family Avsunviroidae) replicate and accumulate in the chloroplasts of infected cells. In this report, we confirmed by RNA in situ hybridization using digoxigenin-UTP-labelled riboprobes that the positive strands of eggplant latent viroid (ELVd), the only member of genus Elaviroid within the family Avsunviroidae, also accumulate in the chloroplasts of infected cells. However, comparison of ELVd in situ hybridization signals with those from bona fide chloroplastic and nuclear non-coding RNAs, such as chloroplast 5S rRNA and U1 small nuclear RNA, supports the notion that this viroid is also present in the nuclei of infected cells. These results suggest that the subcellular localization of viroids within the family Avsunviroidae may be more complex than previously assumed with dynamic presence in several compartments during the infectious cycle.
Collapse
Affiliation(s)
- Marcelo Eiras
- Lab. Fitovirologia e Fisiopatologia, Centro de Pesquisa de Sanidade Vegetal, Instituto Biológico, São Paulo, CEP 04014-002, SP, Brazil.
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain.
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain
| | - Jorge Marqués
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain
- Azzur Group, Hatboro, USA
| | - María Dolores Gómez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain.
| |
Collapse
|
4
|
Ma J, Dissanayaka Mudiyanselage SD, Hao J, Wang Y. Cellular roadmaps of viroid infection. Trends Microbiol 2023; 31:1179-1191. [PMID: 37349206 PMCID: PMC10592528 DOI: 10.1016/j.tim.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
Viroids are single-stranded circular noncoding RNAs that infect plants. According to the International Committee on Taxonomy of Viruses, there are 44 viroids known to date. Notably, more than 20 000 distinct viroid-like RNA sequences have recently been identified in existing sequencing datasets, suggesting an unprecedented complexity in biological roles of viroids and viroid-like RNAs. Interestingly, a human pathogen, hepatitis delta virus (HDV), also replicates via a rolling circle mechanism like viroids. Therefore, knowledge of viroid infection is informative for research on HDV and other viroid-like RNAs reported from various organisms. Here, we summarize recent advancements in understanding viroid shuttling among subcellular compartments for completing replication cycles, emphasizing regulatory roles of RNA motifs and structural dynamics in diverse biological processes. We also compare the knowledge of viroid intracellular trafficking with known pathways governing cellular RNA movement in cells. Future investigations on regulatory RNA structures and cognate factors in regulating viroid subcellular trafficking and replication will likely provide new insights into RNA structure-function relationships and facilitate the development of strategies controlling RNA localization and function in cells.
Collapse
Affiliation(s)
- Junfei Ma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Jie Hao
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
5
|
Verma V, Kumar A, Partap M, Thakur M, Bhargava B. CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1122940. [PMID: 36824195 PMCID: PMC9941649 DOI: 10.3389/fpls.2023.1122940] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The acceptance of new crop varieties by consumers is contingent on the presence of consumer-preferred traits, which include sensory attributes, nutritional value, industrial products and bioactive compounds production. Recent developments in genome editing technologies provide novel insight to identify gene functions and improve the various qualitative and quantitative traits of commercial importance in plants. Various conventional as well as advanced gene-mutagenesis techniques such as physical and chemical mutagenesis, CRISPR-Cas9, Cas12 and base editors are used for the trait improvement in crops. To meet consumer demand, breakthrough biotechnologies, especially CRISPR-Cas have received a fair share of scientific and industrial interest, particularly in plant genome editing. CRISPR-Cas is a versatile tool that can be used to knock out, replace and knock-in the desired gene fragments at targeted locations in the genome, resulting in heritable mutations of interest. This review highlights the existing literature and recent developments in CRISPR-Cas technologies (base editing, prime editing, multiplex gene editing, epigenome editing, gene delivery methods) for reliable and precise gene editing in plants. This review also discusses the potential of gene editing exhibited in crops for the improvement of consumer-demanded traits such as higher nutritional value, colour, texture, aroma/flavour, and production of industrial products such as biofuel, fibre, rubber and pharmaceuticals. In addition, the bottlenecks and challenges associated with gene editing system, such as off targeting, ploidy level and the ability to edit organelle genome have also been discussed.
Collapse
Affiliation(s)
- Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Akhil Kumar
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Ortolá B, Daròs JA. Viroids: Non-Coding Circular RNAs Able to Autonomously Replicate and Infect Higher Plants. BIOLOGY 2023; 12:172. [PMID: 36829451 PMCID: PMC9952643 DOI: 10.3390/biology12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246-430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved. Systemic movement through the infected plant, plant-to-plant transmission and host range are also discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has acquired remarkable importance, and also for the initiation of potential biotechnological applications of viroid molecules.
Collapse
Affiliation(s)
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
7
|
Marquez‐Molins J, Hernandez‐Azurdia AG, Urrutia‐Perez M, Pallas V, Gomez G. A circular RNA vector for targeted plant gene silencing based on an asymptomatic viroid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:284-293. [PMID: 35916236 PMCID: PMC9804161 DOI: 10.1111/tpj.15929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Gene silencing for functional studies in plants has been largely facilitated by manipulating viral genomes with inserts from host genes to trigger virus-induced gene silencing (VIGS) against the corresponding mRNAs. However, viral genomes encode multiple proteins and can disrupt plant homeostasis by interfering with endogenous cell mechanisms. To try to circumvent this functional limitation, we have developed a silencing method based on the minimal autonomously-infectious nucleic acids currently known: viroids, which lack proven coding capability. The genome of Eggplant latent viroid, an asymptomatic viroid, was manipulated with insertions ranging between 21 and 42 nucleotides. Our results show that, although larger insertions might be tolerated, the maintenance of the secondary structure appears to be critical for viroid genome stability. Remarkably, these modified ELVd molecules are able to induce systemic infection promoting the silencing of target genes in eggplant. Inspired by the design of artificial microRNAs, we have developed a simple and standardized procedure to generate stable insertions into the ELVd genome capable of silencing a specific target gene. Analogously to VIGS, we have termed our approach viroid-induced gene silencing, and demonstrate that it is a promising tool for dissecting gene functions in eggplant.
Collapse
Affiliation(s)
- Joan Marquez‐Molins
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat Politècnica de ValènciaCPI 8E, Av. de los Naranjos s/n46022ValenciaSpain
| | - Andrea Gabriela Hernandez‐Azurdia
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
| | - María Urrutia‐Perez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat Politècnica de ValènciaCPI 8E, Av. de los Naranjos s/n46022ValenciaSpain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
| |
Collapse
|
8
|
Gómez G, Marquez-Molins J, Martinez G, Pallas V. Plant epigenome alterations: an emergent player in viroid-host interactions. Virus Res 2022; 318:198844. [DOI: 10.1016/j.virusres.2022.198844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
|
9
|
Viroids as a Tool to Study RNA-Directed DNA Methylation in Plants. Cells 2021; 10:cells10051187. [PMID: 34067940 PMCID: PMC8152041 DOI: 10.3390/cells10051187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Viroids are plant pathogenic, circular, non-coding, single-stranded RNAs (ssRNAs). Members of the Pospiviroidae family replicate in the nucleus of plant cells through double-stranded RNA (dsRNA) intermediates, thus triggering the host’s RNA interference (RNAi) machinery. In plants, the two RNAi pillars are Post-Transcriptional Gene Silencing (PTGS) and RNA-directed DNA Methylation (RdDM), and the latter has the potential to trigger Transcriptional Gene Silencing (TGS). Over the last three decades, the employment of viroid-based systems has immensely contributed to our understanding of both of these RNAi facets. In this review, we highlight the role of Pospiviroidae in the discovery of RdDM, expound the gradual elucidation through the years of the diverse array of RdDM’s mechanistic details and propose a revised RdDM model based on the cumulative amount of evidence from viroid and non-viroid systems.
Collapse
|
10
|
Marquez‐Molins J, Gomez G, Pallas V. Hop stunt viroid: A polyphagous pathogenic RNA that has shed light on viroid-host interactions. MOLECULAR PLANT PATHOLOGY 2021; 22:153-162. [PMID: 33305492 PMCID: PMC7814962 DOI: 10.1111/mpp.13022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
TAXONOMY Hop stunt viroid (HSVd) is the type species of the genus Hostuviroid (family Pospiviroidae). The other species of this genus is Dahlia latent viroid, which presents an identical central conserved region (CCR) but lacks other structural hallmarks present in Hop stunt viroid. HSVd replication occurs in the nucleus through an asymmetric rolling-circle model as in the other members of the family Pospiviroidae, which also includes the genera Pospiviroid, Cocadviroid, Apscaviroid, and Coleoviroid. PHYSICAL PROPERTIES Hop stunt viroid consists of a single-stranded, circular RNA of 295-303 nucleotides depending on isolates and sequence variants. The most stable secondary structure is a rod-like or quasi-rod-like conformation with two characteristic domains: a CCR and a terminal conserved hairpin similar to that of cocadviroids. HSVd lacks a terminal conserved region. HOSTS AND SYMPTOMS HSVd infects a very broad range of natural hosts and has been reported to be the causal agent of five different diseases (citrus cachexia, cucumber pale fruit, peach and plum apple apricot distortion, and hop stunt). It is distributed worldwide. TRANSMISSION HSVd is transmitted mechanically and by seed.
Collapse
Affiliation(s)
- Joan Marquez‐Molins
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas, Universitat de ValènciaPaternaSpain
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas, Universitat Politècnica de ValènciaValenciaSpain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas, Universitat de ValènciaPaternaSpain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas, Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
11
|
Anand A, Pandi G. Noncoding RNA: An Insight into Chloroplast and Mitochondrial Gene Expressions. Life (Basel) 2021; 11:life11010049. [PMID: 33450961 PMCID: PMC7828403 DOI: 10.3390/life11010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of gene expression in any biological system is a complex process with many checkpoints at the transcriptional, post-transcriptional and translational levels. The control mechanism is mediated by various protein factors, secondary metabolites and a newly included regulatory member, i.e., noncoding RNAs (ncRNAs). It is known that ncRNAs modulate the mRNA or protein profiles of the cell depending on the degree of complementary and context of the microenvironment. In plants, ncRNAs are essential for growth and development in normal conditions by controlling various gene expressions and have emerged as a key player to guard plants during adverse conditions. In order to have smooth functioning of the plants under any environmental pressure, two very important DNA-harboring semi-autonomous organelles, namely, chloroplasts and mitochondria, are considered as main players. These organelles conduct the most crucial metabolic pathways that are required to maintain cell homeostasis. Thus, it is imperative to explore and envisage the molecular machineries responsible for gene regulation within the organelles and their coordination with nuclear transcripts. Therefore, the present review mainly focuses on ncRNAs origination and their gene regulation in chloroplasts and plant mitochondria.
Collapse
Affiliation(s)
- Asha Anand
- Correspondence: (A.A.); (G.P.); Tel.: +91-452-245-8230 (G.P.)
| | - Gopal Pandi
- Correspondence: (A.A.); (G.P.); Tel.: +91-452-245-8230 (G.P.)
| |
Collapse
|
12
|
Marquez-Molins J, Navarro JA, Pallas V, Gomez G. Highly efficient construction of infectious viroid-derived clones. PLANT METHODS 2019; 15:87. [PMID: 31388344 PMCID: PMC6670230 DOI: 10.1186/s13007-019-0470-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/24/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Viroid research generally relies on infectious cDNA clones that consist of dimers of the entire viroid sequence. At present, those dimers are generated by self-ligation of monomeric cDNA, a strategy that presents several disadvantages: (i) low efficiency, (ii) it is a non-oriented reaction requiring tedious screenings and (iii) additional steps are required for cloning into a binary vector for agroinfiltration or for in vitro RNA production. RESULTS We have developed a novel strategy for simultaneous construction of a viroid dimeric cDNA and cloning into a multipurpose binary vector ready for agroinfiltration or in vitro transcription. The assembly is based on IIs restriction enzymes and positive selection and supposes a universal procedure for obtaining infectious clones of a viroid independently of its sequence, with a high efficiency. Thus, infectious clones of one viroid of each family were obtained and its infectivity was analyzed by molecular hybridization. CONCLUSION This is a zero-background strategy for direct cloning into a binary vector, optimized for the generation of infectious viroids. As a result, this methodology constitutes a powerful tool for viroid research and exemplifies the applicability of type IIs restriction enzymes and the lethal gene ccdB to design efficient and affordable direct cloning approaches of PCR products into binary vectors.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
| | - Jose Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
| |
Collapse
|
13
|
Cordero T, Ortolá B, Daròs JA. Mutational Analysis of Eggplant Latent Viroid RNA Circularization by the Eggplant tRNA Ligase in Escherichia coli. Front Microbiol 2018; 9:635. [PMID: 29675002 PMCID: PMC5895719 DOI: 10.3389/fmicb.2018.00635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Eggplant latent viroid (ELVd) is a relatively small non-coding circular RNA that induces asymptomatic infections in eggplants (Solanum melongena L.). Like other viroid species that belong to the family Avsunviroidae, ELVd contains hammerhead ribozymes in the strands of both polarities that self-cleave RNAs producing terminal 5'-hydroxyl and 2',3'-cyclic phosphodiester groups. Available experimental data indicate that ELVd replicates in the chloroplasts of infected cells through a symmetric rolling-circle mechanism, in which RNA circularization is catalyzed by the chloroplastic isoform of the tRNA ligase. In this work, a mutational analysis was performed to gain insight into the sequence and structural requirements of the tRNA ligase-mediated circularization of ELVd RNAs. In the predicted minimum free energy conformation of the monomeric linear ELVd RNA intermediate of plus (+) polarity, the ligation site is located in the lower part of an opened internal loop, which is present in a quasi-rod-like structure that occupies the center of the molecule. The mutations analyzed herein consisted of punctual nucleotide substitutions and deletions surrounding the ligation site on the upper and lower strands of the ELVd quasi-double-stranded structure. Computational predictions of the mutated ELVd conformations indicated different degrees of distortions compared to the minimum free energy conformation of the wild-type ELVd linear monomer of + polarity. When these mutant RNAs were expressed in Escherichia coli, they were all circularized by the eggplant tRNA ligase with approximately the same efficiency as the wild-type ELVd, except for those that directly affected the ribozyme domain. These results suggest that the viroid ribozyme domains, in addition to self-cleavage, are also involved in the tRNA ligase-mediated circularization of the monomeric linear replication intermediates.
Collapse
Affiliation(s)
- Teresa Cordero
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, Spain
| | - Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, Spain
| |
Collapse
|
14
|
Budziszewska M, Obrępalska-Stęplowska A. The Role of the Chloroplast in the Replication of Positive-Sense Single-Stranded Plant RNA Viruses. FRONTIERS IN PLANT SCIENCE 2018; 9:1776. [PMID: 30542365 PMCID: PMC6278097 DOI: 10.3389/fpls.2018.01776] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/15/2018] [Indexed: 05/20/2023]
Abstract
Positive-sense single-stranded plant RNA viruses are obligate intracellular parasites that infect many agriculturally important crops. Most known plant RNA viruses are characterized by small genomes encoding a limited number of multifunctional viral proteins. Viral pathogens are considered to be absolutely dependent on their hosts, and viruses must recruit numerous host proteins and other factors for genomic RNA replication. Overall, the replication process depends on virus-plant protein-protein, RNA-protein and protein-lipid interactions. Recent publications provide strong evidence for the important role of chloroplasts in viral RNA synthesis. The chloroplast is considered to be a multifunctional organelle responsible for photosynthesis and for the generation of plant defense signaling molecules. High-throughput technologies (genomics and proteomics), and electron microscopy, including three-dimensional tomography, have revealed that several groups of plant RNA viruses utilize chloroplast membranes to assemble viral replication complexes (VRCs). Moreover, some chloroplast-related proteins reportedly interact with both viral proteins and their genomic RNAs and participate in trafficking these molecules to the chloroplast, where replication occurs. Here, we present the current knowledge on the important role of chloroplasts in the viral replication process.
Collapse
|
15
|
Daròs JA. Eggplant latent viroid: a friendly experimental system in the family Avsunviroidae. MOLECULAR PLANT PATHOLOGY 2016; 17:1170-7. [PMID: 26696449 PMCID: PMC6638527 DOI: 10.1111/mpp.12358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/24/2015] [Accepted: 12/10/2015] [Indexed: 05/22/2023]
Abstract
TAXONOMY Eggplant latent viroid (ELVd) is the only species of the genus Elaviroid (family Avsunviroidae). All the viroids in the family Avsunviroidae contain hammerhead ribozymes in the strands of both polarities, and are considered to replicate in the chloroplasts of infected cells. This family includes two other genera: Avsunviroid and Pelamoviroid. PHYSICAL PROPERTIES ELVd consists of a single-stranded, circular, non-coding RNA of 332-335 nucleotides that folds in a branched quasi-rod-like minimum free-energy conformation. RNAs of complementary polarity exist in infected cells and are considered to be replication intermediates. Plus (+) polarity is assigned arbitrarily to the strand that accumulates at a higher concentration in infected tissues. HOST: To date, ELVd has only been shown to infect eggplant (Solanum melongena L.), the species in which it was discovered. A very narrow host range seems to be a common property in members of the family Avsunviroidae. SYMPTOMS ELVd infections of eggplants are apparently symptomless. TRANSMISSION ELVd is transmitted mechanically and by seed. USEFUL WEBSITE http://subviral.med.uottawa.ca.
Collapse
Affiliation(s)
- José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| |
Collapse
|
16
|
Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res 2015; 209:136-45. [PMID: 25738582 DOI: 10.1016/j.virusres.2015.02.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
The discovery of viroids about 45 years ago heralded a revolution in Biology: small RNAs comprising around 350 nt were found to be able to replicate autonomously-and to incite diseases in certain plants-without encoding proteins, fundamental properties discriminating these infectious agents from viruses. The initial focus on the pathological effects usually accompanying infection by viroids soon shifted to their molecular features-they are circular molecules that fold upon themselves adopting compact secondary conformations-and then to how they manipulate their hosts to be propagated. Replication of viroids-in the nucleus or chloroplasts through a rolling-circle mechanism involving polymerization, cleavage and circularization of RNA strands-dealt three surprises: (i) certain RNA polymerases are redirected to accept RNA instead of their DNA templates, (ii) cleavage in chloroplastic viroids is not mediated by host enzymes but by hammerhead ribozymes, and (iii) circularization in nuclear viroids is catalyzed by a DNA ligase redirected to act upon RNA substrates. These enzymes (and ribozymes) are most probably assisted by host proteins, including transcription factors and RNA chaperones. Movement of viroids, first intracellularly and then to adjacent cells and distal plant parts, has turned out to be a tightly regulated process in which specific RNA structural motifs play a crucial role. More recently, the advent of RNA silencing has brought new views on how viroids may cause disease and on how their hosts react to contain the infection; additionally, viroid infection may be restricted by other mechanisms. Representing the lowest step on the biological size scale, viroids have also attracted considerable interest to get a tentative picture of the essential characteristics of the primitive replicons that populated the postulated RNA world.
Collapse
|
17
|
Rao ALN, Kalantidis K. Virus-associated small satellite RNAs and viroids display similarities in their replication strategies. Virology 2015; 479-480:627-36. [PMID: 25731957 DOI: 10.1016/j.virol.2015.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/01/2015] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
Abstract
Since the discovery of non-coding, small, highly structured, satellite RNAs (satRNAs) and viroids as subviral pathogens of plants , have been of great interest to molecular biologists as possible living fossils of pre-cellular evolution in an RNA world. Despite extensive studies performed in the last four decades, there is still mystery surrounding the origin and evolutionary relationship between these subviral pathogens. Recent technical advances revealed some commonly shared replication features between these two subviral pathogens. In this review, we discuss our current perception of replication and evolutionary origin of these petite RNA pathogens.
Collapse
Affiliation(s)
- A L N Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, United States.
| | - Kriton Kalantidis
- IMBB-FORTH, Vasilika Vouton, Heraklion, Crete, Greece and Dept. of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
18
|
Dalakouras A, Dadami E, Wassenegger M. Engineering viroid resistance. Viruses 2015; 7:634-46. [PMID: 25674769 PMCID: PMC4353907 DOI: 10.3390/v7020634] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/30/2015] [Indexed: 12/31/2022] Open
Abstract
Viroids are non-encapsidated, non-coding, circular, single-stranded RNAs (ssRNAs). They are classified into the families Pospiviroidae and Avsunviroidae, whose members replicate in the nucleus and chloroplast of plant cells, respectively. Viroids have a wide host range, including crop and ornamental plants, and can cause devastating diseases with significant economic losses. Thus, several viroids are world-wide, classified as quarantine pathogens and, hence, there is an urgent need for the development of robust antiviroid strategies. RNA silencing-based technologies seem to be a promising tool in this direction. Here, we review the recent advances concerning the complex interaction of viroids with the host's RNA silencing machinery, evaluate past and present antiviroid approaches, and finally suggest alternative strategies that could potentially be employed in the future in order to achieve transgenic and non-transgenic viroid-free plants.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- RLP AgroScience GmbH, AIPlanta-Institute for Plant Research, Neustadt, 67435, Germany.
| | - Elena Dadami
- RLP AgroScience GmbH, AIPlanta-Institute for Plant Research, Neustadt, 67435, Germany.
| | - Michael Wassenegger
- RLP AgroScience GmbH, AIPlanta-Institute for Plant Research, Neustadt, Germany and Centre for Organisational Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, 69120, Germany.
| |
Collapse
|
19
|
Kovalskaya N, Hammond RW. Molecular biology of viroid-host interactions and disease control strategies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:48-60. [PMID: 25438785 DOI: 10.1016/j.plantsci.2014.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/26/2014] [Accepted: 05/14/2014] [Indexed: 06/04/2023]
Abstract
Viroids are single-stranded, covalently closed, circular, highly structured noncoding RNAs that cause disease in several economically important crop plants. They replicate autonomously and move systemically in host plants with the aid of the host machinery. In addition to symptomatic infections, viroids also cause latent infections where there is no visual evidence of infection in the host; however, transfer to a susceptible host can result in devastating disease. While there are non-hosts for viroids, no naturally occurring durable resistance has been observed in most host species. Current effective control methods for viroid diseases include detection and eradication, and cultural controls. In addition, heat or cold therapy combined with meristem tip culture has been shown to be effective for elimination of viroids for some viroid-host combinations. An understanding of viroid-host interactions, host susceptibility, and non-host resistance could provide guidance for the design of viroid-resistant plants. Efforts to engineer viroid resistance into host species have been underway for several years, and include the use of antisense RNA, antisense RNA plus ribozymes, a dsRNase, and siRNAs, among others. The results of those efforts and the challenges associated with creating viroid resistant plants are summarized in this review.
Collapse
Affiliation(s)
- Natalia Kovalskaya
- USDA ARS BARC Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA
| | - Rosemarie W Hammond
- USDA ARS BARC Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
20
|
What has been happening with viroids? Virus Genes 2014; 49:175-84. [DOI: 10.1007/s11262-014-1110-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022]
|
21
|
Martinez G, Castellano M, Tortosa M, Pallas V, Gomez G. A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Res 2013; 42:1553-62. [PMID: 24178032 PMCID: PMC3919566 DOI: 10.1093/nar/gkt968] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Viroids are plant-pathogenic non-coding RNAs able to interfere with as yet poorly known host-regulatory pathways and to cause alterations recognized as diseases. The way in which these RNAs coerce the host to express symptoms remains to be totally deciphered. In recent years, diverse studies have proposed a close interplay between viroid-induced pathogenesis and RNA silencing, supporting the belief that viroid-derived small RNAs mediate the post-transcriptional cleavage of endogenous mRNAs by acting as elicitors of symptoms expression. Although the evidence supporting the role of viroid-derived small RNAs in pathogenesis is robust, the possibility that this phenomenon can be a more complex process, also involving viroid-induced alterations in plant gene expression at transcriptional levels, has been considered. Here we show that plants infected with the ‘Hop stunt viroid’ accumulate high levels of sRNAs derived from ribosomal transcripts. This effect was correlated with an increase in the transcription of ribosomal RNA (rRNA) precursors during infection. We observed that the transcriptional reactivation of rRNA genes correlates with a modification of DNA methylation in their promoter region and revealed that some rRNA genes are demethylated and transcriptionally reactivated during infection. This study reports a previously unknown mechanism associated with viroid (or any other pathogenic RNA) infection in plants providing new insights into aspects of host alterations induced by the viroid infectious cycle.
Collapse
Affiliation(s)
- German Martinez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-UPV, CPI, Edificio 8 E, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
22
|
Gómez G, Pallás V. Viroids: a light in the darkness of the lncRNA-directed regulatory networks in plants. THE NEW PHYTOLOGIST 2013; 198:10-15. [PMID: 23397958 DOI: 10.1111/nph.12196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Gustavo Gómez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, CPI - Av. Fausto Elio s/n, 46022, Valencia, Spain
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, CPI - Av. Fausto Elio s/n, 46022, Valencia, Spain
| |
Collapse
|
23
|
Gómez G, Pallás V. A pathogenic non coding RNA that replicates and accumulates in chloroplasts traffics to this organelle through a nuclear-dependent step. PLANT SIGNALING & BEHAVIOR 2012; 7:882-4. [PMID: 22751312 PMCID: PMC3583980 DOI: 10.4161/psb.20463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Viroids belonging to the family Avsunviroidae are the only functional RNAs known to traffic selectively into chloroplasts. Subcellular targeting is a critical step in guaranteeing their access to the machineries involved in their replication. However, the host mechanisms exploited by these non coding pathogenic RNAs to be selectively imported into chloroplasts are poorly understood. Recently, we provide evidence supporting the idea that the Avsunviroidae have evolved to subvert a signaling mechanism between the nucleus and chloroplasts to regulate their differential compartmentalization into the chloroplast of infected cells. Here, we discuss our model and previous observations that provide biological relevance to our hypothesis.
Collapse
|
24
|
Flores R, Serra P, Minoia S, Di Serio F, Navarro B. Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs. Front Microbiol 2012; 3:217. [PMID: 22719735 PMCID: PMC3376415 DOI: 10.3389/fmicb.2012.00217] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/28/2012] [Indexed: 11/13/2022] Open
Abstract
As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson–Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non-canonical pairs and that specific loops in the rod-like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunviroidae adopt multibranched conformations occasionally stabilized by kissing-loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunviroidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures – either global or local – determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC) Valencia, Spain
| | | | | | | | | |
Collapse
|