1
|
Paul S, Mitra A. Histochemical, metabolic and ultrastructural changes in leaf patelliform nectaries explain extrafloral nectar synthesis and secretion in Clerodendrum chinense. ANNALS OF BOTANY 2024; 133:621-642. [PMID: 38366151 PMCID: PMC11037555 DOI: 10.1093/aob/mcae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND AIMS Extrafloral nectaries are nectar-secreting structures present on vegetative parts of plants which provide indirect defences against herbivore attack. Extrafloral nectaries in Clerodendrum chinense are patelliform-shaped specialized trichomatous structures. However, a complete understanding of patelliform extrafloral nectaries in general, and of C. chinense in particular, has not yet been established to provide fundamental insight into the cellular physiological machinery involved in nectar biosynthesis and secretory processes. METHODS We studied temporal changes in the morphological, anatomical and ultrastructural features in the architectures of extrafloral nectaries. We also compared metabolite profiles of extrafloral nectar, nectary tissue, non-nectary tissue and phloem sap. Further, both in situ histolocalization and normal in vitro activities of enzymes related to sugar metabolism were examined. KEY RESULTS Four distinct tissue regions in the nectar gland were revealed from histochemical characterization, among which the middle nectariferous tissue was found to be the metabolically active region, while the intermediate layer was found to be lipid-rich. Ultrastructural study showed the presence of a large number of mitochondria along with starch-bearing chloroplasts in the nectariferous region. However, starch depletion was noted with progressive maturation of nectaries. Metabolite analysis revealed compositional differences among nectar, phloem sap, nectary and non-nectary tissue. Invertase activity was higher in secretory stages and localized in nectariferous tissue and adjacent region. CONCLUSIONS Our study suggests extrafloral nectar secretion in C. chinense to be both eccrine and merocrine in nature. A distinct intermediate lipid-rich layer that separates the epidermis from nectary parenchyma was revealed, which possibly acts as a barrier to water flow in nectar. This study also revealed a distinction between nectar and phloem sap, and starch could act as a nectar precursor, as evidenced from enzymatic and ultrastructural studies. Thus, our findings on changing architecture of extrafloral nectaries with temporal secretion revealed a cell physiological process involved in nectar biosynthesis and secretion.
Collapse
Affiliation(s)
- Shobhon Paul
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur – 721 302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur – 721 302, India
| |
Collapse
|
2
|
Dutta AK, Sultana MM, Tanaka A, Suzuki T, Hachiya T, Nakagawa T. Expression analysis of genes encoding extracellular leucine-rich repeat proteins in Arabidopsis thaliana. Biosci Biotechnol Biochem 2024; 88:154-167. [PMID: 38040489 DOI: 10.1093/bbb/zbad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Leucine-rich repeat (LRR)-containing proteins have been identified in diverse species, including plants. The diverse intracellular and extracellular LRR variants are responsible for numerous biological processes. We analyzed the expression patterns of Arabidopsis thaliana extracellular LRR (AtExLRR) genes, 10 receptor-like proteins, and 4 additional genes expressing the LRR-containing protein by a promoter: β-glucuronidase (GUS) study. According to in silico expression studies, several AtExLRR genes were expressed in a tissue- or stage-specific and abiotic/hormone stress-responsive manner, indicating their potential participation in specific biological processes. Based on the promoter: GUS assay, AtExLRRs were expressed in different cells and organs. A quantitative real-time PCR investigation revealed that the expressions of AtExLRR3 and AtExLRR9 were distinct under various abiotic stress conditions. This study investigated the potential roles of extracellular LRR proteins in plant growth, development, and response to various abiotic stresses.
Collapse
Affiliation(s)
- Amit Kumar Dutta
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Microbiology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mst Momtaz Sultana
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh
| | - Ai Tanaka
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
- Science of Natural Environment Systems Course, Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
| |
Collapse
|
3
|
Sivan P, Rao KS. Ultrastructural changes during nectar secretion from extrafloral nectaries of Pithecellobium dulce Benth. PROTOPLASMA 2023; 260:1339-1347. [PMID: 36949343 PMCID: PMC10403400 DOI: 10.1007/s00709-023-01853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The structural changes in the secretory cells are important to understand the ontogeny and nectar secretion process from the nectaries. In this study, we investigated the ultrastructural changes during different developmental/secretion stages of extrafloral nectaries (EFNs) of Pithecellobium dulce. The dense cytoplasm with active biosynthesis mechanisms such as ribosomes, mitochondria, large nucleus, and plastids with accumulated starch grains characterized the pre-secretion stage of young nectariferous cells. During the secretory phase, the cytoplasm showed distinct changes associated with endomembrane transport such as the predominant occurrence of Golgi, secretory vesicles, and ER resulting in the subsequent appearance of secretions in the intercellular and subcuticular spaces. Cell wall loosening following the dissolution of middle lamellae leading to the formation of subcuticular spaces was evident during advanced stages of nectar secretion. The characteristic cytoplasmic and apoplastic changes associated with cell death were noticed during the post-secretory stages. The structural evidence from the present study suggests the occurrence of two modes of secretion (merocrine and holocrine) during the early and late stages of secretion in the EFNs of P. dulce.
Collapse
Affiliation(s)
- Pramod Sivan
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden.
| | - Karumanchi S Rao
- Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388120, India
| |
Collapse
|
4
|
Functional Role of Extrafloral Nectar in Boreal Forest Ecosystems under Climate Change. FORESTS 2020. [DOI: 10.3390/f11010067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Carbohydrate-rich extrafloral nectar (EFN) is produced in nectaries on the leaves, stipules, and stems of plants and provides a significant energy source for ants and other plant mutualists outside of the flowering period. Our review of literature on EFN indicates that only a few forest plant species in cool boreal environments bear EFN-producing nectaries and that EFN production in many boreal and subarctic plant species is poorly studied. Boreal forest, the world’s largest land biome, is dominated by coniferous trees, which, like most gymnosperms, do not produce EFN. Notably, common deciduous tree species that can be dominant in boreal forest stands, such as Betula and Alnus species, do not produce EFN, while Prunus and Populus species are the most important EFN-producing tree species. EFN together with aphid honeydew is known to play a main role in shaping ant communities. Ants are considered to be keystone species in mixed and conifer-dominated boreal and mountain forests because they transfer a significant amount of carbon from the canopy to the soil. Our review suggests that in boreal forests aphid honeydew is a more important carbohydrate source for ants than in many warmer ecosystems and that EFN-bearing plant species might not have a competitive advantage against herbivores. However, this hypothesis needs to be tested in the future. Warming of northern ecosystems under climate change might drastically promote the invasion of many EFN-producing plants and the associated insect species that consume EFN as their major carbohydrate source. This may result in substantial changes in the diet preferences of ant communities, the preventative roles of ants against insect pest outbreaks, and the ecosystem services they provide. However, wood ants have adapted to using tree sap that leaks from bark cracks in spring, which may mitigate the effects of improved EFN availability.
Collapse
|
5
|
Yamawo A, Suzuki N, Tagawa J. Extrafloral nectary-bearing plant Mallotus japonicus uses different types of extrafloral nectaries to establish effective defense by ants. JOURNAL OF PLANT RESEARCH 2019; 132:499-507. [PMID: 31228016 PMCID: PMC7196952 DOI: 10.1007/s10265-019-01119-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/06/2019] [Indexed: 05/31/2023]
Abstract
Extrafloral nectary (EFN)-bearing plants attract ants to gain protection against herbivores. Some EFN-bearing plants possess different types of EFNs, which might have different effects on ants on the plants. Mallotus japonicus (Thunb.) Muell. Arg. (Euphorbiaceae) bears two types of EFNs, including a pair of large EFNs at the leaf base and many small EFNs along the leaf edge. This study aimed to determine the different roles of the two types of EFNs in biotic defense by ants. A field experiment was conducted to investigate the effect of leaf damage on EFN production and on the distribution pattern of ants. After leaf damage, the number of leaf edge EFNs increased in the leaves first-produced. The number of ants on the leaves also increased, and the foraging area of ants extended from the leaf base to the leaf tip. An EFN-covering field experiment revealed that leaf edge EFNs had a greater effect than leaf base EFNs on ant dispersal on leaves. The extended foraging area of ants resulted in an increase of encounter or attack rate against an experimentally placed herbivore, Spodoptera litura. These results suggest that M. japonicus plants control the foraging area of ants on their leaves using different types of EFNs in response to leaf damage, thus achieving a very effective biotic defense against herbivores by ants.
Collapse
Affiliation(s)
- Akira Yamawo
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, 840-8502, Japan.
| | - Nobuhiko Suzuki
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Jun Tagawa
- Department of Biosphere-Geosphere System Science, Faculty of Informatics, Okayama University of Science, Okayama, 700-0005, Japan
| |
Collapse
|
6
|
Kirmse S, Chaboo CS. Extrafloral nectaries mediate the arboreal beetle community (Coleoptera) in a Neotropical rainforest. J NAT HIST 2019. [DOI: 10.1080/00222933.2019.1650211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Susan Kirmse
- Florida State Collection of Arthropods, Museum of Entomology, Gainesville, FL, USA
| | - Caroline S. Chaboo
- University of Nebraska State Museum, Systematics Research Collections, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
7
|
Park S, Scheffler J, Scheffler B, Cantrell CL, Pauli CS. Chemical defense responses of upland cotton, Gossypium hirsutum L. to physical wounding. PLANT DIRECT 2019; 3:e00141. [PMID: 31245779 PMCID: PMC6589528 DOI: 10.1002/pld3.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 05/04/2023]
Abstract
Upland cotton (Gossypium hirsutum L.) produces terpenoid aldehydes (TAs) that protect the plant from microbial and insect infestations. Foliar TAs include plus (+)- and minus (-)-gossypol, hemigossypolone, and heliocides. To examine foliar TAs' response to physical wounding, the four TA derivatives of a fully glanded G. hirsutum variety JACO GL were quantified by ultra-high performance liquid chromatography. The results show that foliar heliocides increased by 1.7-fold in younger leaves after wounding. While the hemigossypolone level was not affected by the physical wounding, the level of heliocides was significantly increased up to 1.8-fold in the younger leaves. Upland cotton accumulates concentrated carbohydrates, amino acids, and fatty acids in foliar extrafloral nectar (EFN) to serve as a nutrient resource, which attracts both beneficial insects and damaging pests. To better understand the nectar physiology, particularly to determine the temporal dynamics of EFN metabolites in response to the wounding, a gas chromatograph-mass spectrometer (GC-MS) was used to perform metabolic profiling analyses of a G. hirsutum variety Deltapine 383 that has fully developed extrafloral nectaries. A total of 301 compounds were monitored, specifically 75 primary metabolites, two secondary metabolites and 224 unidentified compounds. The physical wounding treatment changed the EFN composition and lowered overall production. The accumulation of 30 metabolites was altered in response to the wounding treatment and threonic acid levels increased consistently. GC-MS combined with Kovat's analysis enabled identification of EFN secondary metabolites including furfuryl alcohol and 5-hyrdomethoxyfurfural, which both have antioxidant and antimicrobial properties that may protect the nectar against microbial pathogens. This study provides new insights into the wounding response of cotton plants in terms of cotton metabolites found in leaf glands and extrafloral nectar as well as highlighting some protective functions of secondary metabolites produced in foliar glands and extrafloral nectaries.
Collapse
Affiliation(s)
- Sang‐Hyuck Park
- Department of BiologyColorado State University‐PuebloPuebloColorado
| | - Jodi Scheffler
- Agricultural Research ServiceCrop Genetics Research UnitUSDAStonevilleMississippi
| | - Brian Scheffler
- Agricultural Research ServiceGenomics and Bioinformatics Research UnitUSDAStonevilleMississippi
| | - Charles L. Cantrell
- Agricultural Research ServiceNatural Products Utilization Research UnitUSDA, UniversityMississippi
| | | |
Collapse
|
8
|
Nepi M, Grasso DA, Mancuso S. Nectar in Plant-Insect Mutualistic Relationships: From Food Reward to Partner Manipulation. FRONTIERS IN PLANT SCIENCE 2018; 9:1063. [PMID: 30073014 PMCID: PMC6060274 DOI: 10.3389/fpls.2018.01063] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/29/2018] [Indexed: 05/27/2023]
Abstract
It has been known for centuries that floral and extra-floral nectar secreted by plants attracts and rewards animals. Extra-floral nectar is involved in so-called indirect defense by attracting animals (generally ants) that prey on herbivores, or by discouraging herbivores from feeding on the plant. Floral nectar is presented inside the flower close to the reproductive organs and rewards animals that perform pollination while visiting the flower. In both cases nectar is a source of carbon and nitrogen compounds that feed animals, the most abundant solutes being sugars and amino acids. Plant-animal relationships involving the two types of nectar have therefore been used for a long time as text-book examples of symmetric mutualism: services provided by animals to plants in exchange for food provided by plants to animals. Cheating (or deception or exploitation), namely obtaining the reward/service without returning any counterpart, is however, well-known in mutualistic relationships, since the interacting partners have conflicting interests and selection may favor cheating strategies. A more subtle way of exploiting mutualism was recently highlighted. It implies the evolution of strategies to maximize the benefits obtained by one partner while still providing the reward/service to the other partner. Several substances other than sugars and amino acids have been found in nectar and some affect the foraging behavior of insects and potentially increase the benefits to the plant. Such substances can be considered plant cues to exploit mutualism. Recent evidence motivated some authors to use the term "manipulation" of animals by plants in nectar-mediated mutualistic relationships. This review highlights the recent background of the "manipulation" hypothesis, discussing it in the framework of new ecological and evolutionary scenarios in plant-animal interactions, as a stimulus for future research.
Collapse
Affiliation(s)
- Massimo Nepi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Donato A. Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Quintana-Rodríguez E, Ramírez-Rodríguez AG, Ramírez-Chávez E, Molina-Torres J, Camacho-Coronel X, Esparza-Claudio J, Heil M, Orona-Tamayo D. Biochemical Traits in the Flower Lifetime of a Mexican Mistletoe Parasitizing Mesquite Biomass. FRONTIERS IN PLANT SCIENCE 2018; 9:1031. [PMID: 30174673 PMCID: PMC6108335 DOI: 10.3389/fpls.2018.01031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/25/2018] [Indexed: 05/24/2023]
Abstract
Psittacanthus calyculatus is a hemiparasitic plant that infects a wide range of trees. Mainly the biology reproduction of this mistletoe lies in bright colored flower development. Furthermore, it uses the nectar secretion as the only reward to engage different flower visitors. We investigated the physiological mechanisms of the flower phenology per hour and per day to analyze the spatial-temporal patterns of the nectar secretion, Cell Wall Invertase Activity (key enzyme in the quality of nectar), nectar chemistry, volatile organic compounds (VOCs) emission, synthesis of carotenoids and frequency of floral visitors. Flowers lasted 4 days, total nectar was loaded just before the anthesis and the secretion was maintained over day 1 and 2, decreased on day 3, and stopped on day 4. The diurnal nectar secretion dynamic per hour on day 1 and 2 showed similar patterns with high production on the morning and a decrease in the afternoon, the secretion declined on day 3 and ceased on day 4. On the other hand, CWIN activity per day was less before the anthesis and increased on day 1 and 2, this enzymatic activity decreased on the old flower phenology. Moreover, diurnal CWIN activities showed different patterns in the morning, noon, and lastly in the afternoon. Nectar chemistry varied significantly throughout of the flower lifetime, sucrose decreased along the flower phenology increasing glucose and fructose. Amino acids showed the prevalence of proline and oxo-proline, both increased on the day 1 and diminished in subsequent old flower stages. The spatial VOCs emission showed the presence of 11 compounds being β-ocimene the main volatile; its release increased on day 1 and remained constant in the flower lifetime. Lutein, lycopene, and β-carotene were concentrated in old stages of the flowers. In field, the most frequent flower visitors were the hummingbirds that usually foraging in all phenologic flower stage and their foraging events decreased with the phenological flower lifetimes. The results showed that these traits presented by P. calyculatus flowers are able to engage and manipulate the behavior of flower visitors and contribute to the reproduction of the parasitic plant.
Collapse
Affiliation(s)
- Elizabeth Quintana-Rodríguez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
- Departamento de Soluciones Tecnológicas, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), Guanajuato, Mexico
| | - Alan Gamaliel Ramírez-Rodríguez
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - Enrique Ramírez-Chávez
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - Jorge Molina-Torres
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - Xicotencatl Camacho-Coronel
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - José Esparza-Claudio
- Departamento de Soluciones Tecnológicas, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), Guanajuato, Mexico
| | - Martin Heil
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - Domancar Orona-Tamayo
- Departamento de Soluciones Tecnológicas, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), Guanajuato, Mexico
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| |
Collapse
|
10
|
Nawrot R, Barylski J, Lippmann R, Altschmied L, Mock HP. Combination of transcriptomic and proteomic approaches helps to unravel the protein composition of Chelidonium majus L. milky sap. PLANTA 2016; 244:1055-1064. [PMID: 27401454 PMCID: PMC5052312 DOI: 10.1007/s00425-016-2566-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/01/2016] [Indexed: 05/29/2023]
Abstract
A novel annotated Chelidonium majus L. transcriptome database composed of 23,004 unique coding sequences allowed to significantly improve the sensitivity of proteomic C. majus assessments, which showed novel defense-related proteins characteristic to its latex. To date, the composition of Chelidonium majus L. milky sap and biosynthesis of its components are poorly characterized. We, therefore, performed de novo sequencing and assembly of C. majus transcriptome using Illumina technology. Approximately, 119 Mb of raw sequence data was obtained. Assembly resulted in 107,088 contigs, with N50 of 1913 bp and N90 of 450 bp. Among 34,965 unique coding sequences (CDS), 23,004 obtained CDS database served as a basis for further proteomic analyses. The database was then used for the identification of proteins from C. majus milky sap, and whole plant extracts analyzed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) approach. Of about 334 different putative proteins were identified in C. majus milky sap and 1155 in C. majus whole plant extract. The quantitative comparative analysis confirmed that C. majus latex contains proteins connected with response to stress conditions and generation of precursor metabolites and energy. Notable proteins characteristic to latex include major latex protein (MLP, presumably belonging to Bet v1-like superfamily), polyphenol oxidase (PPO, which could be responsible for browning of the sap after exposure to air), and enzymes responsible for anthocyanidin, phenylpropanoid, and alkaloid biosynthesis.
Collapse
Affiliation(s)
- Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland.
| | - Jakub Barylski
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Rico Lippmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
- Sandoz GmbH, Biochemiestraße 10, 6250, Kundl, Austria
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| |
Collapse
|
11
|
Paetz C, Hammerbacher A, Menezes RC, Feistel F, Weigel C, Voigt K, Schneider B. Chemical Composition and Antimicrobial Activity of Populus nigra Shoot Resin. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The chemical composition of Populus nigra shoot resin has been investigated by chromatographic and spectroscopic methods. The analyses resulted in identification of 19 known compounds. The resin exhibited low activity against selected microorganisms.
Collapse
Affiliation(s)
- Christian Paetz
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Almuth Hammerbacher
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
| | - Riya C. Menezes
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Felix Feistel
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Christiane Weigel
- Leibniz Institute for Natural Product Research and Infection Biology, Jena Microbial Resource Collection, Adolf-Reichwein-Straβe 23, 07745 Jena, Germany
| | - Kerstin Voigt
- Leibniz Institute for Natural Product Research and Infection Biology, Jena Microbial Resource Collection, Adolf-Reichwein-Straβe 23, 07745 Jena, Germany
| | - Bernd Schneider
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| |
Collapse
|
12
|
Jaborsky M, Maierhofer T, Olbrich A, Escalante-Pérez M, Müller HM, Simon J, Krol E, Cuin TA, Fromm J, Ache P, Geiger D, Hedrich R. SLAH3-type anion channel expressed in poplar secretory epithelia operates in calcium kinase CPK-autonomous manner. THE NEW PHYTOLOGIST 2016; 210:922-33. [PMID: 26831448 DOI: 10.1111/nph.13841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/03/2015] [Indexed: 05/14/2023]
Abstract
Extrafloral nectaries secrete a sweet sugar cocktail that lures predator insects for protection from foraging herbivores. Apart from sugars and amino acids, the nectar contains the anions chloride and nitrate. Recent studies with Populus have identified a type of nectary covered by apical bipolar epidermal cells, reminiscent of the secretory brush border epithelium in animals. Border epithelia operate transepithelial anion transport, which is required for membrane potential and/or osmotic adjustment of the secretory cells. In search of anion transporters expressed in extrafloral nectaries, we identified PttSLAH3 (Populus tremula × Populus tremuloides SLAC1 Homologue3), an anion channel of the SLAC/SLAH family. When expressed in Xenopus oocytes, PttSLAH3 displayed the features of a voltage-dependent anion channel, permeable to both nitrate and chloride. In contrast to the Arabidopsis SLAC/SLAH family members, the poplar isoform PttSLAH3 is independent of phosphorylation activation by protein kinases. To understand the basis for the autonomous activity of the poplar SLAH3, we generated and expressed chimera between kinase-independent PttSLAH3 and kinase-dependent Arabidopsis AtSLAH3. We identified the N-terminal tail and, to a lesser extent, the C-terminal tail as responsible for PttSLAH3 kinase-(in)dependent action. This feature of PttSLAH3 may provide the secretory cell with a channel probably controlling long-term nectar secretion.
Collapse
Affiliation(s)
- Mario Jaborsky
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| | - Tobias Maierhofer
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| | - Andrea Olbrich
- Thünen Institute of Wood Research, Leuschnerstr. 91d, Hamburg, 21031, Germany
| | - María Escalante-Pérez
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| | - Heike M Müller
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| | - Judy Simon
- Chair of Tree Physiology, University of Freiburg, Freiburg, 79110, Germany
| | - Elzbieta Krol
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| | - Tracey Ann Cuin
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| | - Jörg Fromm
- Center for Wood Sciences, University of Hamburg, Leuschnerstr. 91, Hamburg, 21031, Germany
| | - Peter Ache
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| | - Dietmar Geiger
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| | - Rainer Hedrich
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| |
Collapse
|
13
|
Böhm J, Scherzer S, Krol E, Kreuzer I, von Meyer K, Lorey C, Mueller TD, Shabala L, Monte I, Solano R, Al-Rasheid KAS, Rennenberg H, Shabala S, Neher E, Hedrich R. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake. Curr Biol 2016; 26:286-95. [PMID: 26804557 PMCID: PMC4751343 DOI: 10.1016/j.cub.2015.11.057] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/23/2015] [Accepted: 11/26/2015] [Indexed: 01/05/2023]
Abstract
Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na+-rich animal and nutrition for the plant. Video Abstract
Carnivorous Dionaea muscipula captures and processes nutrient- and sodium-rich prey Via mechano-sensor stimulation, an animal meal is recognized, captured, and processed Mechano-electrical waves induce JA signaling pathways that trigger prey digestion Number of stimulations controls the production of digesting enzymes and uptake modules
Collapse
Affiliation(s)
- Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Elzbieta Krol
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Katharina von Meyer
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Christian Lorey
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany; Naturwissenschaftliches Labor für Schüler, Friedrich-Koenig-Gymnasium, 97082 Würzburg, Germany
| | - Thomas D Mueller
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia
| | - Isabel Monte
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus University Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus University Autónoma, 28049 Madrid, Spain
| | - Khaled A S Al-Rasheid
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany; Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Heinz Rennenberg
- Institute of Forest Sciences, University of Freiburg, Georges-Koehler-Allee 53/54, 79085 Freiburg, Germany
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia
| | - Erwin Neher
- Department for Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany.
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| |
Collapse
|
14
|
Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps. Proc Natl Acad Sci U S A 2015; 112:7309-14. [PMID: 25997445 PMCID: PMC4466697 DOI: 10.1073/pnas.1507810112] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K(+) uptake system in the Venus flytrap. In search of K(+) transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K(+)-transporter genes into Xenopus oocytes, however, both putative K(+) transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K(+) transporter 1 (AKT1), we coexpressed the putative K(+) transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K(+) uptake. DmKT1 was found to be a K(+)-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around -120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K(+), reducing its concentration from millimolar levels down to trace levels.
Collapse
|
15
|
Gao P, Loeffler TS, Honsel A, Kruse J, Krol E, Scherzer S, Kreuzer I, Bemm F, Buegger F, Burzlaff T, Hedrich R, Rennenberg H. Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula. THE NEW PHYTOLOGIST 2015; 205:1320-1329. [PMID: 25345872 DOI: 10.1111/nph.13120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Carnivorous Dionaea muscipula operates active snap traps for nutrient acquisition from prey; so what is the role of D. muscipula's reduced root system? We studied the capacity for nitrogen (N) acquisition via traps, and its effect on plant allometry; the capacity of roots to absorb NO₃(-), NH₄(+) and glutamine from the soil solution; and the fate and interaction of foliar- and root-acquired N. Feeding D. muscipula snap traps with insects had little effect on the root : shoot ratio, but promoted petiole relative to trap growth. Large amounts of NH₄(+) and glutamine were absorbed upon root feeding. The high capacity for root N uptake was maintained upon feeding traps with glutamine. High root acquisition of NH₄(+) was mediated by 2.5-fold higher expression of the NH₄(+) transporter DmAMT1 in the roots compared with the traps. Electrophysiological studies confirmed a high constitutive capacity for NH₄(+) uptake by roots. Glutamine feeding of traps inhibited the influx of (15)N from root-absorbed (15)N/(13)C-glutamine into these traps, but not that of (13)C. Apparently, fed traps turned into carbon sinks that even acquired organic carbon from roots. N acquisition at the whole-plant level is fundamentally different in D. muscipula compared with noncarnivorous species, where foliar N influx down-regulates N uptake by roots.
Collapse
Affiliation(s)
- Peng Gao
- Institut für Forstwissenschaften, Professur für Baumphysiologie, Universität Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
| | - Theresa Sofi Loeffler
- Institut für Forstwissenschaften, Professur für Baumphysiologie, Universität Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
| | - Anne Honsel
- Institut für Forstwissenschaften, Professur für Baumphysiologie, Universität Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
| | - Jörg Kruse
- Institut für Forstwissenschaften, Professur für Baumphysiologie, Universität Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
| | - Elzbieta Krol
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97070, Würzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97070, Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97070, Würzburg, Germany
| | - Felix Bemm
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97070, Würzburg, Germany
| | - Franz Buegger
- German Research Center for Environmental Health, Institut für Bodenökologie, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Tim Burzlaff
- Institut für Forstwissenschaften, Forstzoologisches Institut, Tennenbacher Strasse 4, 79085, Freiburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97070, Würzburg, Germany
| | - Heinz Rennenberg
- Institut für Forstwissenschaften, Professur für Baumphysiologie, Universität Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
| |
Collapse
|
16
|
Grasso DA, Pandolfi C, Bazihizina N, Nocentini D, Nepi M, Mancuso S. Extrafloral-nectar-based partner manipulation in plant-ant relationships. AOB PLANTS 2015; 7:plv002. [PMID: 25589521 PMCID: PMC4326690 DOI: 10.1093/aobpla/plv002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/17/2014] [Indexed: 05/27/2023]
Abstract
Plant-ant interactions are generally considered as mutualisms, with both parties gaining benefits from the association. It has recently emerged that some of these mutualistic associations have, however, evolved towards other forms of relationships and, in particular, that plants may manipulate their partner ants to make reciprocation more beneficial, thereby stabilizing the mutualism. Focusing on plants bearing extrafloral nectaries, we review recent studies and address three key questions: (i) how can plants attract potential partners and maintain their services; (ii) are there compounds in extrafloral nectar that could mediate partner manipulation; and (iii) are ants susceptible to such compounds? After reviewing the current knowledge on plant-ant associations, we propose a possible scenario where plant-derived chemicals, such as secondary metabolites, known to have an impact on animal brain, could have evolved in plants to attract and manipulate ant behaviour. This new viewpoint would place plant-animal interaction in a different ecological context, opening new ecological and neurobiological perspectives of drug seeking and use.
Collapse
Affiliation(s)
- D A Grasso
- Department of Life Sciences, University of Parma, Viale delle Scienze 11/a, 43124 Parma, Italy
| | - C Pandolfi
- LINV - Department of Agrifood Production and Environmental Sciences, University of Florence, Viale delle Idee 30, 50019 Sesto F.no, Florence, Italy
| | - N Bazihizina
- LINV - Department of Agrifood Production and Environmental Sciences, University of Florence, Viale delle Idee 30, 50019 Sesto F.no, Florence, Italy
| | - D Nocentini
- Department of Life Science, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - M Nepi
- Department of Life Science, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - S Mancuso
- LINV - Department of Agrifood Production and Environmental Sciences, University of Florence, Viale delle Idee 30, 50019 Sesto F.no, Florence, Italy
| |
Collapse
|
17
|
Heil M. Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:213-32. [PMID: 25564741 DOI: 10.1146/annurev-ento-010814-020753] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants secrete extrafloral nectar (EFN) as an induced defense against herbivores. EFN contains not only carbohydrates and amino acids but also pathogenesis-related proteins and other protective enzymes, making EFN an exclusive reward. EFN secretion is commonly induced after wounding, likely owing to a jasmonic acid-induced cell wall invertase, and is limited by phloem sucrose availability: Both factors control EFN secretion according to the optimal defense hypothesis. Non-ant EFN consumers include parasitoids, wasps, spiders, mites, bugs, and predatory beetles. Little is known about the relevance of EFN to the nutrition of its consumers and, hence, to the structuring of arthropod communities. The mutualism can be established quickly among noncoevolved (e.g., invasive) species, indicating its easy assembly is due to ecological fitting. Therefore, increasing efforts are directed toward using EFN in biocontrol. However, documentation of the importance of EFN for the communities of plants and arthropods in natural, invasive, and agricultural ecosystems is still limited.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV-Irapuato, 36821 Irapuato, Guanajuato, México;
| |
Collapse
|
18
|
Chanam J, Kasinathan S, Pramanik GK, Jagdeesh A, Joshi KA, Borges RM. Foliar Extrafloral Nectar ofHumboldtia brunonis(Fabaceae), a Paleotropic Ant-plant, is Richer than Phloem Sap and More Attractive than Honeydew. Biotropica 2014. [DOI: 10.1111/btp.12185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joyshree Chanam
- Centre for Ecological Sciences; Indian Institute of Science; Bangalore 560012 India
| | | | - Gautam K. Pramanik
- Centre for Ecological Sciences; Indian Institute of Science; Bangalore 560012 India
| | - Amaraja Jagdeesh
- Centre for Ecological Sciences; Indian Institute of Science; Bangalore 560012 India
| | - Kanchan A. Joshi
- Centre for Ecological Sciences; Indian Institute of Science; Bangalore 560012 India
| | - Renee M. Borges
- Centre for Ecological Sciences; Indian Institute of Science; Bangalore 560012 India
| |
Collapse
|
19
|
Phloem Sugar Flux and Jasmonic Acid-Responsive Cell Wall Invertase Control Extrafloral Nectar Secretion in Ricinus communis. J Chem Ecol 2014; 40:760-9. [DOI: 10.1007/s10886-014-0476-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 01/15/2023]
|
20
|
Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, Klinkenberg PM, Gorder MK, Hou BH, Qu XQ, Carter CJ, Baldwin IT, Frommer WB. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 2014; 508:546-9. [PMID: 24670640 DOI: 10.1038/nature13082] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 01/27/2014] [Indexed: 01/09/2023]
Abstract
Angiosperms developed floral nectaries that reward pollinating insects. Although nectar function and composition have been characterized, the mechanism of nectar secretion has remained unclear. Here we identify SWEET9 as a nectary-specific sugar transporter in three eudicot species: Arabidopsis thaliana, Brassica rapa (extrastaminal nectaries) and Nicotiana attenuata (gynoecial nectaries). We show that SWEET9 is essential for nectar production and can function as an efflux transporter. We also show that sucrose phosphate synthase genes, encoding key enzymes for sucrose biosynthesis, are highly expressed in nectaries and that their expression is also essential for nectar secretion. Together these data are consistent with a model in which sucrose is synthesized in the nectary parenchyma and subsequently secreted into the extracellular space via SWEET9, where sucrose is hydrolysed by an apoplasmic invertase to produce a mixture of sucrose, glucose and fructose. The recruitment of SWEET9 for sucrose export may have been a key innovation, and could have coincided with the evolution of core eudicots and contributed to the evolution of nectar secretion to reward pollinators.
Collapse
Affiliation(s)
- I Winnie Lin
- 1] Department of Biology, Stanford University, Stanford, California 94305, USA [2] Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
| | - Davide Sosso
- 1] Department of Biology, Stanford University, Stanford, California 94305, USA [2] Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
| | - Li-Qing Chen
- Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
| | - Klaus Gase
- Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Sang-Gyu Kim
- Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Danny Kessler
- Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Peter M Klinkenberg
- 1] Department of Biology, University of Minnesota Duluth, Duluth, Minnesota 55812, USA [2] Department of Plant Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Molly K Gorder
- 1] Department of Biology, University of Minnesota Duluth, Duluth, Minnesota 55812, USA [2] Department of Plant Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Bi-Huei Hou
- Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
| | - Xiao-Qing Qu
- 1] Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA [2] Key Laboratory of Plant and Soil Interactions, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Clay J Carter
- 1] Department of Biology, University of Minnesota Duluth, Duluth, Minnesota 55812, USA [2] Department of Plant Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Wolf B Frommer
- 1] Department of Biology, Stanford University, Stanford, California 94305, USA [2] Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
| |
Collapse
|
21
|
Context dependency of rewards and services in an Indian ant–plant interaction: southern sites favour the mutualism between plants and ants. JOURNAL OF TROPICAL ECOLOGY 2014. [DOI: 10.1017/s026646741400011x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract:Protection-based ant–plant mutualisms may vary in strength due to differences in ant rewards, abundance of protective ants and herbivory pressure. We investigated geographical and temporal variation in host plant traits and herbivory pressure at five sites spanning the distribution range of the myrmecophyteHumboldtia brunonis(Fabaceae) in the Indian Western Ghats. Southern sites had, on average, 2.4 times greater abundance of domatia-bearing individuals, 1.6 times greater extrafloral nectary numbers per leaf, 1.2 times larger extrafloral nectary sizes, 2.2 times greater extrafloral nectar (EFN) volumes and a two-fold increase in total amino acid and total sugar concentrations in EFN compared with northern sites. A strong protection-based mutualism with ants occurred at only one southern site where herbivory was highest, suggesting that investments in attracting ants correlate with anti-herbivore benefits gained from the presence of protective ants. Our results confirm a temporally stable north–south gradient in myrmecophytic traits in this ant-plant as several of these traits were re-sampled after a 5-y interval. However, the chemical composition of EFN varied at both spatial and short-term temporal scales suggesting that only repeated measurements of rewards such as EFN can reveal the real spectrum of trait variation in an ant–plant mutualistic system.
Collapse
|
22
|
Secreted major Venus flytrap chitinase enables digestion of Arthropod prey. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:374-83. [DOI: 10.1016/j.bbapap.2013.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 11/18/2022]
|
23
|
Orona-Tamayo D, Heil M. Stabilizing Mutualisms Threatened by Exploiters: New Insights from Ant-Plant Research. Biotropica 2013. [DOI: 10.1111/btp.12059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Domancar Orona-Tamayo
- Departamento de Ingeniería Genética; CINVESTAV-Irapuato; Irapuato Guanajuato Mexico
- Instituto de Investigaciones Químico-Biológicas; Universidad Michoacana de San Nicolás de Hidalgo (UMSNH); Edif. B3, Ciudad Universitaria 58060 Morelia Michoacán Mexico
| | - Martin Heil
- Departamento de Ingeniería Genética; CINVESTAV-Irapuato; Irapuato Guanajuato Mexico
| |
Collapse
|
24
|
Scherzer S, Krol E, Kreuzer I, Kruse J, Karl F, von Rüden M, Escalante-Perez M, Müller T, Rennenberg H, Al-Rasheid KAS, Neher E, Hedrich R. The Dionaea muscipula ammonium channel DmAMT1 provides NH₄⁺ uptake associated with Venus flytrap's prey digestion. Curr Biol 2013; 23:1649-57. [PMID: 23954430 DOI: 10.1016/j.cub.2013.07.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/07/2013] [Accepted: 07/03/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Ammonium transporter (AMT/MEP/Rh) superfamily members mediate ammonium uptake and retrieval. This pivotal transport system is conserved among all living organisms. For plants, nitrogen represents a macronutrient available in the soil as ammonium, nitrate, and organic nitrogen compounds. Plants living on extremely nutrient-poor soils have developed a number of adaptation mechanisms, including a carnivorous lifestyle. This study addresses the molecular nature, function, and regulation of prey-derived ammonium uptake in the Venus flytrap, Dionaea muscipula, one of the fastest active carnivores. RESULTS The Dionaea muscipula ammonium transporter DmAMT1 was localized in gland complexes where its expression was upregulated upon secretion. These clusters of cells decorating the inner trap surface are engaged in (1) secretion of an acidic digestive enzyme cocktail and (2) uptake of prey-derived nutrients. Voltage clamp of Xenopus oocytes expressing DmAMT1 and membrane potential recordings with DmAMT1-expressing Dionaea glands were used to monitor and compare electrophysiological properties of DmAMT1 in vitro and in planta. DmAMT1 exhibited the hallmark biophysical properties of a NH4(+)-selective channel. At depolarized membrane potentials (Vm = 0), the Km (3.2 ± 0.3 mM) indicated a low affinity of DmAMT1 for ammonium that increased systematically with negative going voltages. Upon hyperpolarization to, e.g., -200 mV, a Km of 0.14 ± 0.015 mM documents the voltage-dependent shift of DmAMT1 into a NH4(+) transport system of high affinity. CONCLUSIONS We suggest that regulation of glandular DmAMT1 and membrane potential readjustments of the endocrine cells provide for effective adaptation to varying, prey-derived ammonium sources.
Collapse
Affiliation(s)
- Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany; Department for Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
No time for candy: passionfruit (Passiflora edulis) plants down-regulate damage-induced extra floral nectar production in response to light signals of competition. Oecologia 2013; 173:213-21. [DOI: 10.1007/s00442-013-2721-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 06/21/2013] [Indexed: 02/06/2023]
|
26
|
Marazzi B, Bronstein JL, Koptur S. The diversity, ecology and evolution of extrafloral nectaries: current perspectives and future challenges. ANNALS OF BOTANY 2013; 111:1243-50. [PMID: 23704115 PMCID: PMC3662527 DOI: 10.1093/aob/mct109] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plants in over one hundred families in habitats worldwide bear extrafloral nectaries (EFNs). EFNs display a remarkable diversity of evolutionary origins, as well as diverse morphology and location on the plant. They secrete extrafloral nectar, a carbohydrate-rich food that attracts ants and other arthropods, many of which protect the plant in return. By fostering ecologically important protective mutualisms, EFNs play a significant role in structuring both plant and animal communities. And yet researchers are only now beginning to appreciate their importance and the range of ecological, evolutionary and morphological diversity that EFNs exhibit. SCOPE This Highlight features a series of papers that illustrate some of the newest directions in the study of EFNs. Here, we introduce this set of papers by providing an overview of current understanding and new insights on EFN diversity, ecology and evolution. We highlight major gaps in our current knowledge, and outline future research directions. CONCLUSIONS Our understanding of the roles EFNs play in plant biology is being revolutionized with the use of new tools from developmental biology and genomics, new modes of analysis allowing hypothesis-testing in large-scale phylogenetic frameworks, and new levels of inquiry extending to community-scale interaction networks. But many central questions remain unanswered; indeed, many have not yet been asked. Thus, the EFN puzzle remains an intriguing challenge for the future.
Collapse
Affiliation(s)
- Brigitte Marazzi
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
27
|
Imes D, Mumm P, Böhm J, Al-Rasheid KAS, Marten I, Geiger D, Hedrich R. Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:372-82. [PMID: 23452338 DOI: 10.1111/tpj.12133] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 05/08/2023]
Abstract
Under drought stress, the stress hormone ABA addresses the SnR kinase OST1 via its cytosolic receptor and the protein phosphatase ABI1. Upon activation, OST1 phosphorylates the guard cell S-type anion channel SLAC1. Arabidopsis ABI1 and OST1 loss-of-function mutants are characterized by an extreme wilting 'open stomata' phenotype. Given the fact that guard cells express both SLAC- and R-/QUAC-type anion channels, we questioned whether OST1, besides SLAC1, also controls the QUAC1 channel. In other words, are ABI1/OST1 defects preventing both of the guard cell anion channel types from operating properly in terms of stomatal closure? The activation of the R-/QUAC-type anion channel by ABA signaling kinase OST1 and phosphatase ABI1 was analyzed in two experimental systems: Arabidopsis guard cells and the plant cell-free background of Xenopus oocytes. Patch-clamp studies on guard cells show that ABA activates R-/QUAC-type currents of wild-type plants, but to a much lesser extent in those of abi1-1 and ost1-2 mutants. In the oocyte system the co-expression of QUAC1 and OST1 resulted in a pronounced activation of the R-type anion channel. These studies indicate that OST1 is addressing both S-/SLAC- and R-/QUAC-type guard cell anion channels, and explain why the ost1-2 mutant is much more sensitive to drought than single slac1 or quac1 mutants.
Collapse
Affiliation(s)
- Dennis Imes
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs Platz 2, D-97082, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Orona-Tamayo D, Wielsch N, Escalante-Pérez M, Svatos A, Molina-Torres J, Muck A, Ramirez-Chávez E, Ádame-Alvarez RM, Heil M. Short-term proteomic dynamics reveal metabolic factory for active extrafloral nectar secretion by Acacia cornigera ant-plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:546-54. [PMID: 23075038 DOI: 10.1111/tpj.12052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 05/09/2023]
Abstract
Despite the ecological and evolutionary importance of nectar, mechanisms controlling its synthesis and secretion remain largely unknown. It is widely believed that nectar is 'secreted phloem sap', but current research reveals a biochemical complexity that is unlikely to stem directly from the phloem. We used the short daily peak in production of extrafloral nectar by Acacia cornigera to investigate metabolic and proteomic dynamics before, during and after 2 h of diurnal secretion. Neither hexoses nor dominating nectar proteins (nectarins) were detected in the phloem before or during nectar secretion, excluding the phloem as the direct source of major nectar components. Enzymes involved in the anabolism of sugars, amino acids, proteins, and nectarins, such as invertase, β-1,3-glucanase and thaumatin-like protein, accumulated in the nectary directly before secretion and diminished quantitatively after the daily secretion process. The corresponding genes were expressed almost exclusively in nectaries. By contrast, protein catabolic enzymes were mainly present and active after the secretion peak, and may function in termination of the secretion process. Thus the metabolic machinery for extrafloral nectar production is synthesized and active during secretion and degraded thereafter. Knowing the key enzymes involved and the spatio-temporal patterns in their expression will allow elucidation of mechanisms by which plants control nectar quality and quantity.
Collapse
Affiliation(s)
- Domancar Orona-Tamayo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados-Irapuato (CINVESTAV), Guanajuato, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schulze WX, Sanggaard KW, Kreuzer I, Knudsen AD, Bemm F, Thøgersen IB, Bräutigam A, Thomsen LR, Schliesky S, Dyrlund TF, Escalante-Perez M, Becker D, Schultz J, Karring H, Weber A, Højrup P, Hedrich R, Enghild JJ. The protein composition of the digestive fluid from the venus flytrap sheds light on prey digestion mechanisms. Mol Cell Proteomics 2012; 11:1306-19. [PMID: 22891002 PMCID: PMC3494193 DOI: 10.1074/mcp.m112.021006] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/26/2012] [Indexed: 11/06/2022] Open
Abstract
The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plant's digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plant's prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition.
Collapse
Affiliation(s)
- Waltraud X. Schulze
- From the ‡Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kristian W. Sanggaard
- §Department of Molecular Biology and Genetics, Aarhus University, Gustav Wiedsvej 10C, 8000 Aarhus C, Denmark
| | - Ines Kreuzer
- ¶Department of Molecular Plant Physiology & Biophysics, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Anders D. Knudsen
- §Department of Molecular Biology and Genetics, Aarhus University, Gustav Wiedsvej 10C, 8000 Aarhus C, Denmark
| | - Felix Bemm
- ‖Department of Bioinformatics, Biozentrum, Am Hubland, Universität Würzburg, D-97074 Wuerzburg, Germany
| | - Ida B. Thøgersen
- §Department of Molecular Biology and Genetics, Aarhus University, Gustav Wiedsvej 10C, 8000 Aarhus C, Denmark
| | - Andrea Bräutigam
- ‡‡Department of Plant Biochemistry, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Line R. Thomsen
- §Department of Molecular Biology and Genetics, Aarhus University, Gustav Wiedsvej 10C, 8000 Aarhus C, Denmark
| | - Simon Schliesky
- ‡‡Department of Plant Biochemistry, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Thomas F. Dyrlund
- §Department of Molecular Biology and Genetics, Aarhus University, Gustav Wiedsvej 10C, 8000 Aarhus C, Denmark
| | - Maria Escalante-Perez
- ¶Department of Molecular Plant Physiology & Biophysics, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Dirk Becker
- ¶Department of Molecular Plant Physiology & Biophysics, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Jörg Schultz
- ‖Department of Bioinformatics, Biozentrum, Am Hubland, Universität Würzburg, D-97074 Wuerzburg, Germany
| | - Henrik Karring
- §§University of Southern Denmark, Institute of Chemical Engineering, Biotechnology and Environmental Technology, Niels Bohrs Allé 1, 5230 Odense M, Denmark
| | - Andreas Weber
- ‡‡Department of Plant Biochemistry, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Peter Højrup
- ¶¶Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Rainer Hedrich
- ¶Department of Molecular Plant Physiology & Biophysics, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
- ‖‖Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jan J. Enghild
- §Department of Molecular Biology and Genetics, Aarhus University, Gustav Wiedsvej 10C, 8000 Aarhus C, Denmark
| |
Collapse
|
30
|
Escalante-Pérez M, Jaborsky M, Reinders J, Kurzai O, Hedrich R, Ache P. Poplar extrafloral nectar is protected against plant and human pathogenic fungus. MOLECULAR PLANT 2012; 5:1157-1159. [PMID: 22859733 DOI: 10.1093/mp/sss072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|