1
|
Fragkopoulos AA, Böhme F, Drewes N, Bäumchen O. Metabolic activity controls the emergence of coherent flows in microbial suspensions. Proc Natl Acad Sci U S A 2025; 122:e2413340122. [PMID: 39847325 PMCID: PMC11789023 DOI: 10.1073/pnas.2413340122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Photosynthetic microbes have evolved and successfully adapted to the ever-changing environmental conditions in complex microhabitats throughout almost all ecosystems on Earth. In the absence of light, they can sustain their biological functionalities through aerobic respiration, and even in anoxic conditions through anaerobic metabolic activity. For a suspension of photosynthetic microbes in an anaerobic environment, individual cellular motility is directly controlled by its photosynthetic activity, i.e. the intensity of the incident light absorbed by chlorophyll. The effects of the metabolic activity on the collective motility on the population level, however, remain elusive so far. Here, we demonstrate that at high light intensities, a suspension of photosynthetically active microbes exhibits a stable reverse sedimentation profile of the cell density due to the microbes' natural bias to move against gravity. With decreasing photosynthetic activity, and therefore suppressed individual motility, the living suspension becomes unstable giving rise to coherent bioconvective flows. The collective motility is fully reversible and manifests as regular, three-dimensional plume structures, in which flow rates and cell distributions are directly controlled via the light intensity. The coherent flows emerge in the highly unfavorable condition of lacking both light and oxygen and, thus, might help the microbial collective to expand the exploration of their natural habitat in search for better survival conditions.
Collapse
Affiliation(s)
- Alexandros A. Fragkopoulos
- Experimental Physics V, Department of Physics, University of Bayreuth, D-95447Bayreuth, Germany
- Max Planck Institute for Dynamics and Self-Organization, D-37077Göttingen, Germany
| | - Florian Böhme
- Experimental Physics V, Department of Physics, University of Bayreuth, D-95447Bayreuth, Germany
| | - Nicole Drewes
- Max Planck Institute for Dynamics and Self-Organization, D-37077Göttingen, Germany
| | - Oliver Bäumchen
- Experimental Physics V, Department of Physics, University of Bayreuth, D-95447Bayreuth, Germany
- Max Planck Institute for Dynamics and Self-Organization, D-37077Göttingen, Germany
| |
Collapse
|
2
|
Fan Y, Tcherkez G, Scafaro AP, Taylor NL, Furbank RT, von Caemmerer S, Atkin OK. Variation in leaf dark respiration among C3 and C4 grasses is associated with use of different substrates. PLANT PHYSIOLOGY 2024; 195:1475-1490. [PMID: 38324704 PMCID: PMC11142371 DOI: 10.1093/plphys/kiae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/04/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Measurements of respiratory properties have often been made at a single time point either during daytime using dark-adapted leaves or during nighttime. The influence of the day-night cycle on respiratory metabolism has received less attention but is crucial to understand photosynthesis and photorespiration. Here, we examined how CO2- and O2-based rates of leaf dark respiration (Rdark) differed between midday (after 30-min dark adaptation) and midnight in 8 C3 and C4 grasses. We used these data to calculate the respiratory quotient (RQ; ratio of CO2 release to O2 uptake), and assessed relationships between Rdark and leaf metabolome. Rdark was higher at midday than midnight, especially in C4 species. The day-night difference in Rdark was more evident when expressed on a CO2 than O2 basis, with the RQ being higher at midday than midnight in all species, except in rice (Oryza sativa). Metabolomic analyses showed little correlation of Rdark or RQ with leaf carbohydrates (sucrose, glucose, fructose, or starch) but strong multivariate relationships with other metabolites. The results suggest that rates of Rdark and differences in RQ were determined by several concurrent CO2-producing and O2-consuming metabolic pathways, not only the tricarboxylic acid cycle (organic acids utilization) but also the pentose phosphate pathway, galactose metabolism, and secondary metabolism. As such, Rdark was time-, type- (C3/C4) and species-dependent, due to the use of different substrates.
Collapse
Affiliation(s)
- Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Guillaume Tcherkez
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, Beaucouzé 49100, France
| | - Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Nicolas L Taylor
- School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Robert T Furbank
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Susanne von Caemmerer
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Saint-Sorny M, Brzezowski P, Arrivault S, Alric J, Johnson X. Interactions Between Carbon Metabolism and Photosynthetic Electron Transport in a Chlamydomonas reinhardtii Mutant Without CO 2 Fixation by RuBisCO. FRONTIERS IN PLANT SCIENCE 2022; 13:876439. [PMID: 35574084 PMCID: PMC9096841 DOI: 10.3389/fpls.2022.876439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
A Chlamydomonas reinhardtii RuBisCO-less mutant, ΔrbcL, was used to study carbohydrate metabolism without fixation of atmospheric carbon. The regulatory mechanism(s) that control linear electron flow, known as "photosynthetic control," are amplified in ΔrbcL at the onset of illumination. With the aim to understand the metabolites that control this regulatory response, we have correlated the kinetics of primary carbon metabolites to chlorophyll fluorescence induction curves. We identify that ΔrbcL in the absence of acetate generates adenosine triphosphate (ATP) via photosynthetic electron transfer reactions. Also, metabolites of the Calvin Benson Bassham (CBB) cycle are responsive to the light. Indeed, ribulose 1,5-bisphosphate (RuBP), the last intermediate before carboxylation by Ribulose-1,5-bisphosphate carboxylase-oxygenase, accumulates significantly with time, and CBB cycle intermediates for RuBP regeneration, dihydroxyacetone phosphate (DHAP), pentose phosphates and ribose-5-phosphate (R5P) are rapidly accumulated in the first seconds of illumination, then consumed, showing that although the CBB is blocked, these enzymes are still transiently active. In opposition, in the presence of acetate, consumption of CBB cycle intermediates is strongly diminished, suggesting that the link between light and primary carbon metabolism is almost lost. Phosphorylated hexoses and starch accumulate significantly. We show that acetate uptake results in heterotrophic metabolism dominating phototrophic metabolism, with glyoxylate and tricarboxylic acid (TCA) cycle intermediates being the most highly represented metabolites, specifically succinate and malate. These findings allow us to hypothesize which metabolites and metabolic pathways are relevant to the upregulation of processes like cyclic electron flow that are implicated in photosynthetic control mechanisms.
Collapse
Affiliation(s)
- Maureen Saint-Sorny
- CEA, CNRS, UMR 7265, BIAM, CEA Cadarache, Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - Pawel Brzezowski
- CEA, CNRS, UMR 7265, BIAM, CEA Cadarache, Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | | | - Jean Alric
- CEA, CNRS, UMR 7265, BIAM, CEA Cadarache, Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - Xenie Johnson
- CEA, CNRS, UMR 7265, BIAM, CEA Cadarache, Aix-Marseille Université, Saint-Paul-lez-Durance, France
| |
Collapse
|
4
|
Fragkopoulos AA, Vachier J, Frey J, Le Menn FM, Mazza MG, Wilczek M, Zwicker D, Bäumchen O. Self-generated oxygen gradients control collective aggregation of photosynthetic microbes. J R Soc Interface 2021; 18:20210553. [PMID: 34847792 PMCID: PMC8633776 DOI: 10.1098/rsif.2021.0553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
For billions of years, photosynthetic microbes have evolved under the variable exposure to sunlight in diverse ecosystems and microhabitats all over our planet. Their abilities to dynamically respond to alterations of the luminous intensity, including phototaxis, surface association and diurnal cell cycles, are pivotal for their survival. If these strategies fail in the absence of light, the microbes can still sustain essential metabolic functionalities and motility by switching their energy production from photosynthesis to oxygen respiration. For suspensions of motile C. reinhardtii cells above a critical density, we demonstrate that this switch reversibly controls collective microbial aggregation. Aerobic respiration dominates over photosynthesis in conditions of low light, which causes the microbial motility to sensitively depend on the local availability of oxygen. For dense microbial populations in self-generated oxygen gradients, microfluidic experiments and continuum theory based on a reaction–diffusion mechanism show that oxygen-regulated motility enables the collective emergence of highly localized regions of high and low cell densities.
Collapse
Affiliation(s)
- Alexandros A Fragkopoulos
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Jérémy Vachier
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany.,Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden
| | - Johannes Frey
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Flora-Maud Le Menn
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Marco G Mazza
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany.,Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Michael Wilczek
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany.,Experimental Physics V, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
5
|
Sagun JV, Badger MR, Chow WS, Ghannoum O. Mehler reaction plays a role in C 3 and C 4 photosynthesis under shade and low CO 2. PHOTOSYNTHESIS RESEARCH 2021; 149:171-185. [PMID: 33534052 DOI: 10.1007/s11120-021-00819-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Alternative electron fluxes such as the cyclic electron flux (CEF) around photosystem I (PSI) and Mehler reaction (Me) are essential for efficient photosynthesis because they generate additional ATP and protect both photosystems against photoinhibition. The capacity for Me can be estimated by measuring O2 exchange rate under varying irradiance and CO2 concentration. In this study, mass spectrometric measurements of O2 exchange were made using leaves of representative species of C3 and C4 grasses grown under natural light (control; PAR ~ 800 µmol quanta m-2 s-1) and shade (~ 300 µmol quanta m-2 s-1), and in representative species of gymnosperm, liverwort and fern grown under natural light. For all control grown plants measured at high CO2, O2 uptake rates were similar between the light and dark, and the ratio of Rubisco oxygenation to carboxylation (Vo/Vc) was low, which suggests little potential for Me, and that O2 uptake was mainly due to photorespiration or mitochondrial respiration under these conditions. Low CO2 stimulated O2 uptake in the light, Vo/Vc and Me in all species. The C3 species had similar Vo/Vc, but Me was highest in the grass and lowest in the fern. Among the C4 grasses, shade increased O2 uptake in the light, Vo/Vc and the assimilation quotient (AQ), particularly at low CO2, whilst Me was only substantial at low CO2 where it may contribute 20-50% of maximum electron flow under high light.
Collapse
Affiliation(s)
- Julius Ver Sagun
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Murray R Badger
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Wah Soon Chow
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
6
|
Parys E, Krupnik T, Kułak I, Kania K, Romanowska E. Photosynthesis of the Cyanidioschyzon merolae cells in blue, red, and white light. PHOTOSYNTHESIS RESEARCH 2021; 147:61-73. [PMID: 33231791 PMCID: PMC7728651 DOI: 10.1007/s11120-020-00796-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/06/2020] [Indexed: 05/19/2023]
Abstract
Photosynthesis and respiration rates, pigment contents, CO2 compensation point, and carbonic anhydrase activity in Cyanidioschizon merolae cultivated in blue, red, and white light were measured. At the same light quality as during the growth, the photosynthesis of cells in blue light was significantly lowered, while under red light only slightly decreased as compared with white control. In white light, the quality of light during growth had no effect on the rate of photosynthesis at low O2 and high CO2 concentration, whereas their atmospheric level caused only slight decrease. Blue light reduced markedly photosynthesis rate of cells grown in white and red light, whereas the effect of red light was not so great. Only cells grown in the blue light showed increased respiration rate following the period of both the darkness and illumination. Cells grown in red light had the greatest amount of chlorophyll a, zeaxanthin, and β-carotene, while those in blue light had more phycocyanin. The dependence on O2 concentration of the CO2 compensation point and the rate of photosynthesis indicate that this alga possessed photorespiration. Differences in the rate of photosynthesis at different light qualities are discussed in relation to the content of pigments and transferred light energy together with the possible influence of related processes. Our data showed that blue and red light regulate photosynthesis in C. merolae for adjusting its metabolism to unfavorable for photosynthesis light conditions.
Collapse
Affiliation(s)
- Eugeniusz Parys
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Krupnik
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Ilona Kułak
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Kinga Kania
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Elżbieta Romanowska
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
7
|
Characterization of Light-Enhanced Respiration in Cyanobacteria. Int J Mol Sci 2020; 22:ijms22010342. [PMID: 33396191 PMCID: PMC7796093 DOI: 10.3390/ijms22010342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023] Open
Abstract
In eukaryotic algae, respiratory O2 uptake is enhanced after illumination, which is called light-enhanced respiration (LER). It is likely stimulated by an increase in respiratory substrates produced during photosynthetic CO2 assimilation and function in keeping the metabolic and redox homeostasis in the light in eukaryotic cells, based on the interactions among the cytosol, chloroplasts, and mitochondria. Here, we first characterize LER in photosynthetic prokaryote cyanobacteria, in which respiration and photosynthesis share their metabolisms and electron transport chains in one cell. From the physiological analysis, the cyanobacterium Synechocystis sp. PCC 6803 performs LER, similar to eukaryotic algae, which shows a capacity comparable to the net photosynthetic O2 evolution rate. Although the respiratory and photosynthetic electron transports share the interchain, LER was uncoupled from photosynthetic electron transport. Mutant analyses demonstrated that LER is motivated by the substrates directly provided by photosynthetic CO2 assimilation, but not by glycogen. Further, the light-dependent activation of LER was observed even with exogenously added glucose, implying a regulatory mechanism for LER in addition to the substrate amounts. Finally, we discuss the physiological significance of the large capacity of LER in cyanobacteria and eukaryotic algae compared to those in plants that normally show less LER.
Collapse
|
8
|
Igamberdiev AU. Citrate valve integrates mitochondria into photosynthetic metabolism. Mitochondrion 2020; 52:218-230. [PMID: 32278088 DOI: 10.1016/j.mito.2020.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/21/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
While in heterotrophic cells and in darkness mitochondria serve as main producers of energy, during photosynthesis this function is transferred to chloroplasts and the main role of mitochondria in bioenergetics turns to be the balance of the level of phosphorylation of adenylates and of reduction of pyridine nucleotides to avoid over-energization of the cell and optimize major metabolic fluxes. This is achieved via the establishment and regulation of local equilibria of the tricarboxylic acid (TCA) cycle enzymes malate dehydrogenase and fumarase in one branch and aconitase and isocitrate dehydrogenase in another branch. In the conditions of elevation of redox level, the TCA cycle is transformed into a non-cyclic open structure (hemicycle) leading to the export of the tricarboxylic acid (citrate) to the cytosol and to the accumulation of the dicarboxylic acids (malate and fumarate). While the buildup of NADPH in chloroplasts provides operation of the malate valve leading to establishment of NADH/NAD+ ratios in different cell compartments, the production of NADH by mitochondria drives citrate export by establishing conditions for the operation of the citrate valve. The latter regulates the intercompartmental NADPH/NADP+ ratio and contributes to the biosynthesis of amino acids and other metabolic products during photosynthesis.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
9
|
Raven JA, Beardall J, Quigg A. Light-Driven Oxygen Consumption in the Water-Water Cycles and Photorespiration, and Light Stimulated Mitochondrial Respiration. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Miyagishima SY, Era A, Hasunuma T, Matsuda M, Hirooka S, Sumiya N, Kondo A, Fujiwara T. Day/Night Separation of Oxygenic Energy Metabolism and Nuclear DNA Replication in the Unicellular Red Alga Cyanidioschyzon merolae. mBio 2019; 10:e00833-19. [PMID: 31266864 PMCID: PMC6606799 DOI: 10.1128/mbio.00833-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
The transition from G1 to S phase and subsequent nuclear DNA replication in the cells of many species of eukaryotic algae occur predominantly during the evening and night in the absence of photosynthesis; however, little is known about how day/night changes in energy metabolism and cell cycle progression are coordinated and about the advantage conferred by the restriction of S phase to the night. Using a synchronous culture of the unicellular red alga Cyanidioschyzon merolae, we found that the levels of photosynthetic and respiratory activities peak during the morning and then decrease toward the evening and night, whereas the pathways for anaerobic consumption of pyruvate, produced by glycolysis, are upregulated during the evening and night as reported recently in the green alga Chlamydomonas reinhardtii Inhibition of photosynthesis by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) largely reduced respiratory activity and the amplitude of the day/night rhythm of respiration, suggesting that the respiratory rhythm depends largely on photosynthetic activity. Even when the timing of G1/S-phase transition was uncoupled from the day/night rhythm by depletion of retinoblastoma-related (RBR) protein, the same patterns of photosynthesis and respiration were observed, suggesting that cell cycle progression and energy metabolism are regulated independently. Progression of the S phase under conditions of photosynthesis elevated the frequency of nuclear DNA double-strand breaks (DSB). These results suggest that the temporal separation of oxygenic energy metabolism, which causes oxidative stress, from nuclear DNA replication reduces the risk of DSB during cell proliferation in C. merolaeIMPORTANCE Eukaryotes acquired chloroplasts through an endosymbiotic event in which a cyanobacterium or a unicellular eukaryotic alga was integrated into a previously nonphotosynthetic eukaryotic cell. Photosynthesis by chloroplasts enabled algae to expand their habitats and led to further evolution of land plants. However, photosynthesis causes greater oxidative stress than mitochondrion-based respiration. In seed plants, cell division is restricted to nonphotosynthetic meristematic tissues and populations of photosynthetic cells expand without cell division. Thus, seemingly, photosynthesis is spatially sequestrated from cell proliferation. In contrast, eukaryotic algae possess photosynthetic chloroplasts throughout their life cycle. Here we show that oxygenic energy conversion (daytime) and nuclear DNA replication (night time) are temporally sequestrated in C. merolae This sequestration enables "safe" proliferation of cells and allows coexistence of chloroplasts and the eukaryotic host cell, as shown in yeast, where mitochondrial respiration and nuclear DNA replication are temporally sequestrated to reduce the mutation rate.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
- JST-Mirai Program, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Atsuko Era
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Nada, Kobe, Japan
- Engineering Biology Research Center, Kobe University, Nada, Kobe, Japan
| | - Mami Matsuda
- Engineering Biology Research Center, Kobe University, Nada, Kobe, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
- JST-Mirai Program, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Nobuko Sumiya
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Nada, Kobe, Japan
- Engineering Biology Research Center, Kobe University, Nada, Kobe, Japan
- Biomass Engineering Program, RIKEN, Yokohama, Kanagawa, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
- JST-Mirai Program, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| |
Collapse
|
11
|
Buckley TN, Vice H, Adams MA. The Kok effect in Vicia faba cannot be explained solely by changes in chloroplastic CO 2 concentration. THE NEW PHYTOLOGIST 2017; 216:1064-1071. [PMID: 28857173 DOI: 10.1111/nph.14775] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
The Kok effect - an abrupt decline in quantum yield (QY) of net CO2 assimilation at low photosynthetic photon flux density (PPFD) - is widely used to estimate respiration in the light (R), which assumes the effect is caused by light suppression of R. A recent report suggested much of the Kok effect can be explained by declining chloroplastic CO2 concentration (cc ) at low PPFD. Several predictions arise from the hypothesis that the Kok effect is caused by declining cc , and we tested these predictions in Vicia faba. We measured CO2 exchange at low PPFD, in 2% and 21% oxygen, in developing and mature leaves, which differed greatly in R in darkness. Our results contradicted each of the predictions based on the cc effect: QY exceeded the theoretical maximum value for photosynthetic CO2 uptake; QY was larger in 21% than 2% oxygen; and the change in QY at the Kok effect breakpoint was unaffected by oxygen. Our results strongly suggest the Kok effect arises largely from a progressive decline in R with PPFD that includes both oxygen-sensitive and -insensitive components. We suggest an improved Kok method that accounts for high cc at low PPFD.
Collapse
Affiliation(s)
- Thomas N Buckley
- Sydney Institute of Agriculture, University of Sydney, Narrabri, NSW, 2390, Australia
| | - Heather Vice
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Mark A Adams
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Vic, 3122, Australia
| |
Collapse
|
12
|
Uhmeyer A, Cecchin M, Ballottari M, Wobbe L. Impaired Mitochondrial Transcription Termination Disrupts the Stromal Redox Poise in Chlamydomonas. PLANT PHYSIOLOGY 2017; 174:1399-1419. [PMID: 28500267 PMCID: PMC5490881 DOI: 10.1104/pp.16.00946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/10/2017] [Indexed: 05/16/2023]
Abstract
In photosynthetic eukaryotes, the metabolite exchange between chloroplast and mitochondria ensures efficient photosynthesis under saturating light conditions. The Chlamydomonas reinhardtii mutant stm6 is devoid of the mitochondrial transcription termination factor MOC1 and aberrantly expresses the mitochondrial genome, resulting in enhanced photosynthetic hydrogen production and diminished light tolerance. We analyzed the modulation of mitochondrial and chlororespiration during the acclimation of stm6 and the MOC1-complemented strain to excess light. Although light stress stimulated mitochondrial respiration via the energy-conserving cytochrome c pathway in both strains, the mutant was unable to fine-tune the expression and activity of oxidative phosphorylation complex I in excess light, which was accompanied by an increased mitochondrial respiration via the alternative oxidase pathway. Furthermore, stm6 failed to fully activate chlororespiration and cyclic electron flow due to a more oxidized state of the chloroplast stroma, which is caused by an increased mitochondrial electron sink capacity. Increased susceptibility to photoinhibition of PSII in stm6 demonstrates that the MOC1-dependent modulation of mitochondrial respiration helps control the stromal redox poise as a crucial part of high-light acclimation in C. reinhardtii.
Collapse
Affiliation(s)
- Andreas Uhmeyer
- Bielefeld University, Faculty of Biology, Center for Biotechnology, 33615 Bielefeld, Germany
| | - Michela Cecchin
- Universita degli Studi di Verona, Department of Biotechnology, 37134 Verona, Italy
| | - Matteo Ballottari
- Universita degli Studi di Verona, Department of Biotechnology, 37134 Verona, Italy
| | - Lutz Wobbe
- Bielefeld University, Faculty of Biology, Center for Biotechnology, 33615 Bielefeld, Germany
| |
Collapse
|
13
|
Carvalho MC, Eyre BD. Light respiration by subtropical seaweeds. JOURNAL OF PHYCOLOGY 2017; 53:486-492. [PMID: 28321894 DOI: 10.1111/jpy.12533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
Here, we report the first-ever measurements of light CO2 respiration rate (CRR) by seaweeds. We measured the influence of temperature (15-25°C) and light (irradiance from 60 to 670 μmol · m-2 · s-1 ) on the light CCR of two subtropical seaweed species, and measured the CRR of seven different seaweed species under the same light (150 μmol · m-2 · s-1 ) and temperature (25°C). There was little effect of irradiance on light CRR, but there was an effect of temperature. Across the seven species light CRR was similar to OCR (oxygen consumption rate in the dark), with the exception of a single species. The outlier species was a coralline alga, and the higher light CRR was probably driven by calcification. CRR could be estimated from OCR, as well as carbon photosynthetic rates from oxygen photosynthetic rates, which suggests that previous studies have probably provided good estimations of gross photosynthesis for seaweeds.
Collapse
Affiliation(s)
- Matheus C Carvalho
- Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, NSW, 2480, Australia
| | - Bradley D Eyre
- Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, NSW, 2480, Australia
| |
Collapse
|
14
|
Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress. Sci Rep 2016; 6:38112. [PMID: 27917888 PMCID: PMC5137022 DOI: 10.1038/srep38112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals’ vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.
Collapse
|
15
|
Gérin S, Leprince P, Sluse FE, Franck F, Mathy G. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2016; 7:1158. [PMID: 27555854 PMCID: PMC4977305 DOI: 10.3389/fpls.2016.01158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the metabolic adaptations contributing to maintain cellular homeostasis upon extensive environmental changes. Some of the results presented here could be used as starting points for more specific fundamental or applied investigations.
Collapse
Affiliation(s)
- Stéphanie Gérin
- Laboratory of Bioenergetics, Department of Life Sciences, Faculty of Sciences, University of LiegeLiege, Belgium
| | - Pierre Leprince
- Laboratory of Nervous System Disorders and Therapy, Faculty of Medicine, GIGA-Neurosciences, University of LiegeLiege, Belgium
| | - Francis E. Sluse
- Laboratory of Bioenergetics, Department of Life Sciences, Faculty of Sciences, University of LiegeLiege, Belgium
| | - Fabrice Franck
- Laboratory of Bioenergetics, Department of Life Sciences, Faculty of Sciences, University of LiegeLiege, Belgium
| | - Grégory Mathy
- Upstream Process Sciences, UCB PharmaBraine l'Alleud, Belgium
| |
Collapse
|
16
|
|
17
|
Vejrazka C, Streefland M, Wijffels R, Janssen M. The role of an electron pool in algal photosynthesis during sub-second light–dark cycling. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
|
19
|
Wangpraseurt D, Tamburic B, Szabó M, Suggett D, Ralph PJ, Kühl M. Spectral effects on Symbiodinium photobiology studied with a programmable light engine. PLoS One 2014; 9:e112809. [PMID: 25389753 PMCID: PMC4229233 DOI: 10.1371/journal.pone.0112809] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022] Open
Abstract
The spectral light field of Symbiodinium within the tissue of the coral animal host can deviate strongly from the ambient light field on a coral reef and that of artificial light sources used in lab studies on coral photobiology. Here, we used a novel approach involving light microsensor measurements and a programmable light engine to reconstruct the spectral light field that Symbiodinium is exposed to inside the coral host and the light field of a conventional halogen lamp in a comparative study of Symbiodinium photobiology. We found that extracellular gross photosynthetic O2 evolution was unchanged under different spectral illumination, while the more red-weighted halogen lamp spectrum decreased PSII electron transport rates and there was a trend towards increased light-enhanced dark respiration rates under excess irradiance. The approach provided here allows for reconstructing and comparing intra-tissue coral light fields and other complex spectral compositions of incident irradiance. This novel combination of sensor technologies provides a framework to studying the influence of macro- and microscale optics on Symbiodinium photobiology with unprecedented spectral resolution.
Collapse
Affiliation(s)
- Daniel Wangpraseurt
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Bojan Tamburic
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Milán Szabó
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - David Suggett
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Peter J. Ralph
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Michael Kühl
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
- Singapore Centre on Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
20
|
Gérin S, Mathy G, Franck F. Modeling the dependence of respiration and photosynthesis upon light, acetate, carbon dioxide, nitrate and ammonium in Chlamydomonas reinhardtii using design of experiments and multiple regression. BMC SYSTEMS BIOLOGY 2014; 8:96. [PMID: 25123231 PMCID: PMC4236732 DOI: 10.1186/s12918-014-0096-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/04/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND In photosynthetic organisms, the influence of light, carbon and inorganic nitrogen sources on the cellular bioenergetics has extensively been studied independently, but little information is available on the cumulative effects of these factors. Here, sequential statistical analyses based on design of experiments (DOE) coupled to standard least squares multiple regression have been undertaken to model the dependence of respiratory and photosynthetic responses (assessed by oxymetric and chlorophyll fluorescence measurements) upon the concomitant modulation of light intensity as well as acetate, CO₂, nitrate and ammonium concentrations in the culture medium of Chlamydomonas reinhardtii. The main goals of these analyses were to explain response variability (i.e. bioenergetic plasticity) and to characterize quantitatively the influence of the major explanatory factor(s). RESULTS For each response, 2 successive rounds of multiple regression coupled to one-way ANOVA F-tests have been undertaken to select the major explanatory factor(s) (1st-round) and mathematically simulate their influence (2nd-round). These analyses reveal that a maximal number of 3 environmental factors over 5 is sufficient to explain most of the response variability, and interestingly highlight quadratic effects and second-order interactions in some cases. In parallel, the predictive ability of the 2nd-round models has also been investigated by k-fold cross-validation and experimental validation tests on new random combinations of factors. These validation procedures tend to indicate that the 2nd-round models can also be used to predict the responses with an inherent deviation quantified by the analytical error of the models. CONCLUSIONS Altogether, the results of the 2 rounds of modeling provide an overview of the bioenergetic adaptations of C. reinhardtii to changing environmental conditions and point out promising tracks for future in-depth investigations of the molecular mechanisms underlying the present observations.
Collapse
Affiliation(s)
| | | | - Fabrice Franck
- Laboratory of Bioenergetics, Department of Life Sciences, Faculty of Sciences, University of Liege, Boulevard du Rectorat 27, Liege, 4000, Belgium.
| |
Collapse
|
21
|
Heskel MA, Atkin OK, Turnbull MH, Griffin KL. Bringing the Kok effect to light: A review on the integration of daytime respiration and net ecosystem exchange. Ecosphere 2013. [DOI: 10.1890/es13-00120.1] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Napoléon C, Claquin P. Multi-parametric relationships between PAM measurements and carbon incorporation, an in situ approach. PLoS One 2012; 7:e40284. [PMID: 22911698 PMCID: PMC3401225 DOI: 10.1371/journal.pone.0040284] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/04/2012] [Indexed: 11/18/2022] Open
Abstract
Primary production (PP) in the English Channel was measured using (13)C uptake and compared to the electron transport rate (ETR) measured using PAM (pulse amplitude modulated fluorometer). The relationship between carbon incorporation (P(obs)) and ETR was not linear but logarithmic. This result can be explained by alternative electron sinks at high irradiance which protect the phytoplankton from photoinhibition. A multi-parametric model was developed to estimate PP by ETR. This approach highlighted the importance of taking physicochemical parameters like incident light and nutrient concentrations into account. The variation in the ETR/P(obs) ratio as a function of the light revealed different trends which were characterized by three parameters (R(max), the maximum value of ETR/P(obs); E(Rmax), the light intensity at which R(max) is measured; γ the initial slope of the curve). Based on the values of these three parameters, data were divided into six groups which were highly dependent on the seasons and on the physicochemical conditions. Using the multi-parametric model which we defined by P(obs) and ETR measurements at low frequencies, the high frequency measurements of ETR enabled us to estimate the primary production capacity between November 2009 and December 2010 at high temporal and spatial scales.
Collapse
Affiliation(s)
- Camille Napoléon
- Université de Caen Basse-Normandie, BIOMEA FRE3484 CNRS, Caen, France
- CNRS INEE, FRE3484 BIOMEA, Caen, France
- IFREMER, Laboratoire Environnement Ressources de Normandie, Avenue du Général de Gaulle, Port-en-Bessin, France
| | - Pascal Claquin
- Université de Caen Basse-Normandie, BIOMEA FRE3484 CNRS, Caen, France
- CNRS INEE, FRE3484 BIOMEA, Caen, France
| |
Collapse
|
23
|
Florez-Sarasa I, Araújo WL, Wallström SV, Rasmusson AG, Fernie AR, Ribas-Carbo M. Light-responsive metabolite and transcript levels are maintained following a dark-adaptation period in leaves of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 195:136-48. [PMID: 22548389 DOI: 10.1111/j.1469-8137.2012.04153.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
• The effect of previous light conditions on metabolite and transcript levels was investigated in leaves of Arabidopsis thaliana during illumination and after light-enhanced dark respiration (LEDR), when dark respiration was measured. • Primary carbon metabolites and the expression of light-responsive respiratory genes were determined in A. thaliana leaves before and after 30 min of darkness following different light conditions. In addition, metabolite levels were determined in the middle of the night and the in vivo activities of cytochrome and alternative respiratory pathways were determined by oxygen isotope fractionation. • A large number of metabolites were increased in leaves of plants growing in or transiently exposed to higher light intensities. Transcript levels of respiratory genes were also increased after high light treatment. For the majority of the light-induced metabolites and transcripts, the levels were maintained after 30 min of darkness, where higher and persistent respiratory activities were also observed. The levels of many metabolites were lower at night than after 30 min of darkness imposed in the day, but respiratory activities remained similar. • The results obtained suggest that 'dark' respiration measurements, as usually performed, are probably made under conditions in which the overall status of metabolites is strongly influenced by the previous light conditions.
Collapse
Affiliation(s)
- Igor Florez-Sarasa
- Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Kliphuis AMJ, Janssen M, van den End EJ, Martens DE, Wijffels RH. Light respiration in Chlorella sorokiniana. JOURNAL OF APPLIED PHYCOLOGY 2011; 23:935-947. [PMID: 22131644 PMCID: PMC3210360 DOI: 10.1007/s10811-010-9614-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 10/14/2010] [Accepted: 10/14/2010] [Indexed: 05/07/2023]
Abstract
Respiration and photosynthesis are two important processes in microalgal growth that occur simultaneously in the light. To know the rates of both processes, at least one of them has to be measured. To be able to measure the rate of light respiration of Chlorella sorokiniana, the measurement of oxygen uptake must be fast, preferably in the order of minutes. We measured the immediate post-illumination respiratory O(2) uptake rate (OUR) in situ, using fiber-optic oxygen microsensors, and a small and simple extension of the cultivation system. This method enables rapid and frequent measurements without disturbing the cultivation and growth of the microalgae. Two batch experiments were performed with C. sorokiniana in a short light-path photobioreactor, and the OUR was measured at different time points. The net oxygen production rate (net OPR) was measured online. Adding the OUR and net OPR gives the gross oxygen production rate (gross OPR), which is a measure for the oxygen evolution by photosynthesis. The gross OPR was 35-40% higher than the net OPR for both experiments. The respiration rate is known to be related to the growth rate, and it is suggested that faster algal growth leads to a higher energy (ATP) requirement, and as such, respiratory activity increases. This hypothesis is supported by our results, as the specific OUR is highest in the beginning of the batch culture when the specific growth rate is highest. In addition, the specific OUR decreases toward the end of the experiments until it reaches a stable value of around 0.3 mmol O(2) h(-1) g(-1). This value for the specific OUR is equal to the maintenance requirement of C. sorokiniana as determined in an independent study of (Zijffers et al. 2010 (in press)). This suggests that respiration could fulfill the maintenance requirements of the microalgal cells.
Collapse
Affiliation(s)
- Anna M. J. Kliphuis
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
- Bioprocess Engineering, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Marcel Janssen
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| | | | - Dirk E. Martens
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| | - René H. Wijffels
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
25
|
Ivlev AA, Dubinsky YA. On the nature of the light-induced component of dark respiration of plants. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911040099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Barbour MM, Hunt JE, Kodama N, Laubach J, McSeveny TM, Rogers GND, Tcherkez G, Wingate L. Rapid changes in δ¹³C of ecosystem-respired CO₂ after sunset are consistent with transient ¹³C enrichment of leaf respired CO₂. THE NEW PHYTOLOGIST 2011; 190:990-1002. [PMID: 21294737 DOI: 10.1111/j.1469-8137.2010.03635.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The CO₂ respired by darkened, light-adapted, leaves is enriched in ¹³C during the first minutes, and this effect may be related to rapid changes in leaf respiratory biochemistry upon darkening. We hypothesized that this effect would be evident at the ecosystem scale. High temporal resolution measurements of the carbon isotope composition of ecosystem respiration were made over 28 diel periods in an abandoned temperate pasture, and were compared with leaf-level measurements at differing levels of pre-illumination. At the leaf level, CO₂ respired by darkened leaves that had been preadapted to high light was strongly enriched in ¹³C, but such a ¹³C-enrichment rapidly declined over 60-100 min. The ¹³C-enrichment was less pronounced when leaves were preadapted to low light. These leaf-level responses were mirrored at the ecosystem scale; after sunset following clear, sunny days respired CO₂ was first ¹³C enriched, but the ¹³C-enrichment rapidly declined over 60-100 min. Further, this response was less pronounced following cloudy days. We conclude that the dynamics of leaf respiratory isotopic signal caused variations in ecosystem-scale ¹²CO₂/¹³) CO₂ exchange. Such rapid isotope kinetics should be considered when applying ¹³C-based techniques to elucidate ecosystem carbon cycling.
Collapse
Affiliation(s)
- Margaret M Barbour
- Landcare Research, PO Box 40, Lincoln 7640, New Zealand
- Faculty of Agriculture, Food and Natural Resources, The University of Sydney, Private Bag 4011, Narellan NSW 2567, Australia
| | - John E Hunt
- Landcare Research, PO Box 40, Lincoln 7640, New Zealand
| | - Naomi Kodama
- Landcare Research, PO Box 40, Lincoln 7640, New Zealand
- Agro-Meteorology Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba 305-8604, Japan
| | | | | | | | - Guillaume Tcherkez
- Institut de Biologie des Plantes, Université Paris Sud 11, CNRS UMR 8618, 91405 Orsay Cedex, France
| | - Lisa Wingate
- Department of Plant Sciences, The University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Pringault O, Tesson S, Rochelle-Newall E. Respiration in the light and bacterio-phytoplankton coupling in a coastal environment. MICROBIAL ECOLOGY 2009; 57:321-334. [PMID: 18661115 DOI: 10.1007/s00248-008-9422-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 06/12/2008] [Indexed: 05/26/2023]
Abstract
In pelagic ecosystems, the principal source of organic matter is via autotrophic production and the primary sink is through heterotrophic respiration. One would therefore anticipate that there is some degree of linkage between these two compartments. Recent work has shown that respiration in the light is higher than dark respiration. Consequently, many of the methods used to determine respiration and production are biased as they require the assumption that light and dark respiration rates are equivalent. We show here that, in a coastal ecosystem, under visible light exposure, respiration in the light is related to gross production. More than 60% of the variation of respiration in the light, measured at 1 to 40 microg L(-1) of chlorophyll a (Chla), could be explained by the variations of gross production. Secondly, the relative contribution of bacterial respiration to community respiration in the light represented up to 79% at low Chla (1 microg L(-1)) and was negatively correlated with Chla concentration. Although bacterial production and bacterial respiration were both enhanced in the light, bacterial respiration in the light was more stimulated than bacterial production, which resulted in a decrease in bacterial growth efficiency during light exposure. These results show that the impact of light on the functioning of the microbial loop needs to be taken into account for a better understanding of the oceanic carbon cycle.
Collapse
Affiliation(s)
- Olivier Pringault
- UR 103 CAMELIA, Centre IRD de Nouméa, BP A5 98848, Nouméa, New Caledonia, France.
| | | | | |
Collapse
|
28
|
Hancke K, Hancke TB, Olsen LM, Johnsen G, Glud RN. TEMPERATURE EFFECTS ON MICROALGAL PHOTOSYNTHESIS-LIGHT RESPONSES MEASURED BY O2 PRODUCTION, PULSE-AMPLITUDE-MODULATED FLUORESCENCE, AND (14) C ASSIMILATION(1). JOURNAL OF PHYCOLOGY 2008; 44:501-14. [PMID: 27041204 DOI: 10.1111/j.1529-8817.2008.00487.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Short-term temperature effects on photosynthesis were investigated by measuring O2 production, PSII-fluorescence kinetics, and (14) C-incorporation rates in monocultures of the marine phytoplankton species Prorocentrum minimum (Pavill.) J. Schiller (Dinophyceae), Prymnesium parvum f. patelliferum (J. C. Green, D. J. Hibberd et Pienaar) A. Larsen (Coccolithophyceae), and Phaeodactylum tricornutum Bohlin (Bacillariophyceae), grown at 15°C and 80 μmol photons · m(-2) · s(-1) . Photosynthesis versus irradiance curves were measured at seven temperatures (0°C-30°C) by all three approaches. The maximum photosynthetic rate (P(C) max ) was strongly stimulated by temperature, reached an optimum for Pro. minimum only (20°C-25°C), and showed a similar relative temperature response for the three applied methods, with Q10 ranging from 1.7 to 3.5. The maximum light utilization coefficient (α(C) ) was insensitive or decreased slightly with increasing temperature. Absolute rates of O2 production were calculated from pulse-amplitude-modulated (PAM) fluorometry measurements in combination with biooptical determination of absorbed quanta in PSII. The relationship between PAM-based O2 production and measured O2 production and (14) C assimilation showed a species-specific correlation, with 1.2-3.3 times higher absolute values of P(C) max and α(C) when calculated from PAM data for Pry. parvum and Ph. tricornutum but equivalent for Pro. minimum. The offset seemed to be temperature insensitive and could be explained by a lower quantum yield for O2 production than the theoretical maximum (due to Mehler-type reactions). Conclusively, the PAM technique can be used to study temperature responses of photosynthesis in microalgae when paying attention to the absorption properties in PSII.
Collapse
Affiliation(s)
- Kasper Hancke
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, NorwayMarine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Torunn B Hancke
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, NorwayMarine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Lasse M Olsen
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, NorwayMarine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Geir Johnsen
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, NorwayMarine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Ronnie N Glud
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, NorwayMarine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| |
Collapse
|
29
|
Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. PLANTA 2008; 227:397-407. [PMID: 17885762 DOI: 10.1007/s00425-007-0626-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 08/31/2007] [Indexed: 05/17/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii possesses a [FeFe]-hydrogenase HydA1 (EC 1.12.7.2), which is coupled to the photosynthetic electron transport chain. Large amounts of H2 are produced in a light-dependent reaction for several days when C. reinhardtii cells are deprived of sulfur. Under these conditions, the cells drastically change their physiology from aerobic photosynthetic growth to an anaerobic resting state. The understanding of the underlying physiological processes is not only important for getting further insights into the adaptability of photosynthesis, but will help to optimize the biotechnological application of algae as H2 producers. Two of the still most disputed questions regarding H2 generation by C. reinhardtii concern the electron source for H2 evolution and the competition of the hydrogenase with alternative electron sinks. We analyzed the H2 metabolism of S-depleted C. reinhardtii cultures utilizing a special mass spectrometer setup and investigated the influence of photosystem II (PSII)- or ribulosebisphosphate-carboxylase/oxygenase (Rubisco)-deficiency. We show that electrons for H2-production are provided both by PSII activity and by a non-photochemical plastoquinone reduction pathway, which is dependent on previous PSII activity. In a Rubisco-deficient strain, which produces H2 also in the presence of sulfur, H2 generation seems to be the only significant electron sink for PSII activity and rescues this strain at least partially from a light-sensitive phenotype. The latter indicates that the down-regulation of assimilatory pathways in S-deprived C. reinhardtii cells is one of the important prerequisites for a sustained H2 evolution.
Collapse
Affiliation(s)
- Anja Hemschemeier
- Fakultät für Biologie, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum, 44780, Bochum, Germany.
| | | | | | | | | |
Collapse
|
30
|
Collins S, Bell G. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 2004; 431:566-9. [PMID: 15457260 DOI: 10.1038/nature02945] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 08/17/2004] [Indexed: 11/09/2022]
Abstract
Estimates of the effect of increasing atmospheric CO2 concentrations on future global plant production rely on the physiological response of individual plants or plant communities when exposed to high CO2 (refs 1-6). Plant populations may adapt to the changing atmosphere, however, such that the evolved plant communities of the next century are likely to be genetically different from contemporary communities. The properties of these future communities are unknown, introducing a bias of unknown sign and magnitude into projections of global carbon pool dynamics. Here we report a long-term selection experiment to investigate the phenotypic consequences of selection for growth at elevated CO2 concentrations. After about 1,000 generations, selection lines of the unicellular green alga Chlamydomonas failed to evolve specific adaptation to a CO2 concentration of 1,050 parts per million. Some lines, however, evolved a syndrome involving high rates of photosynthesis and respiration, combined with higher chlorophyll content and reduced cell size. These lines also grew poorly at ambient concentrations of CO2. We tentatively attribute this outcome to the accumulation of conditionally neutral mutations in genes affecting the carbon concentration mechanism.
Collapse
Affiliation(s)
- Sinéad Collins
- Biology Department, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
31
|
van Lis R, Atteia A. Control of Mitochondrial Function via Photosynthetic Redox Signals. PHOTOSYNTHESIS RESEARCH 2004; 79:133-48. [PMID: 16228388 DOI: 10.1023/b:pres.0000015409.14871.68] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In photosynthetic cells, mitochondrial respiration is of major importance not only in the dark but also in the light. Important progress has been made in our understanding of the roles played by mitochondria in light. The light signal is likely to reach cellular compartments such as the mitochondrion and the nucleus via different chloroplast-originated redox messages. The potential involvement of these messages in the regulation of mitochondrial biogenesis and activity by light is discussed in view of the available experimental data.
Collapse
Affiliation(s)
- Robert van Lis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510, México D.F., Mexico
| | - Ariane Atteia
- Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA; present address: Institute of Botany III, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
32
|
Finnegan PM, Soole KL, Umbach AL. Alternative Mitochondrial Electron Transport Proteins in Higher Plants. PLANT MITOCHONDRIA: FROM GENOME TO FUNCTION 2004. [DOI: 10.1007/978-1-4020-2400-9_9] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Wilson KE, Król M, Huner NPA. Temperature-induced greening of Chlorella vulgaris. The role of the cellular energy balance and zeaxanthin-dependent nonphotochemical quenching. PLANTA 2003; 217:616-627. [PMID: 12905022 DOI: 10.1007/s00425-003-1021-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2002] [Accepted: 02/20/2003] [Indexed: 05/24/2023]
Abstract
When cells of the green alga Chlorella vulgaris Beij. are transferred from growth at 5 degrees C and an irradiance of 150 micromol photons m(-2) s(-1) to 27 degrees C and the same irradiance, they undergo what is normally considered a high-light to low-light phenotypic change. This involves a 3-fold increase in cellular chlorophyll content with a concomitant increase in light-harvesting complex polypeptide levels. This process appears to occur in response to the cellular capacity to utilize the products of photosynthesis, with the redox state of the plastoquinone pool sensing the cellular energy balance. The phenotypic adjustment can be enhanced or blocked using chemical inhibitors that modulate the redox state of the plastoquinone pool. The functional changes in the photosynthetic apparatus that occurred during the high-light to low-light acclimation were examined with special consideration paid to the paradox that 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated cells, with non-functional photosystem II (PSII), accumulate light-harvesting polypeptides. At the structural and basic functional levels, the light-harvesting complex of the cells treated with DCMU was indistinguishable from that of the untreated, control cells. To examine how PSII was protected in the DCMU-treated cells, we measured the content of xanthophyll-cycle pigments. It appeared that a zeaxanthin-dependent nonphotochemical quenching process was involved in PSII protection during greening in the presence of DCMU. Metabolic inhibitors of mitochondrial respiration were used to examine how the change in cellular energy balance regulates the greening process. Apparently, the mitochondrion acts to supply energy to the chloroplast during greening, and inhibition of mitochondrial respiration diminishes chlorophyll accumulation apparently through an increase in the redox state of the plastoquinone pool.
Collapse
Affiliation(s)
- Kenneth E Wilson
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | | | |
Collapse
|
34
|
Huertas IE, Colman B, Espie GS. Mitochondrial-driven bicarbonate transport supports photosynthesis in a marine microalga. PLANT PHYSIOLOGY 2002; 130:284-91. [PMID: 12226508 PMCID: PMC166561 DOI: 10.1104/pp.004598] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2002] [Revised: 03/22/2002] [Accepted: 05/27/2002] [Indexed: 05/19/2023]
Abstract
The CO(2)-concentrating mechanism (CCM) of the marine eustigmatophycean microalga Nannochloropsis gaditana consists of an active HCO(3)(-) transport system and an internal carbonic anhydrase to facilitate accumulation and conversion of HCO(3)(-) to CO(2) for photosynthetic fixation. Aqueous inlet mass spectrometry revealed that a portion of the CO(2) generated within the cells leaked to the medium, resulting in a significant rise in the extracellular CO(2) concentration to a level above its chemical equilibrium that was diagnostic for active HCO(3)(-) transport. The transient rise in extracellular CO(2) occurred in the light and the dark and was resolved from concurrent respiratory CO(2) efflux using H(13)CO(3)(-) stable isotope techniques. H(13)CO(3)(-) pump-(13)CO(2) leak activity of the CCM was unaffected by 10 microM 3(3,4-dichlorophenyl)-1,1-dimethylurea, an inhibitor of chloroplast linear electron transport, although photosynthetic O(2) evolution was reduced by 90%. However, low concentrations of cyanide, azide, and rotenone along with anoxia significantly reduced or abolished (13)CO(2) efflux in the dark and light. These results indicate that H(13)CO(3)(-) transport was supported by mitochondrial energy production in contrast to other algae and cyanobacteria in which it is supported by photosynthetic electron transport. This is the first report of a direct role for mitochondria in the energization and functioning of the CCM in a photosynthetic organism.
Collapse
Affiliation(s)
- I Emma Huertas
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | | | | |
Collapse
|
35
|
Mitochondrial Functions in the Light and Significance to Carbon-Nitrogen Interactions. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/0-306-48138-3_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
36
|
Atkin OK, Evans JR, Ball MC, Lambers H, Pons TL. Leaf respiration of snow gum in the light and dark. Interactions between temperature and irradiance. PLANT PHYSIOLOGY 2000; 122:915-23. [PMID: 10712556 PMCID: PMC58928 DOI: 10.1104/pp.122.3.915] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/1999] [Accepted: 11/30/1999] [Indexed: 05/17/2023]
Abstract
We investigated the effect of temperature and irradiance on leaf respiration (R, non-photorespiratory mitochondrial CO(2) release) of snow gum (Eucalyptus pauciflora Sieb. ex Spreng). Seedlings were hydroponically grown under constant 20 degrees C, controlled-environment conditions. Measurements of R (using the Laisk method) and photosynthesis (at 37 Pa CO(2)) were made at several irradiances (0-2,000 micromol photons m(-2) s(-1)) and temperatures (6 degrees C-30 degrees C). At 15 degrees C to 30 degrees C, substantial inhibition of R occurred at 12 micromol photons m(-2) s(-1), with maximum inhibition occurring at 100 to 200 micromol photons m(-2) s(-1). Higher irradiance had little additional effect on R at these moderate temperatures. The irradiance necessary to maximally inhibit R at 6 degrees C to 10 degrees C was lower than that at 15 degrees C to 30 degrees C. Moreover, although R was inhibited by low irradiance at 6 degrees C to 10 degrees C, it recovered with progressive increases in irradiance. The temperature sensitivity of R was greater in darkness than under bright light. At 30 degrees C and high irradiance, light-inhibited rates of R represented 2% of gross CO(2) uptake (v(c)), whereas photorespiratory CO(2) release was approximately 20% of v(c). If light had not inhibited leaf respiration at 30 degrees C and high irradiance, R would have represented 11% of v(c). Variations in light inhibition of R can therefore have a substantial impact on the proportion of photosynthesis that is respired. We conclude that the rate of R in the light is highly variable, being dependent on irradiance and temperature.
Collapse
Affiliation(s)
- O K Atkin
- Environmental Biology, Research School of Biological Sciences, The Australian National University, Canberra, 0200 Australian Capital Territory, Australia.
| | | | | | | | | |
Collapse
|
37
|
Ekelund NG. Interactions between photosynthesis and 'light-enhanced dark respiration' (LEDR) in the flagellate Euglena gracilis after irradiation with ultraviolet radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 55:63-9. [PMID: 10877069 DOI: 10.1016/s1011-1344(00)00029-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of ultraviolet radiation (UV-A, 315-400 nm plus UV-B, 280-315 nm) on photosynthesis and 'light-enhanced dark respiration' (LEDR) in Euglena gracilis have been investigated by using light pulses (80 s) with increasing photon fluence rates of 59, 163, 600, 1180, 2080 and 3340 micromol m(-2) s(-1) and dark periods between the light pulses. LEDR is estimated as the maximum rate of oxygen consumption after a period of light minus the rate of oxygen consumption 30 s after the maximum rate. Without any exposure to UV radiation, the photosynthetic rate and LEDR increase with increasing photon fluence rate. After 20 and 40 min exposures to UV radiation, the photosynthetic rate and LEDR as functions of photon fluence rate are reduced. After a 20 min UV treatment respiration is greater than photosynthesis after the first light pulse of 59 micromol m(-2) s(-1) radiation, and especially at higher photon fluence rates photosynthesis is lower than the control values. The inhibitory effects of UV radiation on photosynthetic rate and LEDR are greater after a 40 min UV exposure than after a 20 min exposure. Only at 600 micromol m(-2) s(-1) is the rate of oxygen evolution greater than that of oxygen consumption after a 40 min UV treatment. Both photosynthetic rate and LEDR are inhibited by the photosynthetic inhibitor DCMU (10(-5) M) in a similar way, which indicates close regulatory interactions between photosynthesis and LEDR. Potassium cyanide (KCN) inhibits dark respiration more than it inhibits LEDR. Dark respiration is not affected to the same degree by UV radiation as are photosynthesis and LEDR.
Collapse
Affiliation(s)
- N G Ekelund
- Mid Sweden University, Department of Applied Science, Härnösand, Sweden
| |
Collapse
|
38
|
Photosynthesis, Carbohydrate Metabolism and Respiration in Leaves of Higher Plants. PHOTOSYNTHESIS 2000. [DOI: 10.1007/0-306-48137-5_7] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Hippler M, Redding K, Rochaix JD. Chlamydomonas genetics, a tool for the study of bioenergetic pathways. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1367:1-62. [PMID: 9784589 DOI: 10.1016/s0005-2728(98)00136-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M Hippler
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva-4, Switzerland
| | | | | |
Collapse
|
40
|
Hoefnagel MH, Atkin OK, Wiskich JT. Interdependence between chloroplasts and mitochondria in the light and the dark. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1998. [DOI: 10.1016/s0005-2728(98)00126-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|