1
|
Fang C, Du H, Wang L, Liu B, Kong F. Mechanisms underlying key agronomic traits and implications for molecular breeding in soybean. J Genet Genomics 2024; 51:379-393. [PMID: 37717820 DOI: 10.1016/j.jgg.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is an important crop that provides protein and vegetable oil for human consumption. As soybean is a photoperiod-sensitive crop, its cultivation and yield are limited by the photoperiodic conditions in the field. In contrast to other major crops, soybean has a special plant architecture and a special symbiotic nitrogen fixation system, representing two unique breeding directions. Thus, flowering time, plant architecture, and symbiotic nitrogen fixation are three critical or unique yield-determining factors. This review summarizes the progress made in our understanding of these three critical yield-determining factors in soybean. Meanwhile, we propose potential research directions to increase soybean production, discuss the application of genomics and genomic-assisted breeding, and explore research directions to address future challenges, particularly those posed by global climate changes.
Collapse
Affiliation(s)
- Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Lingshuang Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Han S, Wang Y, Zhang Q, Wang W, Pei D. Chrysanthemum morifolium β-carotene hydroxylase overexpression promotes Arabidopsis thaliana tolerance to high light stress. JOURNAL OF PLANT PHYSIOLOGY 2023; 284:153962. [PMID: 36940578 DOI: 10.1016/j.jplph.2023.153962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The β-carotene hydroxylase gene (BCH) regulates zeaxanthin production in response to high light levels ro protect Chrysanthemum morifolium plants against light-induced damage. In this study, the Chrysanthemum morifolium CmBCH1 and CmBCH2 genes were cloned and their functional importance was assessed by overexpressing them in Arabidopsis thaliana. These transgenic plants were evaluated for gene-related changes in phenotypic characteristics, photosynthetic activity, fluorescence properties, carotenoid biosynthesis, aboveground/belowground biomass, pigment content, and the expression of light-regulated genes under conditions of high light stress relative to wild-type (WT) plants. When exposed to high light stress, WT A. thaliana leaves turned yellow and the overall biomass was reduced compared to that of the transgenic plants. WT plants exposed to high light stress also exhibited significant reductions in the net photosynthetic rate, stomatal conductance, Fv/Fm, qP, and ETR, whereas these changes were not observed in the transgenic CmBCH1 and CmBCH2 plants. Lutein and zaxanthin levels were significantly increased in the transgenic CmBCH1 and CmBCH2 lines, with progressive induction with prolonged light exposure, whereas no significant changes were observed in light-exposed WT plants. The transgenic plants also expressed higher levels of most carotenoid biosynthesis pathway genes, including phytoene synthase (AtPSY), phytoene desaturase (AtPDS), lycopene-β-cyclase (AtLYCB), and ζ-carotene desaturase (AtZDS). The elongated hypocotyl 5 (HY5) and succinate dehydrogenase (SDH) genes were significantly induced following exposure to high light conditions for 12h, whereas phytochrome-interacting factor 7 (PIF7) was significantly downregulated in these plants.
Collapse
Affiliation(s)
- Shuang Han
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Yunjing Wang
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Qingchen Zhang
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Wenjing Wang
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Dongli Pei
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China.
| |
Collapse
|
3
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Xing X, Du H, Yang Z, Li X, Kong Y, Li W, Zhang C. GmSPX8, a nodule-localized regulator confers nodule development and nitrogen fixation under phosphorus starvation in soybean. BMC PLANT BIOLOGY 2022; 22:161. [PMID: 35365088 PMCID: PMC8973899 DOI: 10.1186/s12870-022-03556-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/23/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Biological nitrogen fixation (BNF) is an important nitrogen source for legume plants, and highly efficient nitrogen fixation requires sufficient phosphorus (P). However, the mechanism of maintaining nitrogen fixation of the legume nodules under low P concentration remains largely unknown. RESULTS A nodule-localized SPX protein, GmSPX8, was discovered by transcriptome and functional analysis of its role in N2 fixation was characterized in soybean nodules. GmSPX8 was preferentially expressed in nodules and its expression was gradually increased during nodule development. And also the expression pattern was investigated using reporter gene β-glucuronidase (GUS) driven by the promoter of GmSPX8. GmSPX8 was greatly induced and the GUS activity was increased by 12.2% under P deficiency. Overexpression of GmSPX8 in transgenic plants resulted in increased nodule number, nodule fresh weight and nitrogenase activity by 15.0%, 16.0%, 42.5%, subsequently leading to increased N and P content by 17.0% and 19.0%, while suppression of GmSPX8 showed significantly impaired nodule development and nitrogen fixation efficiency under low P stress. These data indicated that GmSPX8 conferred nodule development and nitrogen fixation under low P condition. By yeast two-hybrid screening, GmPTF1 was identified as a potential interacting protein of GmSPX8, which was further confirmed by BiFC, Y2H and pull down assay. Transcript accumulation of GmPTF1 and its downstream genes such as GmEXLB1 and EXPB2 were increased in GmSPX8 overexpressed transgenic nodules, and in the presence of GmSPX8, the transcriptional activity of GmPTF1 in yeast cells and tobacco leaves was greatly enhanced. CONCLUSIONS In summary, these findings contribute novel insights towards the role of GmSPX8 in nodule development and nitrogen fixation partly through interacting with GmPTF1 in soybean under low P condition.
Collapse
Affiliation(s)
- Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
5
|
Yang Z, Du H, Sun J, Xing X, Kong Y, Li W, Li X, Zhang C. A Nodule-Localized Small Heat Shock Protein GmHSP17.1 Confers Nodule Development and Nitrogen Fixation in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:838718. [PMID: 35356122 PMCID: PMC8959767 DOI: 10.3389/fpls.2022.838718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Small heat shock proteins (sHSPs) are ubiquitous proteins present in all organisms. The sHSPs are not only upregulated under heat shock as well as other stresses but also are expressed in unstressed cells, indicating quite diverse functions of sHSPs. However, there is little known about the role of sHSPs in nodulation and nitrogen fixation in soybean. In this study, we cloned a candidate protein of sHSP, GmHSP17.1, from proteome of nodule and analyzed its function in soybean nodulation. We found that GmHSP17.1 was a cytosolic protein and preferentially expressed during nodule development. An overexpression of GmHSP17.1 in composite transgenic plants showed increases in nodule number, fresh weight, nodule size, area of infection cells, and nitrogenase activity, and subsequently promoted the content of nitrogen and growth of soybean plants. While GmHSP17.1 RNA interference (RNAi) lines showed significantly impaired nodule development and nitrogen fixation efficiency. Through liquid chromatography-tandem mass spectrometry (LC-MS/MS), GmRIP1 was identified as the first potential target of GmHSP17.1, and was shown to be specifically expressed in soybean nodules. The interaction between GmHSP17.1 and GmRIP1 was further confirmed by yeast-two hybrid (Y2H), bimolecular fluorescence complementation (BiFC) in vivo and pull-down assay in vitro. Furthermore, peroxidase activity was markedly increased in GmHSP17.1 overexpressed nodules and decreased in RNAi lines. As a result, the reactive oxygen species (ROS) content greatly decreased in GmHSP17.1 overexpression lines and increased in suppression lines. Taken together, we conclude that GmHSP17.1 plays an important role in soybean nodulation through interacting with GmRIP1. Our results provide foundation for studying the mechanism of nitrogen fixation and for the genetics improvement of legume plants.
Collapse
Affiliation(s)
- Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jingyi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Yang Z, Du H, Xing X, Li W, Kong Y, Li X, Zhang C. A small heat shock protein, GmHSP17.9, from nodule confers symbiotic nitrogen fixation and seed yield in soybean. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:103-115. [PMID: 34487637 PMCID: PMC8710831 DOI: 10.1111/pbi.13698] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 05/27/2023]
Abstract
Legume-rhizobia symbiosis enables biological nitrogen fixation to improve crop production for sustainable agriculture. Small heat shock proteins (sHSPs) are involved in multiple environmental stresses and plant development processes. However, the role of sHSPs in nodule development in soybean remains largely unknown. In the present study, we identified a nodule-localized sHSP, called GmHSP17.9, in soybean, which was markedly up-regulated during nodule development. GmHSP17.9 was specifically expressed in the infected regions of the nodules. GmHSP17.9 overexpression and RNAi in transgenic composite plants and loss of function in CRISPR-Cas9 gene-editing mutant plants in soybean resulted in remarkable alterations in nodule number, nodule fresh weight, nitrogenase activity, contents of poly β-hydroxybutyrate bodies (PHBs), ureide and total nitrogen content, which caused significant changes in plant growth and seed yield. GmHSP17.9 was also found to act as a chaperone for its interacting partner, GmNOD100, a sucrose synthase in soybean nodules which was also preferentially expressed in the infected zone of nodules, similar to GmHSP17.9. Functional analysis of GmNOD100 in composite transgenic plants revealed that GmNOD100 played an essential role in soybean nodulation. The hsp17.9 lines showed markedly more reduced sucrose synthase activity, lower contents of UDP-glucose and acetyl coenzyme A (acetyl-CoA), and decreased activity of succinic dehydrogenase (SDH) in the tricarboxylic acid (TCA) cycle in nodules due to the missing interaction with GmNOD100. Our findings reveal an important role and an unprecedented molecular mechanism of sHSPs in nodule development and nitrogen fixation in soybean.
Collapse
Affiliation(s)
- Zhanwu Yang
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Hui Du
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Xinzhu Xing
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Wenlong Li
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Youbin Kong
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Xihuan Li
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Caiying Zhang
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| |
Collapse
|
8
|
Jang SJ, Jeong HB, Jung A, Kang MY, Kim S, Ha SH, Kwon JK, Kang BC. Phytoene synthase 2 can compensate for the absence of PSY1 in the control of color in Capsicum fruit. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3417-3427. [PMID: 32219321 PMCID: PMC7475241 DOI: 10.1093/jxb/eraa155] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/25/2020] [Indexed: 05/22/2023]
Abstract
Phytoene synthase 1 (PSY1) and capsanthin-capsorubin synthase (CCS) are two major genes responsible for fruit color variation in pepper (Capsicum spp.). However, the role of PSY2 remains unknown. We used a systemic approach to examine the genetic factors responsible for the yellow fruit color of C. annuum 'MicroPep Yellow' (MY) and to determine the role of PSY2 in fruit color. We detected complete deletion of PSY1 and a retrotransposon insertion in CCS. Despite the loss of PSY1 and CCS function, both MY and mutant F2 plants from a cross between MY and the 'MicroPep Red' (MR) accumulated basal levels of carotenoids, indicating that other PSY genes may complement the loss of PSY1. qRT-PCR analysis indicated that PSY2 was constitutively expressed in both MR and MY fruits, and a color complementation assay using Escherichia coli revealed that PSY2 was capable of biosynthesizing a carotenoid. Virus-induced gene silencing of PSY2 in MY resulted in white fruits. These findings indicate that PSY2 can compensate for the absence of PSY1 in pepper fruit, resulting in the yellow color of MY fruits.
Collapse
Affiliation(s)
- So-Jeong Jang
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Hyo-Bong Jeong
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Ayoung Jung
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Min-Young Kang
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Suna Kim
- Food and Nutrition in Home Economics, Korea National Open University, Jongno-Gu, Seoul, Republic of Korea
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- Correspondence:
| |
Collapse
|
9
|
Wang Y, Yang Z, Kong Y, Li X, Li W, Du H, Zhang C. GmPAP12 Is Required for Nodule Development and Nitrogen Fixation Under Phosphorus Starvation in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:450. [PMID: 32499790 PMCID: PMC7243344 DOI: 10.3389/fpls.2020.00450] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/26/2020] [Indexed: 05/22/2023]
Abstract
Nodulation process in legume plants is essential for biological nitrogen fixation during which process a large amount of phosphorus (P) is required. Under P deficiency, nodule formation is greatly affected, and induction of purple acid phosphatases (PAPs) is an adaptive strategy for nodules to acquire more P. However, regulation roles of PAPs in nodules remain largely understood. In this study, by transcriptome sequencing technology, five PAP genes were found to be differentially expressed, which led to the greatly increased acid phosphatase (APase) and phytase activities in soybean mature nodules under P starvation conditions; and among the five PAP genes, GmPAP12 had the highest transcript level, and RT-PCR indicated expression of GmPAP12 was gradually increasing during nodule development. GUS activity driven by GmPAP12 promoter was also significantly induced in low phosphorus conditions. Further functional analysis showed that under low phosphorus stress, overexpression of GmPAP12 resulted in higher nodule number, fresh weight, and nitrogenase activity as well as the APase activity than those of control plant nodules, whereas the growth performance and APase activity of nodules on hairy roots were greatly lower when GmPAP12 was suppressed, indicating that GmPAP12 may promote P utilization in soybean nodules under low P stress, which thus played an important role in nodulation and biological nitrogen fixation. Moreover, P1BS elements were found in the promoter of GmPAP12, and yeast one-hybrid experiment further proved the binding of P1BS by transcription factor GmPHR1 in the promoter of GmPAP12. At last, overexpression and suppression of GmPHR1 in nodules indeed caused highly increased and decreased expression of GmPAP12, respectively, indicating that GmPAP12 is regulated by GmPHR1 in soybean nodules. Taken together, these data suggested that GmPAP12 was a novel soybean PAP involved in the P utilization and metabolism in soybean root nodules and played an important role in the growth and development of root nodules and biological nitrogen fixation.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Cataldo VF, Arenas N, Salgado V, Camilo C, Ibáñez F, Agosin E. Heterologous production of the epoxycarotenoid violaxanthin in Saccharomyces cerevisiae. Metab Eng 2020; 59:53-63. [PMID: 32001334 DOI: 10.1016/j.ymben.2020.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/16/2019] [Accepted: 01/18/2020] [Indexed: 12/28/2022]
Abstract
Microbial production of carotenoids has mainly focused towards a few products, such as β-carotene, lycopene and astaxanthin. However, other less explored carotenoids, like violaxanthin, have also shown unique properties and promissory applications. Violaxanthin is a plant-derived epoxidated carotenoid with strong antioxidant activity and a key precursor of valuable compounds, such as fucoxanthin and β-damascenone. In this study, we report for the first time the heterologous production of epoxycarotenoids in yeast. We engineered the yeast Saccharomyces cerevisiae following multi-level strategies for the efficient accumulation of violaxanthin. Starting from a β-carotenogenic yeast strain, we first evaluated the performance of several β-carotene hydroxylases (CrtZ), and zeaxanthin epoxidases (ZEP) from different species, together with their respective N-terminal truncated variants. The combined expression of CrtZ from Pantoea ananatis and truncated ZEP of Haematococcus lacustris showed the best performance and led to a yield of 1.6 mg/gDCW of violaxanthin. Further improvement of the epoxidase activity was achieved by promoting the transfer of reducing equivalents to ZEP by expressing several redox partner systems. The co-expression of the plant truncated ferredoxin-3, and truncated root ferredoxin oxidoreductase-1 resulted in a 2.2-fold increase in violaxanthin yield (3.2 mg/gDCW). Finally, increasing gene copy number of carotenogenic genes enabled reaching a final production of 7.3 mg/gDCW in shake flask cultures and batch bioreactors, which is the highest yield of microbially produced violaxanthin reported to date.
Collapse
Affiliation(s)
- Vicente F Cataldo
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Natalia Arenas
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Valeria Salgado
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Conrado Camilo
- Centro de Aromas y Sabores, DICTUC S.A., Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Francisco Ibáñez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile; Centro de Aromas y Sabores, DICTUC S.A., Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile.
| |
Collapse
|
11
|
Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, Frugoli J, Dickstein R, Udvardi MK. Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. THE PLANT CELL 2020; 32:15-41. [PMID: 31649123 PMCID: PMC6961631 DOI: 10.1105/tpc.19.00279] [Citation(s) in RCA: 346] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/17/2019] [Accepted: 10/24/2019] [Indexed: 05/13/2023]
Abstract
Since 1999, various forward- and reverse-genetic approaches have uncovered nearly 200 genes required for symbiotic nitrogen fixation (SNF) in legumes. These discoveries advanced our understanding of the evolution of SNF in plants and its relationship to other beneficial endosymbioses, signaling between plants and microbes, the control of microbial infection of plant cells, the control of plant cell division leading to nodule development, autoregulation of nodulation, intracellular accommodation of bacteria, nodule oxygen homeostasis, the control of bacteroid differentiation, metabolism and transport supporting symbiosis, and the control of nodule senescence. This review catalogs and contextualizes all of the plant genes currently known to be required for SNF in two model legume species, Medicago truncatula and Lotus japonicus, and two crop species, Glycine max (soybean) and Phaseolus vulgaris (common bean). We also briefly consider the future of SNF genetics in the era of pan-genomics and genome editing.
Collapse
Affiliation(s)
- Sonali Roy
- Noble Research Institute, Ardmore, Oklahoma 73401
| | - Wei Liu
- Noble Research Institute, Ardmore, Oklahoma 73401
| | | | - Ashley Crook
- College of Science, Clemson University, Clemson, South Carolina 29634
| | | | | | - Julia Frugoli
- College of Science, Clemson University, Clemson, South Carolina 29634
| | - Rebecca Dickstein
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton Texas 76203
| | | |
Collapse
|
12
|
Xavier A, Jarquin D, Howard R, Ramasubramanian V, Specht JE, Graef GL, Beavis WD, Diers BW, Song Q, Cregan PB, Nelson R, Mian R, Shannon JG, McHale L, Wang D, Schapaugh W, Lorenz AJ, Xu S, Muir WM, Rainey KM. Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population. G3 (BETHESDA, MD.) 2018; 8:519-529. [PMID: 29217731 PMCID: PMC5919731 DOI: 10.1534/g3.117.300300] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Genetic improvement toward optimized and stable agronomic performance of soybean genotypes is desirable for food security. Understanding how genotypes perform in different environmental conditions helps breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be controlled by a large number of genomic regions with small effects whose magnitude and direction are modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was examined in a large soybean nested association population. For this, a genome-wide association to performance stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic regions were associated with stability, and that multiplicative interactions were present between environments and genetic background. Seven genomic regions in six chromosomes were identified as being associated with genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic regions that were specifically associated with interactions involving environments and subpopulations.
Collapse
Affiliation(s)
- Alencar Xavier
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Diego Jarquin
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Nebraska 68583
| | - Reka Howard
- Department of Statistics, University of Nebraska-Lincoln, Nebraska 68583
| | | | - James E Specht
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Nebraska 68583
| | - George L Graef
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Nebraska 68583
| | | | - Brian W Diers
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| | - Qijian Song
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Beltsville, Maryland 20705
| | - Perry B Cregan
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Beltsville, Maryland 20705
| | - Randall Nelson
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
- USDA-ARS, Urbana, Illinois 61801
| | - Rouf Mian
- USDA-ARS, Raleigh, North Carolina 27607
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27607
| | - J Grover Shannon
- Department of Plant Sciences, University of Missouri, Portageville, Missouri 63873
| | - Leah McHale
- Department of Horticulture and Crop Sciences, Ohio State University, Columbus, Ohio 43210
| | - Dechun Wang
- Department of Plant Sciences, Michigan State University, East Lansing, Michigan 48824
| | - William Schapaugh
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506
| | - Aaron J Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota 55108
| | - Shizhong Xu
- Botany and Plant Sciences, University of California, Riverside, California 92521
| | - William M Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Katy M Rainey
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
13
|
Li X, Zhao J, Tan Z, Zeng R, Liao H. GmEXPB2, a Cell Wall β-Expansin, Affects Soybean Nodulation through Modifying Root Architecture and Promoting Nodule Formation and Development. PLANT PHYSIOLOGY 2015; 169:2640-53. [PMID: 26432877 PMCID: PMC4677897 DOI: 10.1104/pp.15.01029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/01/2015] [Indexed: 05/20/2023]
Abstract
Nodulation is an essential process for biological nitrogen (N2) fixation in legumes, but its regulation remains poorly understood. Here, a β-expansin gene, GmEXPB2, was found to be critical for soybean (Glycine max) nodulation. GmEXPB2 was preferentially expressed at the early stage of nodule development. β-Glucuronidase staining further showed that GmEXPB2 was mainly localized to the nodule vascular trace and nodule vascular bundles, as well as nodule cortical and parenchyma cells, suggesting that GmEXPB2 might be involved in cell wall modification and extension during nodule formation and development. Overexpression of GmEXPB2 dramatically modified soybean root architecture, increasing the size and number of cortical cells in the root meristematic and elongation zones and expanding root hair density and size of the root hair zone. Confocal microscopy with green fluorescent protein-labeled rhizobium USDA110 cells showed that the infection events were significantly enhanced in the GmEXPB2-overexpressing lines. Moreover, nodule primordium development was earlier in overexpressing lines compared with wild-type plants. Thereby, overexpression of GmEXPB2 in either transgenic soybean hairy roots or whole plants resulted in increased nodule number, nodule mass, and nitrogenase activity and thus elevated plant N and phosphorus content as well as biomass. In contrast, suppression of GmEXPB2 in soybean transgenic composite plants led to smaller infected cells and thus reduced number of big nodules, nodule mass, and nitrogenase activity, thereby inhibiting soybean growth. Taken together, we conclude that GmEXPB2 critically affects soybean nodulation through modifying root architecture and promoting nodule formation and development and subsequently impacts biological N2 fixation and growth of soybean.
Collapse
Affiliation(s)
- Xinxin Li
- Haixia Institute of Science and Technology, Root Biology Center (X.L., H.L.) and College of Life Sciences (R.Z.), Fujian Agriculture and Forestry University, Fuzhou 350002, Chinaand College of Agriculture, South China Agricultural University, Guangzhou 510642, China (X.L., J.Z., Z.T., H.L.)
| | - Jing Zhao
- Haixia Institute of Science and Technology, Root Biology Center (X.L., H.L.) and College of Life Sciences (R.Z.), Fujian Agriculture and Forestry University, Fuzhou 350002, Chinaand College of Agriculture, South China Agricultural University, Guangzhou 510642, China (X.L., J.Z., Z.T., H.L.)
| | - Zhiyuan Tan
- Haixia Institute of Science and Technology, Root Biology Center (X.L., H.L.) and College of Life Sciences (R.Z.), Fujian Agriculture and Forestry University, Fuzhou 350002, Chinaand College of Agriculture, South China Agricultural University, Guangzhou 510642, China (X.L., J.Z., Z.T., H.L.)
| | - Rensen Zeng
- Haixia Institute of Science and Technology, Root Biology Center (X.L., H.L.) and College of Life Sciences (R.Z.), Fujian Agriculture and Forestry University, Fuzhou 350002, Chinaand College of Agriculture, South China Agricultural University, Guangzhou 510642, China (X.L., J.Z., Z.T., H.L.)
| | - Hong Liao
- Haixia Institute of Science and Technology, Root Biology Center (X.L., H.L.) and College of Life Sciences (R.Z.), Fujian Agriculture and Forestry University, Fuzhou 350002, Chinaand College of Agriculture, South China Agricultural University, Guangzhou 510642, China (X.L., J.Z., Z.T., H.L.)
| |
Collapse
|