1
|
Uzilday B, Takahashi K, Kobayashi A, Uzilday RO, Fujii N, Takahashi H, Turkan I. Role of Abscisic Acid, Reactive Oxygen Species, and Ca 2+ Signaling in Hydrotropism-Drought Avoidance-Associated Response of Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:1220. [PMID: 38732435 PMCID: PMC11085316 DOI: 10.3390/plants13091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Plant roots exert hydrotropism in response to moisture gradients to avoid drought stress. The regulatory mechanism underlying hydrotropism involves novel regulators such as MIZ1 and GNOM/MIZ2 as well as abscisic acid (ABA), reactive oxygen species (ROS), and Ca2+ signaling. ABA, ROS, and Ca2+ signaling are also involved in plant responses to drought stress. Although the mechanism of moisture gradient perception remains largely unknown, the sensory apparatus has been reported to reside in the root elongation zone rather than in the root cap. In Arabidopsis roots, hydrotropism is mediated by the action of MIZ1 and ABA in the cortex of the elongation zone, the accumulation of ROS at the root curvature, and the variation in the cytosolic Ca2+ concentration in the entire root tip including the root cap and stele of the elongation zone. Moreover, root exposure to moisture gradients has been proposed to cause asymmetric ABA distribution or Ca2+ signaling, leading to the induction of the hydrotropic response. A comprehensive and detailed analysis of hydrotropism regulators and their signaling network in relation to the tissues required for their function is apparently crucial for understanding the mechanisms unique to root hydrotropism. Here, referring to studies on plant responses to drought stress, we summarize the recent findings relating to the role of ABA, ROS, and Ca2+ signaling in hydrotropism, discuss their functional sites and plausible networks, and raise some questions that need to be answered in future studies.
Collapse
Affiliation(s)
- Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova 35100, Izmir, Turkey
| | - Kaori Takahashi
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Rengin Ozgur Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova 35100, Izmir, Turkey
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
- Research Center for Space Agriculture and Horticulture, Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova 35100, Izmir, Turkey
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
- Faculty of Agricultural Sciences and Technologies, Yasar University, University Street, No. 37-39, Bornova 35100, Izmir, Turkey
| |
Collapse
|
2
|
Li X, Zhao R, Liu J, Li Z, Chen A, Xu S, Sheng X. Dynamic changes in calcium signals during root gravitropism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108481. [PMID: 38447424 DOI: 10.1016/j.plaphy.2024.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Gravitropism is a vital mechanism through which plants adapt to their environment. Previous studies indicated that Ca2+ may play an important role in plant gravitropism. However, our understanding of the calcium signals in root gravitropism is still largely limited. Using a vertical stage confocal and transgenic Arabidopsis R-GECO1, our data showed that gravity stimulation enhances the occurrence of calcium spikes and increases the Ca2+ concentration in the lower side of the root cap. Furthermore, a close correlation was observed in the asymmetry of calcium signals with the inclination angles at which the roots were oriented. The frequency of calcium spikes on the lower side of 90°-rotated root decreases rapidly over time, whereas the asymmetric distribution of auxin readily strengthens for up to 3 h, indicating that the calcium spikes, promoted by gravity stimulation, may precede auxin as one of the early signals. In addition, the root gravitropism of starchless mutants is severely impaired. Correspondingly, no significant increase in calcium spike occurrence was observed in the root caps of these mutants within 15 min following a 90° rotation, indicating the involvement of starch grains in the formation of calcium spikes. However, between 30 and 45 min after a 90° rotation, asymmetric calcium spikes were indeed observed in the root of starchless mutants, suggesting that starch grains are not indispensable for the formation of calcium spikes. Besides, co-localization analysis suggests that the ER may function as calcium stores during the occurrence of calcium spikes. These findings provide further insights into plant gravitropism.
Collapse
Affiliation(s)
- Xinyu Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruoxin Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jiahui Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ziwei Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ai Chen
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shi Xu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xianyong Sheng
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
3
|
Hosamani R, Swamy BK, Dsouza A, Sathasivam M. Plant responses to hypergravity: a comprehensive review. PLANTA 2022; 257:17. [PMID: 36534189 DOI: 10.1007/s00425-022-04051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Hypergravity is an effective novel stimulus to elucidate plant gravitational and mechanobiological behaviour. Here, we review the current understanding of phenotypic, physio-biochemical, and molecular plant responses to simulated hypergravity. Plants readily respond to altered gravity conditions, such as microgravity or hypergravity. Hypergravity-a gravitational force higher than that on the Earth's surface (> 1g)-can be simulated using centrifuges. Exposing seeds, seedlings, or plant cell cultures to hypergravity elicits characteristic morphological, physio-biochemical, and molecular changes. While several studies have provided insights into plant responses and underlying mechanisms, much is still elusive, including the interplay of hypergravity with gravitropism. Moreover, hypergravity is of great significance for mechano- and space/gravitational biologists to elucidate fundamental plant behaviour. In this review, we provide an overview of the phenotypic, physiological, biochemical, and molecular responses of plants to hypergravity. We then discuss the involvement of hypergravity in plant gravitropism-the directional growth along the gravity vector. Finally, we highlight future research directions to expand our understanding of hypergravity in plant biology.
Collapse
Affiliation(s)
- Ravikumar Hosamani
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India.
| | - Basavalingayya K Swamy
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India
| | - Ajwal Dsouza
- Controlled Environment Systems Research Facility, School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Malarvizhi Sathasivam
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India
- College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
4
|
Entanglement of Arabidopsis Seedlings to a Mesh Substrate under Microgravity Conditions in KIBO on the ISS. PLANTS 2022; 11:plants11070956. [PMID: 35406935 PMCID: PMC9003378 DOI: 10.3390/plants11070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
The International Space Station (ISS) provides a precious opportunity to study plant growth and development under microgravity (micro-G) conditions. In this study, four lines of Arabidopsis seeds (wild type, wild-type MCA1-GFP, mca1-knockout, and MCA1-overexpressed) were cultured on a nylon lace mesh placed on Gelrite-solidified MS-medium in the Japanese experiment module KIBO on the ISS, and the entanglement of roots with the mesh was examined under micro-G and 1-G conditions. We found that root entanglement with the mesh was enhanced, and root coiling was induced under the micro-G condition. This behavior was less pronounced in mca1-knockout seedlings, although MCA1-GFP distribution at the root tip of the seedlings was nearly the same in micro-G-grown seedlings and the ground control seedlings. Possible involvement of MCA1 in the root entanglement is discussed.
Collapse
|
5
|
Chin S, Blancaflor EB. Plant Gravitropism: From Mechanistic Insights into Plant Function on Earth to Plants Colonizing Other Worlds. Methods Mol Biol 2022; 2368:1-41. [PMID: 34647245 DOI: 10.1007/978-1-0716-1677-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gravitropism, the growth of roots and shoots toward or away from the direction of gravity, has been studied for centuries. Such studies have not only led to a better understanding of the gravitropic process itself, but also paved new paths leading to deeper mechanistic insights into a wide range of research areas. These include hormone biology, cell signal transduction, regulation of gene expression, plant evolution, and plant interactions with a variety of environmental stimuli. In addition to contributions to basic knowledge about how plants function, there is accumulating evidence that gravitropism confers adaptive advantages to crops, particularly under marginal agricultural soils. Therefore, gravitropism is emerging as a breeding target for enhancing agricultural productivity. Moreover, research on gravitropism has spawned several studies on plant growth in microgravity that have enabled researchers to uncouple the effects of gravity from other tropisms. Although rapid progress on understanding gravitropism witnessed during the past decade continues to be driven by traditional molecular, physiological, and cell biological tools, these tools have been enriched by technological innovations in next-generation omics platforms and microgravity analog facilities. In this chapter, we review the field of gravitropism by highlighting recent landmark studies that have provided unique insights into this classic research topic while also discussing potential contributions to agriculture on Earth and beyond.
Collapse
Affiliation(s)
- Sabrina Chin
- Department of Botany, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
6
|
Olovnikov AM. Role of the Earth's Motions in Plant Orientation - Planetary Mechanism. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1388-1394. [PMID: 34906043 DOI: 10.1134/s0006297921110031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/14/2023]
Abstract
According to the proposed theory, the starch-rich particles (statoliths) help the plant to convert the signals from Earth's motions into the signals necessary for the plant to perceive its orientation relative to the gravity vector while moving freely because of inertia in the sensory cells (statocytes) of roots and stems. Motions of the Earth are never constant, which, in particular, refers to the so-called polar motions and oscillations of the planet's rotation axis. Statoliths at any given moment move in the cytoplasmic liquid of statocytes due to inertial motion initiated by the action of the Earth's movements, maintaining the trajectory set by the previous movement of the oscillating planet. Unlike statoliths, the walls of a statocyte move in space along with the entire plant and with the Earth, in strict accordance with the current direction of motion of the planet's axis. This leads to the inevitable collision of statoliths with the statocytic wall/membrane. Cytoplasmic liquid, as a substance that is not able to maintain its shape, does not interfere with the inertial motions of the statoliths and collision with the wall of the statocyte. By striking the membrane, statoliths cause the release of ions and other factors at the impact site, which further participate in the gravitropic process. Pressure of the sediment of statoliths at the bottom of the statocyte, as well as position of this sediment, are not the defining factors of gravitropism.
Collapse
Affiliation(s)
- Alexey M Olovnikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
7
|
Kume A, Kamachi H, Onoda Y, Hanba YT, Hiwatashi Y, Karahara I, Fujita T. How plants grow under gravity conditions besides 1 g: perspectives from hypergravity and space experiments that employ bryophytes as a model organism. PLANT MOLECULAR BIOLOGY 2021; 107:279-291. [PMID: 33852087 DOI: 10.1007/s11103-021-01146-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Plants have evolved and grown under the selection pressure of gravitational force at 1 g on Earth. In response to this selection pressure, plants have acquired gravitropism to sense gravity and change their growth direction. In addition, plants also adjust their morphogenesis in response to different gravitational forces in a phenomenon known as gravity resistance. However, the gravity resistance phenomenon in plants is poorly understood due to the prevalence of 1 g gravitational force on Earth: not only it is difficult to culture plants at gravity > 1 g(hypergravity) for a long period of time but it is also impossible to create a < 1 genvironment (μg, micro g) on Earth without specialized facilities. Despite these technical challenges, it is important to understand how plants grow in different gravity conditions in order to understand land plant adaptation to the 1 g environment or for outer space exploration. To address this, we have developed a centrifugal device for a prolonged duration of plant culture in hypergravity conditions, and a project to grow plants under the μg environment in the International Space Station is also underway. Our plant material of choice is Physcomitrium (Physcomitrella) patens, one of the pioneer plants on land and a model bryophyte often used in plant biology. In this review, we summarize our latest findings regarding P. patens growth response to hypergravity, with reference to our on-going "Space moss" project. In our ground-based hypergravity experiments, we analyzed the morphological and physiological changes and found unexpected increments of chloroplast size and photosynthesis rate, which might underlie the enhancement of growth and increase in the number of gametophores and rhizoids. We further discussed our approaches at the cellular level and compare the gravity resistance in mosses and that in angiosperms. Finally, we highlight the advantages and perspectives from the space experiments and conclude that research with bryophytes is beneficial to comprehensively and precisely understand gravitational responses in plants.
Collapse
Affiliation(s)
- Atsushi Kume
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroyuki Kamachi
- Faculty of Science, University of Toyama, 3190 Gofuku, Toyama, Toyama, 930-8555, Japan
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Kyoto, 606-8502, Japan
| | - Yuko T Hanba
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuji Hiwatashi
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, 982-0215, Japan
| | - Ichirou Karahara
- Faculty of Science, University of Toyama, 3190 Gofuku, Toyama, Toyama, 930-8555, Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, Kita 10 Nishi8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
8
|
Khai HD, Bien LT, Vinh NQ, Dung DM, Nghiep ND, Mai NTN, Tung HT, Luan VQ, Cuong DM, Nhut DT. Alterations in endogenous hormone levels and energy metabolism promoted the induction, differentiation and maturation of Begonia somatic embryos under clinorotation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111045. [PMID: 34620443 DOI: 10.1016/j.plantsci.2021.111045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The present study provides a visual insight into the effects of simulated microgravity (MG) on somatic embryogenesis (SE) in Begonia through the analysis of phytohormone fluctuations and energy metabolism. To investigate this relationship, thin cell layer culture model was first used. The results showed that MG changed the phytohormone content and stimulated starch biosynthesis to convert into sugar to release energy needed for regeneration and proliferation. Moreover, from the results it is likely that MG accelerated the initiation and subsequently maturation and aging of SE via decrease of AUX and increase of ABA. High content of GA, CKs, starch, sugar and low ABA as well as high CKs/ABA ratio were responsible for the increase in the number of embryos under clinorotation which was 1.57-fold higher than control after 90 days. The increase in fresh and dry weight of somatic embryos and chlorophyll content under MG were confirmed as their adaptive responses to gravitational stress. However, long-term exposure to MG (120 days) stimulated biosynthesis of ABA levels 1.85-fold higher than controls, which resulted in a decrease in chlorophyll content, increase in number of mature embryos and stomata length. These results revealed that MG regulated the induction, differentiation and senescence of somatic embryos via a biochemical interaction pathway.
Collapse
Affiliation(s)
- Hoang Dac Khai
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, Viet Nam
| | - Le The Bien
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Viet Nam
| | | | | | - Ngo Dai Nghiep
- University of Science, Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Nguyen Thi Nhu Mai
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, Viet Nam
| | - Hoang Thanh Tung
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, Viet Nam
| | - Vu Quoc Luan
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, Viet Nam
| | - Do Manh Cuong
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, Viet Nam
| | - Duong Tan Nhut
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, Viet Nam.
| |
Collapse
|
9
|
Dümmer M, Spasić SZ, Feil M, Michalski C, Forreiter C, Galland P. Tangent algorithm for photogravitropic balance in plants and Phycomyces blakesleeanus: Roles for EHB1 and NPH3 of Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153396. [PMID: 33713940 DOI: 10.1016/j.jplph.2021.153396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Plant organs that are exposed to continuous unilateral light reach in the steady-state a photogravitropic bending angle that results from the mutual antagonism between the photo- and gravitropic responses. To characterize the interaction between the two tropisms and their quantitative relationship we irradiated seedlings of Arabidopsis thaliana that were inclined at various angles and determined the fluence rates of unilateral blue light required to compensate the gravitropism of the inclined hypocotyls. We found the compensating fluence rates to increase with the tangent of the inclination angles (0° < γ < 90° or max. 120°) and decrease with the cotangent (90°< γ < 180° or max. 120°of the inclination angles. The tangent dependence became also evident from analysis of previous data obtained with Avena sativa and the phycomycete fungus, Phycomyces blakesleeanus. By using loss-of function mutant lines of Arabidopsis, we identified EHB1 (enhanced bending 1) as an essential element for the generation of the tangent and cotangent relationships. Because EHB1 possesses a C2-domain with two putative calcium binding sites, we propose that the ubiquitous calcium dependence of gravi- and phototropism is in part mediated by Ca2+-bound EHB1. Based on a yeast-two-hybrid analysis we found evidence that EHB1 does physically interact with the ARF-GAP protein AGD12. Both proteins were reported to affect gravi- and phototropism antagonistically. We further showed that only AGD12, but not EHB1, interacts with its corresponding ARF-protein. Evidence is provided that AGD12 is able to form homodimers as well as heterodimers with EHB1. On the basis of these data we present a model for a mechanism of early tropism events, in which Ca2+-activated EHB1 emerges as the central processor-like element that links the gravi- and phototropic transduction chains and that generates in coordination with NPH3 and AGD12 the tangent / cotangent algorithm governing photogravitropic equilibrium.
Collapse
Affiliation(s)
- Michaela Dümmer
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany.
| | - Sladjana Z Spasić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, Serbia; Singidunum University, Danijelova 32, Belgrade, Serbia.
| | - Martin Feil
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany.
| | - Christian Michalski
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany.
| | - Christoph Forreiter
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany; Institut für Biologie, Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Adolf-Reichwein Str. 2, D-57068, Siegen, Germany.
| | - Paul Galland
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany.
| |
Collapse
|
10
|
Abstract
Gravity determines shape of body tissue and affects the functions of life, both in plants and animals. The cellular response to gravity is an active process of mechanotransduction. Although plants and animals share some common mechanisms of gravity sensing in spite of their distant phylogenetic origin, each species has its own mechanism to sense and respond to gravity. In this review, we discuss current understanding regarding the mechanisms of cellular gravity sensing in plants and animals. Understanding gravisensing also contributes to life on Earth, e.g., understanding osteoporosis and muscle atrophy. Furthermore, in the current age of Mars exploration, understanding cellular responses to gravity will form the foundation of living in space.
Collapse
|
11
|
Sathasivam M, Hosamani R, K Swamy B, Kumaran G S. Plant responses to real and simulated microgravity. LIFE SCIENCES IN SPACE RESEARCH 2021; 28:74-86. [PMID: 33612182 DOI: 10.1016/j.lssr.2020.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Plant biology experiments in real and simulated microgravity have significantly contributed to our understanding of physiology and behavior of plants. How do plants perceive microgravity? How that perception translates into stimulus? And in turn plant's response and adaptation to microgravity through physiological, cellular, and molecular changes have been reasonably well documented in the literature. Knowledge gained through these plant biology experiments in microgravity helped to successfully cultivate crops in space. For instance, salad crop such as red romaine lettuce grown on the International Space Station (ISS) is allowed to incorporate into the crew's supplementary diet. However, the use of plants as a sustainable bio-regenerative life support system (BLSS) to produce fresh food and O2, reduce CO2 level, recycle metabolic waste, and efficient water management for long-duration space exploration missions requires critical gap filling research. Hence, it is inevitable to reflect and review plant biology microgravity research findings time and again with a new set of data available in the literature. With that in focus, the current article discusses phenotypic, physiological, biochemical, cell cycle, cell wall changes and molecular responses of plants to microgravity both in real and simulated conditions with the latest literature.
Collapse
Affiliation(s)
- Malarvizhi Sathasivam
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka, 580005, India
| | - Ravikumar Hosamani
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka, 580005, India.
| | - Basavalingayya K Swamy
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka, 580005, India
| | | |
Collapse
|
12
|
The gravistimulation-induced very slow Ca 2+ increase in Arabidopsis seedlings requires MCA1, a Ca 2+-permeable mechanosensitive channel. Sci Rep 2021; 11:227. [PMID: 33420331 PMCID: PMC7794229 DOI: 10.1038/s41598-020-80733-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Gravity is a critical environmental factor affecting the morphology and function of plants on Earth. Gravistimulation triggered by changes in the gravity vector induces an increase in the cytoplasmic free calcium ion concentration ([Ca2+]c) as an early process of gravity sensing; however, its role and molecular mechanism are still unclear. When seedlings of Arabidopsis thaliana expressing apoaequorin were rotated from the upright position to the upside-down position, a biphasic [Ca2+]c-increase composed of a fast-transient [Ca2+]c-increase followed by a slow [Ca2+]c-increase was observed. We find here a novel type [Ca2+]c-increase, designated a very slow [Ca2+]c-increase that is observed when the seedlings were rotated back to the upright position from the upside-down position. The very slow [Ca2+]c-increase was strongly attenuated in knockout seedlings defective in MCA1, a mechanosensitive Ca2+-permeable channel (MSCC), and was partially restored in MCA1-complemented seedlings. The mechanosensitive ion channel blocker, gadolinium, blocked the very slow [Ca2+]c-increase. This is the first report suggesting the possible involvement of MCA1 in an early event related to gravity sensing in Arabidopsis seedlings.
Collapse
|
13
|
Abe Y, Meguriya K, Matsuzaki T, Sugiyama T, Yoshikawa HY, Morita MT, Toyota M. Micromanipulation of amyloplasts with optical tweezers in Arabidopsis stems. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:405-415. [PMID: 33850427 PMCID: PMC8034693 DOI: 10.5511/plantbiotechnology.20.1201a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/01/2020] [Indexed: 05/25/2023]
Abstract
Intracellular sedimentation of highly dense, starch-filled amyloplasts toward the gravity vector is likely a key initial step for gravity sensing in plants. However, recent live-cell imaging technology revealed that most amyloplasts continuously exhibit dynamic, saltatory movements in the endodermal cells of Arabidopsis stems. These complicated movements led to questions about what type of amyloplast movement triggers gravity sensing. Here we show that a confocal microscope equipped with optical tweezers can be a powerful tool to trap and manipulate amyloplasts noninvasively, while simultaneously observing cellular responses such as vacuolar dynamics in living cells. A near-infrared (λ=1064 nm) laser that was focused into the endodermal cells at 1 mW of laser power attracted and captured amyloplasts at the laser focus. The optical force exerted on the amyloplasts was theoretically estimated to be up to 1 pN. Interestingly, endosomes and trans-Golgi network were trapped at 30 mW but not at 1 mW, which is probably due to lower refractive indices of these organelles than that of the amyloplasts. Because amyloplasts are in close proximity to vacuolar membranes in endodermal cells, their physical interaction could be visualized in real time. The vacuolar membranes drastically stretched and deformed in response to the manipulated movements of amyloplasts by optical tweezers. Our new method provides deep insights into the biophysical properties of plant organelles in vivo and opens a new avenue for studying gravity-sensing mechanisms in plants.
Collapse
Affiliation(s)
- Yoshinori Abe
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
| | - Keisuke Meguriya
- Department of Chemistry, Saitama University, Saitama 338-8570, Japan
| | - Takahisa Matsuzaki
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Teruki Sugiyama
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hiroshi Y. Yoshikawa
- Department of Chemistry, Saitama University, Saitama 338-8570, Japan
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
14
|
Makino Y, Ichinose K, Yoshimura M, Kawahara Y, Yuge L. Efficient preservation of sprouting vegetables under simulated microgravity conditions. PLoS One 2020; 15:e0240809. [PMID: 33057413 PMCID: PMC7561153 DOI: 10.1371/journal.pone.0240809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/02/2020] [Indexed: 01/05/2023] Open
Abstract
The effectiveness of a simulated microgravity environment as a novel method for preserving the freshness of vegetables was investigated. Three types of vegetables were selected: vegetable soybean, mung bean sprouts, and white radish sprouts. These selected vegetables were fixed on a three-dimensional rotary gravity controller, rotated slowly. The selected vegetables were stored at 25°C and 66% of relative humidity for 9, 6, or 5 d while undergoing this process. The simulated microgravity was controlled utilizing a gravity controller around 0 m s-2. The mung bean sprouts stored for 6 d under simulated microgravity conditions maintained higher thickness levels than the vegetable samples stored under normal gravity conditions (9.8 m s-2) for the same duration. The mass of all three items decreased with time without regard to the gravity environment, though the samples stored within the simulated microgravity environment displayed significant mass retention on and after 3 d for mung bean sprout samples and 1 d for white radish sprout samples. In contrast, the mass retention effect was not observed in the vegetable soybean samples. Hence, it was confirmed that the mass retention effect of microgravity was limited to sprout vegetables. As a result of analysis harnessing a mathematical model, assuming that the majority of the mass loss is due to moisture loss, a significant difference in mass reduction coefficient occurs among mung bean sprouts and white radish sprouts due to the microgravity environment, and the mass retention effect of simulated microgravity is quantitatively evaluated utilizing mathematical models. Simulated microgravity, which varies significantly from conventional refrigeration, ethylene control, and modified atmosphere, was demonstrated effective as a novel method for preserving and maintaining the freshness of sprout vegetables. This founding will support long-term space flight missions by prolonging shelf life of sprout vegetables.
Collapse
Affiliation(s)
- Yoshio Makino
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Kanji Ichinose
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masatoshi Yoshimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Louis Yuge
- Space Bio-Laboratories Co., Ltd., Hiroshima, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Peng Y, Zheng Y, Zhou J, Shang-Guan K, Wang H, Liang Y. Design and Application of a Rotatory Device for Detecting Transient Ca 2+ Signals in Response to Mechanical Stimulation Using an Aequorin-Based Ca 2+ Imaging System. ACTA ACUST UNITED AC 2020; 5:e20116. [PMID: 32813335 DOI: 10.1002/cppb.20116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elevation of the cytosolic free calcium ion (Ca2+ ) concentration ([Ca2+ ]cyt ) is one of the earliest responses to biotic and abiotic stress in plant cells. Among the various Ca2+ detection systems available, aequorin-based luminescence Ca2+ imaging systems provide a relatively amenable and robust method that facilitates large-scale genetic-mutant screening based on [Ca2+ ]cyt responses. Compared to that mediated by chemical elicitors, mechanical stimulation-induced elevation of [Ca2+ ]cyt is considerably more rapid, occurring within 10 s following stimulation. Therefore, its assessment using aequorin-based Ca2+ imaging systems represents a notable challenge, given that a time interval of ≥1 min is required to reduce the background light before operating the photon imaging detector. In this context, we designed a device that can rotate automatically within the confines of an enclosed dark box, and using this, we can record [Ca2+ ]cyt dynamics immediately after plants had been rotated to induce mechanical stimulation. This tool can facilitate the study of perception and early signal transduction in response to mechanical stimulation on a large scale based on [Ca2+ ]cyt responses. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Detection of background luminance signals in aequorin-transformed Arabidopsis seedlings using a photon imaging detector Basic Protocol 2: Construction of the rotatory device Basic Protocol 3: Calcium measurement in Arabidopsis seedlings after rotatory stimulation Basic Protocol 4: Data analysis and processing.
Collapse
Affiliation(s)
- Yingtong Peng
- Institute of Biotechnology, Zhejiang University, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou, China
| | - Yu Zheng
- Micro-Satellite Research Center, Zhejiang University, Hangzhou, China
| | - Jinrun Zhou
- Micro-Satellite Research Center, Zhejiang University, Hangzhou, China
| | - Keke Shang-Guan
- Institute of Biotechnology, Zhejiang University, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou, China
| | - Huiquan Wang
- Micro-Satellite Research Center, Zhejiang University, Hangzhou, China
| | - Yan Liang
- Institute of Biotechnology, Zhejiang University, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou, China
| |
Collapse
|
16
|
Nakamura M, Nishimura T, Morita MT. Gravity sensing and signal conversion in plant gravitropism. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3495-3506. [PMID: 30976802 DOI: 10.1093/jxb/erz158] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/08/2019] [Indexed: 05/17/2023]
Abstract
Plant organs control their growth orientation in response to gravity. Within gravity-sensing cells, the input (gravity sensing) and signal conversion (gravity signalling) progress sequentially. The cells contain a number of high-density, starch-accumulating amyloplasts, which sense gravity when they reposition themselves by sedimentation to the bottom of the cell when the plant organ is re-orientated. This triggers the next step of gravity signalling, when the physical signal generated by the sedimentation of the amyloplasts is converted into a biochemical signal, which redirects auxin transport towards the lower flank of the plant organ. This review focuses on recent advances in our knowledge of the regulatory mechanisms that underlie amyloplast sedimentation and the system by which this is perceived, and on recent progress in characterising the factors that play significant roles in gravity signalling by which the sedimentation is linked to the regulation of directional auxin transport. Finally, we discuss the contribution of gravity signalling factors to the mechanisms that control the gravitropic set-point angle.
Collapse
Affiliation(s)
- Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, Japan
| | - Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
17
|
Bizet F, Pereda-Loth V, Chauvet H, Gérard J, Eche B, Girousse C, Courtade M, Perbal G, Legué V. Both gravistimulation onset and removal trigger an increase of cytoplasmic free calcium in statocytes of roots grown in microgravity. Sci Rep 2018; 8:11442. [PMID: 30061667 PMCID: PMC6065396 DOI: 10.1038/s41598-018-29788-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 07/16/2018] [Indexed: 11/08/2022] Open
Abstract
Gravity is a permanent environmental signal guiding plant growth and development. Gravity sensing in plants starts with the displacement of starch-filled plastids called statoliths, ultimately leading to auxin redistribution and organ curvature. While the involvement in gravity sensing of several actors such as calcium is known, the effect of statolith displacement on calcium changes remains enigmatic. Microgravity is a unique environmental condition offering the opportunity to decipher this link. In this study, roots of Brassica napus were grown aboard the International Space Station (ISS) either in microgravity or in a centrifuge simulating Earth gravity. The impact of short simulated gravity onset and removal was measured on statolith positioning and intracellular free calcium was assessed using pyroantimonate precipitates as cytosolic calcium markers. Our findings show that a ten-minute onset or removal of gravity induces very low statolith displacement, but which is, nevertheless, associated with an increase of the number of pyroantimonate precipitates. These results highlight that a change in the cytosolic calcium distribution is triggered in absence of a significant statolith displacement.
Collapse
Affiliation(s)
- François Bizet
- Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France
| | | | - Hugo Chauvet
- Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France
| | - Joëlle Gérard
- UMR IAM, INRA, Université de Lorraine, 54280, Champenoux, France
- UMR EEF, INRA, Université de Lorraine, 54280, Champenoux, France
| | - Brigitte Eche
- GSBMS, AMIS5288, University of Toulouse III, Toulouse, France
| | - Christine Girousse
- Université Clermont Auvergne, INRA, GDEC, F- 63000, Clermont-Ferrand, France
| | | | - Gérald Perbal
- Université Pierre et Marie Curie, 75005, Paris, France
| | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.
- UMR IAM, INRA, Université de Lorraine, 54280, Champenoux, France.
| |
Collapse
|
18
|
DeFalco TA, Toyota M, Phan V, Karia P, Moeder W, Gilroy S, Yoshioka K. Using GCaMP3 to Study Ca2+ Signaling in Nicotiana Species. PLANT & CELL PHYSIOLOGY 2017; 58:1173-1184. [PMID: 28482045 DOI: 10.1093/pcp/pcx053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/06/2017] [Indexed: 05/24/2023]
Abstract
Ca2+ signaling is a central component of plant biology; however, direct analysis of in vivo Ca2+ levels is experimentally challenging. In recent years, the use of genetically encoded Ca2+ indicators has revolutionized the study of plant Ca2+ signaling, although such studies have been largely restricted to the model plant Arabidopsis. We have developed stable transgenic Nicotiana benthamiana and Nicotiana tabacum lines expressing the single-wavelength fluorescent Ca2+ indicator, GCaMP3. Ca2+ levels in these plants can be imaged in situ using fluorescence microscopy, and these plants can be used qualitatively and semi-quantitatively to evaluate Ca2+ signals in response to a broad array of abiotic or biotic stimuli, such as cold shock or pathogen-associated molecular patterns (PAMPs). Furthermore, these tools can be used in conjunction with well-established N. benthamiana techniques such as virus-induced gene silencing (VIGS) or transient heterologous expression to assay the effects of loss or gain of function on Ca2+ signaling, an approach which we validated via silencing or transient expression of the PAMP receptors FLS2 (Flagellin Sensing 2) or EFR (EF-Tu receptor), respectively. Using these techniques, along with chemical inhibitor treatments, we demonstrate how these plants can be used to elucidate the molecular components governing Ca2+ signaling in response to specific stimuli.
Collapse
Affiliation(s)
- Thomas A DeFalco
- Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
- The Sainsbury Laboratory, Norwich NR4 7UH, UK
| | - Masatsugu Toyota
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
| | - Van Phan
- Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Purva Karia
- Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Keiko Yoshioka
- Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, M5S 3B2, Canada
| |
Collapse
|
19
|
Park J, Salmi ML, Wan Salim WWA, Rademacher A, Wickizer B, Schooley A, Benton J, Cantero A, Argote PF, Ren M, Zhang M, Porterfield DM, Ricco AJ, Roux SJ, Rickus JL. An autonomous lab on a chip for space flight calibration of gravity-induced transcellular calcium polarization in single-cell fern spores. LAB ON A CHIP 2017; 17:1095-1103. [PMID: 28205656 DOI: 10.1039/c6lc01370h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This report describes the development of lab-on-a-chip device designed to measure changes in cellular ion gradients that are induced by changes in gravitational (g) forces. The bioCD presented here detects differential calcium ion concentrations outside of individual cells. The device includes sufficient replicates for statistical analysis of the gradients around multiple single cells and around control wells that are empty or include dead cells. In the data presented, the degree of the cellular response correlates with the magnitude of the g-force applied via rotation of the bioCD. The experiments recorded the longest continuous observation of a cellular response to hypergravity made to date, and they demonstrate the potential utility of this device for assaying the threshold of cells' g-force responses in spaceflight conditions.
Collapse
Affiliation(s)
- J Park
- Agricultural & Biological Engineering, Physiological Sensing Facility at the Bindley Bioscience Center & Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA.
| | - M L Salmi
- Molecular Biosciences, The University of Texas at Austin, 1 University Station A6700, Austin, TX 78712, USA
| | - W W A Wan Salim
- Agricultural & Biological Engineering, Physiological Sensing Facility at the Bindley Bioscience Center & Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA.
| | - A Rademacher
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - B Wickizer
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - A Schooley
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - J Benton
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - A Cantero
- Molecular Biosciences, The University of Texas at Austin, 1 University Station A6700, Austin, TX 78712, USA
| | - P F Argote
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - M Ren
- Dept of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - M Zhang
- Dept of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - D M Porterfield
- Agricultural & Biological Engineering, Physiological Sensing Facility at the Bindley Bioscience Center & Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA. and Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - A J Ricco
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - S J Roux
- Molecular Biosciences, The University of Texas at Austin, 1 University Station A6700, Austin, TX 78712, USA
| | - J L Rickus
- Agricultural & Biological Engineering, Physiological Sensing Facility at the Bindley Bioscience Center & Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA. and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Vandenbrink JP, Herranz R, Medina FJ, Edelmann RE, Kiss JZ. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity. PLANTA 2016; 244:1201-1215. [PMID: 27507239 PMCID: PMC5748516 DOI: 10.1007/s00425-016-2581-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/02/2016] [Indexed: 05/21/2023]
Abstract
Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity. Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings. Two of these cues, light and gravity, play a substantial role in plant orientation and directed growth movements (tropisms). However, very little is currently known about the interaction between light- (phototropic) and gravity (gravitropic)-mediated growth responses. Utilizing the European Modular Cultivation System on board the International Space Station, we investigated the interaction between phototropic and gravitropic responses in three Arabidopsis thaliana genotypes, Landsberg wild type, as well as mutants of phytochrome A and phytochrome B. Onboard centrifuges were used to create a fractional gravity gradient ranging from reduced gravity up to 1g. A novel positive blue-light phototropic response of roots was observed during conditions of microgravity, and this response was attenuated at 0.1g. In addition, a red-light pretreatment of plants enhanced the magnitude of positive phototropic curvature of roots in response to blue illumination. In addition, a positive phototropic response of roots was observed when exposed to red light, and a decrease in response was gradual and correlated with the increase in gravity. The positive red-light phototropic curvature of hypocotyls when exposed to red light was also confirmed. Both red-light and blue-light phototropic responses were also shown to be affected by directional light intensity. To our knowledge, this is the first characterization of a positive blue-light phototropic response in Arabidopsis roots, as well as the first description of the relationship between these phototropic responses in fractional or reduced gravities.
Collapse
Affiliation(s)
- Joshua P Vandenbrink
- Department of Biology, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | - John Z Kiss
- Department of Biology, University of Mississippi, University, Oxford, MS, 38677, USA.
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
21
|
Mori A, Toyota M, Shimada M, Mekata M, Kurata T, Tasaka M, Morita MT. Isolation of New Gravitropic Mutants under Hypergravity Conditions. FRONTIERS IN PLANT SCIENCE 2016; 7:1443. [PMID: 27746791 PMCID: PMC5040707 DOI: 10.3389/fpls.2016.01443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/09/2016] [Indexed: 05/31/2023]
Abstract
Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using next-generation sequencing (NGS) and single nucleotide polymorphism (SNP)-based markers. Using the endodermal-amyloplast less 1 (eal1) mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g) restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene (enhancer of eal1) mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis.
Collapse
Affiliation(s)
- Akiko Mori
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
| | - Masatsugu Toyota
- Department of Botany, University of WisconsinMadison, MadisonWI, USA
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and TechnologySaitama, Japan
| | - Masayoshi Shimada
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Mika Mekata
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Tetsuya Kurata
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Miyo T. Morita
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
- CREST, Japan Science and Technology AgencyTokyo, Japan
| |
Collapse
|
22
|
Žádníková P, Smet D, Zhu Q, Straeten DVD, Benková E. Strategies of seedlings to overcome their sessile nature: auxin in mobility control. FRONTIERS IN PLANT SCIENCE 2015; 6:218. [PMID: 25926839 PMCID: PMC4396199 DOI: 10.3389/fpls.2015.00218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/19/2015] [Indexed: 05/21/2023]
Abstract
Plants are sessile organisms that are permanently restricted to their site of germination. To compensate for their lack of mobility, plants evolved unique mechanisms enabling them to rapidly react to ever changing environmental conditions and flexibly adapt their postembryonic developmental program. A prominent demonstration of this developmental plasticity is their ability to bend organs in order to reach the position most optimal for growth and utilization of light, nutrients, and other resources. Shortly after germination, dicotyledonous seedlings form a bended structure, the so-called apical hook, to protect the delicate shoot meristem and cotyledons from damage when penetrating through the soil. Upon perception of a light stimulus, the apical hook rapidly opens and the photomorphogenic developmental program is activated. After germination, plant organs are able to align their growth with the light source and adopt the most favorable orientation through bending, in a process named phototropism. On the other hand, when roots and shoots are diverted from their upright orientation, they immediately detect a change in the gravity vector and bend to maintain a vertical growth direction. Noteworthy, despite the diversity of external stimuli perceived by different plant organs, all plant tropic movements share a common mechanistic basis: differential cell growth. In our review, we will discuss the molecular principles underlying various tropic responses with the focus on mechanisms mediating the perception of external signals, transduction cascades and downstream responses that regulate differential cell growth and consequently, organ bending. In particular, we highlight common and specific features of regulatory pathways in control of the bending of organs and a role for the plant hormone auxin as a key regulatory component.
Collapse
Affiliation(s)
- Petra Žádníková
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, GhentBelgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, GhentBelgium
| | - Dajo Smet
- Department of Physiology, Laboratory of Functional Plant Biology, Ghent University, GhentBelgium
| | - Qiang Zhu
- Institute of Science and Technology Austria, KlosterneuburgAustria
| | | | - Eva Benková
- Institute of Science and Technology Austria, KlosterneuburgAustria
| |
Collapse
|
23
|
Masi E, Ciszak M, Comparini D, Monetti E, Pandolfi C, Azzarello E, Mugnai S, Baluška F, Mancuso S. The electrical network of maize root apex is gravity dependent. Sci Rep 2015; 5:7730. [PMID: 25588706 PMCID: PMC4295110 DOI: 10.1038/srep07730] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/09/2014] [Indexed: 12/25/2022] Open
Abstract
Investigations carried out on maize roots under microgravity and hypergravity revealed that gravity conditions have strong effects on the network of plant electrical activity. Both the duration of action potentials (APs) and their propagation velocities were significantly affected by gravity. Similarly to what was reported for animals, increased gravity forces speed-up APs and enhance synchronized electrical events also in plants. The root apex transition zone emerges as the most active, as well as the most sensitive, root region in this respect.
Collapse
Affiliation(s)
- Elisa Masi
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Marzena Ciszak
- 1] LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy [2] CNR, National Institute of Optics (INO), L.go E. Fermi 6, 50125 Florence, Italy
| | - Diego Comparini
- 1] LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy [2] LINV@Kitakyushu Research Center, University of Kitakyushu, 808-0135 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan
| | - Emanuela Monetti
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Camilla Pandolfi
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Elisa Azzarello
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Sergio Mugnai
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Frantisek Baluška
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Stefano Mancuso
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
24
|
Tatsumi H, Toyota M, Furuichi T, Sokabe M. Calcium mobilizations in response to changes in the gravity vector in Arabidopsis seedlings: possible cellular mechanisms. PLANT SIGNALING & BEHAVIOR 2014; 9:e29099. [PMID: 25763612 PMCID: PMC4203510 DOI: 10.4161/psb.29099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/02/2014] [Accepted: 05/02/2014] [Indexed: 05/11/2023]
Abstract
Gravity influences the growth direction of higher plants. Changes in the gravity vector (gravistimulation) immediately promote the increase in the cytoplasmic free calcium ion concentration ([Ca(2+)]c) in Arabidopsis (Arabidopsis thaliana) seedlings. When the seedlings are gravistimulated by reorientation at 180°, a transient two peaked (biphasic) [Ca(2+)]c-increase arises in their hypocotyl and petioles. Parabolic flights (PFs) can generate a variety of gravity-stimuli, and enables us to measure gravity-induced [Ca(2+)]c-increases without specimen rotation, which demonstrate that Arabidopsis seedlings possess a rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes into Ca(2+) signals on a sub-second timescale. Hypergravity by centrifugation (20 g or 300 g) also induces similar transient [Ca(2+)]c-increases. In this review, we propose models for possible cellular processes of the garavi-stimulus-induced [Ca(2+)]c-increase, and evaluate those by examining whether the model fits well with the kinetic parameters derived from the [Ca(2+)]c-increases obtained by applying gravistimulus with different amplitudes and time sequences.
Collapse
Affiliation(s)
- Hitoshi Tatsumi
- Nagoya University Graduate School of Medicine; Nagoya, Japan
| | - Masatsugu Toyota
- Department of Botany; University of Wisconsin; Madison, WI USA
- Precursory Research for Embryonic Science and Technology (PRESTO); Japan Science and Technology Agency (JST); Kawaguchi, Saitama, Japan
| | - Takuya Furuichi
- Department of Health and Nutrition; Gifu Women’s University; Gifu, Japan
| | - Masahiro Sokabe
- Nagoya University Graduate School of Medicine; Nagoya, Japan
| |
Collapse
|
25
|
Affiliation(s)
- Alex A R Webb
- Department of Plant SciencesUniversity of CambridgeCambridge CB2 3EA, United Kingdom
| |
Collapse
|