1
|
Han X, Wang J, Zhang L. Coordination of hydraulic and leaf-level gas exchange traits during water-deficit acclimation in apple rootstocks. PHYSIOLOGIA PLANTARUM 2023; 175:e14037. [PMID: 37882303 DOI: 10.1111/ppl.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
Water deficit episodes impact apple (Malus domestica) productivity through challenging the trees' water status, the influence of extreme high temperature climate has become increasingly prominent in recent years. Rootstocks can bestow specific properties on the fruit trees such as the resistance to drought stress. However, the related hydraulic mechanisms in response to water deficit have not been fully understood. Herein, five rootstocks (SH6, GM256, M9, M26, and MM106) were examined under water limitation. The hydraulic conductance of root (Kroot), shoots (Kshoot), and stems (Kstem-shoot) in the five rootstocks reduced slightly during drought stress. Whereas the leaf water potential and photosynthesis of five rootstocks decreased dramatically when they were exposed to drought stress. Additionally, the Kshoot and Kstem-shoot were strongly correlated with the total plant leaf area. Aquaporins (AQPs) involved in the symplastic water transport pathway, the PIP2:1, TIP1:1, and TIP2:2 mRNA levels of all genotypic rootstocks showed significant regulation under drought stress. We examined the relationships among photosynthesis, apoplastic, and symplastic water movement pathways to achieve a comprehensive understanding of rootstocks' hydraulic strategy for improving drought adaptation. The PIP2:1 and TIP2:1 in leaves were more sensitive to root hydraulic conductance in response to drought stress. Furthermore, the coordinated relationship existed in leaf-specific conductance of shoot (Kl -shoot) and transpiration rate (Tr) under drought stress in the rootstocks. Overall, the drought resistance in the five dwarfing rootstocks is associated with the rapid re-establishment of water-related traits, and the effect of the canopy on the drought resistance in apple rootstocks merits much more attention.
Collapse
Affiliation(s)
- Xiaoyu Han
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinfeng Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Vaziriyeganeh M, Khan S, Zwiazek JJ. Analysis of aquaporins in northern grasses reveal functional importance of Puccinellia nuttalliana PIP2;2 in salt tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:2159-2173. [PMID: 37051679 DOI: 10.1111/pce.14589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 06/08/2023]
Abstract
To better understand the roles of aquaporins in salt tolerance, we cloned PIP2;1, PIP2;2, PIP2;3, PIP1;1, PIP1;3, and TIP1;1 aquaporins from three northern grasses varying is salt tolerance including the halophytic grass Puccinellia nuttalliana, moderately salt tolerant Poa juncifolia, and relatively salt sensitive Poa pratensis. We analysed aquaporin expression in roots by exposing the plants to 0 and 150 mM for 6 days in hydroponic culture. NaCl treatment upregulated several PIP transcripts in P. nuttalliana while decreasing PnuTIP1;1. The PnuPIP2;2 transcripts increased by about six-fold in P. nuttalliana, two-fold in Poa juncifolia, and did not change in Poa pratensis. The NaCl treatment enhanced the rate of water transport in yeast expressing PnuPIP2;2 by 56% compared with control. PnuPIP2,2 expression also resulted in a higher Na+ uptake in yeast cells compared with an empty vector suggesting that PnuPIP2;2 may have both water and ion transporting functions. Structural analysis revealed that the transport properties of PnuPIP2;2 could be affected by its unique pore characteristics, which include a combination of hourglass, cylindrical, and increasing diameter conical entrance shape with pore hydropathy of -0.22.
Collapse
Affiliation(s)
| | - Shanjida Khan
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Gómez-Méndez MF, Amezcua-Romero JC, Rosas-Santiago P, Hernández-Domínguez EE, de Luna-Valdez LA, Ruiz-Salas JL, Vera-Estrella R, Pantoja O. Ice plant root plasma membrane aquaporins are regulated by clathrin-coated vesicles in response to salt stress. PLANT PHYSIOLOGY 2023; 191:199-218. [PMID: 36383186 PMCID: PMC9806614 DOI: 10.1093/plphys/kiac515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The regulation of root Plasma membrane (PM) Intrinsic Protein (PIP)-type aquaporins (AQPs) is potentially important for salinity tolerance. However, the molecular and cellular details underlying this process in halophytes remain unclear. Using free-flow electrophoresis and label-free proteomics, we report that the increased abundance of PIPs at the PM of the halophyte ice plant (Mesembryanthemum crystallinum L.) roots under salinity conditions is regulated by clathrin-coated vesicles (CCV). To understand this regulation, we analyzed several components of the M. crystallinum CCV complexes: clathrin light chain (McCLC) and subunits μ1 and μ2 of the adaptor protein (AP) complex (McAP1μ and McAP2μ). Co-localization analyses revealed the association between McPIP1;4 and McAP2μ and between McPIP2;1 and McAP1μ, observations corroborated by mbSUS assays, suggesting that AQP abundance at the PM is under the control of CCV. The ability of McPIP1;4 and McPIP2;1 to form homo- and hetero-oligomers was tested and confirmed, as well as their activity as water channels. Also, we found increased phosphorylation of McPIP2;1 only at the PM in response to salt stress. Our results indicate root PIPs from halophytes might be regulated through CCV trafficking and phosphorylation, impacting their localization, transport activity, and abundance under salinity conditions.
Collapse
Affiliation(s)
| | - Julio César Amezcua-Romero
- Departamento de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Unidad León, Universidad Nacional Autónoma de México, León, México
| | - Paul Rosas-Santiago
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | - Luis Alberto de Luna-Valdez
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Jorge Luis Ruiz-Salas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Omar Pantoja
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
4
|
Massenti R, Scalisi A, Marra FP, Caruso T, Marino G, Lo Bianco R. Physiological and Structural Responses to Prolonged Water Deficit in Young Trees of Two Olive Cultivars. PLANTS (BASEL, SWITZERLAND) 2022; 11:1695. [PMID: 35807647 PMCID: PMC9269245 DOI: 10.3390/plants11131695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to characterize the physiological and structural responses of potted one-year-old olive trees belonging to two olive cultivars—‘Nocellara del Belice’ and ‘Cerasuola’—exposed to prolonged drought under greenhouse conditions. Two irrigation treatments based on evapotranspiration (ET) were imposed for 69 days, i.e., well-watered (WW, 100% ET) and drought-stressed (DS, 10−30% ET). Leaf stomatal conductance (gs), stem water potential (Ψstem), transpiration (E), photosynthetic capacity (Amax), water use efficiency (WUE), stem (Kstem) and root (Kroot) hydraulic conductance, trunk diameter variations (TDV), and leaf patch attenuated pressure fluctuations (pp, a proxy of the inverse of leaf turgor pressure) were measured in WW and DS trees at different stages of the experiment. Leaf gs did not significantly differ between cultivars under DS, whereas differences in Ψstem only became significant at the end of prolonged drought, when ‘Nocellara del Belice’ experienced Ψstem < −4 MPa. ‘Cerasuola’ trees expressed the best WUE under drought, although they were more susceptible to photoinhibition under optimal plant water status. Both cultivars tended to increase their Kstem at the end of the drought period. A marked reduction in Kroot occurred in ‘Cerasuola’ plants after prolonged drought; however, a similar mechanism was not observed in ‘Nocellara del Belice’. The ratio between Kstem and Kroot exponentially increased towards the end of the prolonged drought period in both cultivars, but more markedly in ‘Cerasuola’. TDV and pp trends suggested that ‘Cerasuola’ plants keep better plant water status under severe drought compared to ‘Nocellara del Belice’ by maintaining high leaf turgor and reduced trunk diameter fluctuations. These responses may be related to reduced cell wall elasticity and xylem vessel size and/or wall thickness—drought avoidance mechanisms. The Kstem/Kroot ratio can serve as an indicator of drought stress avoidance mechanisms to compare genotype-specific responses to drought stress.
Collapse
Affiliation(s)
- Roberto Massenti
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.S.); (F.P.M.); (T.C.); (G.M.); (R.L.B.)
| | - Alessio Scalisi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.S.); (F.P.M.); (T.C.); (G.M.); (R.L.B.)
- Tatura SmartFarm, Agriculture Victoria, Tatura, VIC 3616, Australia
| | - Francesco Paolo Marra
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.S.); (F.P.M.); (T.C.); (G.M.); (R.L.B.)
| | - Tiziano Caruso
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.S.); (F.P.M.); (T.C.); (G.M.); (R.L.B.)
| | - Giulia Marino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.S.); (F.P.M.); (T.C.); (G.M.); (R.L.B.)
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Riccardo Lo Bianco
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.S.); (F.P.M.); (T.C.); (G.M.); (R.L.B.)
| |
Collapse
|
5
|
Wang J, Yang L, Chai S, Ren Y, Guan M, Ma F, Liu J. An aquaporin gene MdPIP1;2 from Malus domestica confers salt tolerance in transgenic Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153711. [PMID: 35550521 DOI: 10.1016/j.jplph.2022.153711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Aquaporins are known as water channel proteins. In this study, an aquaporin gene MdPIP1;2 was cloned from Malus domestica cv. Qinguan encoding a protein of 289 amino acids that formed the typical structure of aquaporin by six transmembrane domains, two asparagine-proline-alanine motifs, aromatic/arginine filter, and Forger's position. MdPIP1;2 was highly expressed in the water-sensitive or water-requiring tissues, and upregulated by salt and PEG stresses. MdPIP1;2 transgenic Arabidopsis exhibited enhanced salt stress tolerance with less Na + accumulation, lower malondialdehyde (MDA) content, lower electrolyte leakage (EL) level, and higher superoxide dismutase (SOD) and peroxidase (POD) activities compared with WT plants. Additionally, transcriptome analysis indicated MdPIP1;2 transgenic Arabidopsis could present healthier growth and development condition probably through regulating morphological structures and accumulating specific secondary metabolites under salt stress. Our results are a useful reference for better understanding the biological function of aquaporin in apple tree, especially in plant response to abiotic stress.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Leilei Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Shuangshuang Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yafei Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Meng Guan
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jingying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Freyria NJ, Kuo A, Chovatia M, Johnson J, Lipzen A, Barry KW, Grigoriev IV, Lovejoy C. Salinity tolerance mechanisms of an Arctic Pelagophyte using comparative transcriptomic and gene expression analysis. Commun Biol 2022; 5:500. [PMID: 35614207 PMCID: PMC9133084 DOI: 10.1038/s42003-022-03461-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Little is known at the transcriptional level about microbial eukaryotic adaptations to short-term salinity change. Arctic microalgae are exposed to low salinity due to sea-ice melt and higher salinity with brine channel formation during freeze-up. Here, we investigate the transcriptional response of an ice-associated microalgae over salinities from 45 to 8. Our results show a bracketed response of differential gene expression when the cultures were exposed to progressively decreasing salinity. Key genes associated with salinity changes were involved in specific metabolic pathways, transcription factors and regulators, protein kinases, carbohydrate active enzymes, and inorganic ion transporters. The pelagophyte seemed to use a strategy involving overexpression of Na+-H+ antiporters and Na+ -Pi symporters as salinity decreases, but the K+ channel complex at higher salinities. Specific adaptation to cold saline arctic conditions was seen with differential expression of several antifreeze proteins, an ice-binding protein and an acyl-esterase involved in cold adaptation.
Collapse
Affiliation(s)
- Nastasia J Freyria
- Département de biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada.
- Québec Océan, Département de biologie, Université Laval, Québec, Canada.
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mansi Chovatia
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Connie Lovejoy
- Département de biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada.
- Québec Océan, Département de biologie, Université Laval, Québec, Canada.
| |
Collapse
|
7
|
Sanden NC, Schulz A. Stationary sieve element proteins. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153511. [PMID: 34537466 DOI: 10.1016/j.jplph.2021.153511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Vascular plants use the phloem to move sugars and other molecules from source leaves to sink organs such as roots and fruits. Within the phloem, enucleate sieve elements provide the low-resistance pipe system that enable bulk flow of sap. In this review, we provide an overview of the highly specific protein machinery that localize to mature sieve elements without entering the phloem translocation stream. Generally, the proteins either maintain the flow, protect the sieve element against pathogens or transmit system wide signals. A notable exception is found in poppy, where part of the opium biosynthesis is compartmentalized in sieve elements. Biosynthesis of sieve element proteins happens either continuously in companion cell or transiently in immature sieve elements before nuclear disintegration. The latter population is translated during differentiation and stays functional without turnover during the entire lifespan of sieve elements. We discuss how protein longevity imposes some interesting restrictions on plants, especially in arborescent monocots with long living sieve elements.
Collapse
Affiliation(s)
- Niels Christian Sanden
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Alexander Schulz
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
8
|
Vaziriyeganeh M, Khan S, Zwiazek JJ. Transcriptome and Metabolome Analyses Reveal Potential Salt Tolerance Mechanisms Contributing to Maintenance of Water Balance by the Halophytic Grass Puccinellia nuttalliana. FRONTIERS IN PLANT SCIENCE 2021; 12:760863. [PMID: 34777443 PMCID: PMC8586710 DOI: 10.3389/fpls.2021.760863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/29/2021] [Indexed: 06/08/2023]
Abstract
Elevated soil salinity exacerbated by human activities and global climate change poses serious threats to plant survival. Although halophytes provide many important clues concerning salt tolerance in plants, some unanswered questions remain to be addressed, including the processes of water and solute transport regulation. We performed high-throughput RNA-sequencing in roots and metabolome characterizations in roots and leaves of Puccinellia nuttalliana halophytic grass subjected to 0 (control) and 150 mM NaCl. In RNAseq, a total of 31 Gb clean bases generated were de novo assembled into 941,894 transcripts. The PIP2;2 and HKT1;5 transcript levels increased in response to the NaCl treatment implying their roles in water and ion homeostasis. Several transcription factors, including WRKY39, DEK3, HY5, and ABF2, were also overexpressed in response to NaCl. The metabolomic analysis revealed that proline and dopamine significantly increased due to the upregulation of the pathway genes under salt stress, likely contributing to salt tolerance mechanisms. Several phosphatidylcholines significantly increased in roots suggesting that the alterations of membrane lipid composition may be an important strategy in P. nuttalliana for maintaining cellular homeostasis and membrane integrity under salt stress. In leaves, the TCA cycle was enriched suggesting enhanced energy metabolism to cope with salt stress. Other features contributing to the ability of P. nuttalliana to survive under high salinity conditions include salt secretion by the salt glands and enhanced cell wall lignification of the root cells. While most of the reported transcriptomic, metabolomics, and structural alterations may have consequences to water balance maintenance by plants under salinity stress, the key processes that need to be further addressed include the role of the changes in the aquaporin gene expression profiles in the earlier reported enhancement of the aquaporin-mediated root water transport.
Collapse
Affiliation(s)
| | | | - Janusz J. Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Kumari A, Bhatla SC. Regulation of salt-stressed sunflower (Helianthus annuus) seedling's water status by the coordinated action of Na +/K + accumulation, nitric oxide, and aquaporin expression. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:573-587. [PMID: 33487215 DOI: 10.1071/fp20334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/25/2020] [Indexed: 05/08/2023]
Abstract
Among abiotic stresses, salt stress is a major threat to crop production all over the world. Present work demonstrates the profuse accumulation of Na+ in 2-day-old, dark-grown sunflower (Helianthus annuus L.) seedlings roots in response to salt stress (NaCl). The pattern of K+ accumulation in response to salt stress is similar to that of Na+ but on relatively lower scale. Application of nitric oxide (NO) donor (DETA) scales down Na+ accumulation in salt-stressed seedlings. The impact of NO donor on K+ accumulation is, however, different in control and salt-stressed seedling roots. In control seedlings, it enhances K+ accumulation, whereas, it gets reduced in salt-stressed seedlings. Specialised channels called 'aquaporins' (AQPs) play a major role maintaining the water status and transport across plant parts under salt-stress. Thus, accumulation of plasma-membrane intrinsic proteins (PIPs) and tonoplast-intrinsic proteins (TIPs), localised on plasma-membrane and vacuolar-membrane, respectively was undertaken in 2-day-old, dark-grown seedling roots. Salt stress increased the abundance of these isoforms, whereas, NO application resulted in decreased accumulation of PIP2 and TIP1. PIP1 and TIP2 isoforms remained undetectable. Present work thus, puts forward a correlation between AQP expression and ions (Na+ and K+) homeostasis in response to salt stress and NO.
Collapse
Affiliation(s)
- Archana Kumari
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi-11007, India
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi-11007, India; and Corresponding author.
| |
Collapse
|
10
|
Rawat N, Singla-Pareek SL, Pareek A. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. PHYSIOLOGIA PLANTARUM 2021; 171:653-676. [PMID: 32949408 DOI: 10.1111/ppl.13217] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 09/13/2020] [Indexed: 05/15/2023]
Abstract
The plasma membrane (PM) is possibly the most diverse biological membrane of plant cells; it separates and guards the cell against its external environment. It has an extremely complex structure comprising a mosaic of lipids and proteins. The PM lipids are responsible for maintaining fluidity, permeability and integrity of the membrane and also influence the functioning of membrane proteins. However, the PM is the primary target of environmental stress, which affects its composition, conformation and properties, thereby disturbing the cellular homeostasis. Maintenance of integrity and fluidity of the PM is a prerequisite for ensuring the survival of plants during adverse environmental conditions. The ability of plants to remodel membrane lipid and protein composition plays a crucial role in adaptation towards varying abiotic environmental cues, including high or low temperature, drought, salinity and heavy metals stress. The dynamic changes in lipid composition affect the functioning of membrane transporters and ultimately regulate the physical properties of the membrane. Plant membrane-transport systems play a significant role in stress adaptation by cooperating with the membrane lipidome to maintain the membrane integrity under stressful conditions. The present review provides a holistic view of stress responses and adaptations in plants, especially the changes in the lipidome and proteome of PM under individual or combined abiotic stresses, which cause alterations in the activity of membrane transporters and modifies the fluidity of the PM. The tools to study the varying lipidome and proteome of the PM are also discussed.
Collapse
Affiliation(s)
- Nishtha Rawat
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
11
|
Eliaspour S, Seyed Sharifi R, Shirkhani A. Evaluation of interaction between Piriformospora indica, animal manure and NPK fertilizer on quantitative and qualitative yield and absorption of elements in sunflower. Food Sci Nutr 2020; 8:2789-2797. [PMID: 32566196 PMCID: PMC7300063 DOI: 10.1002/fsn3.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 11/29/2022] Open
Abstract
Microbial endophytes are considered as one of the most important soil microorganisms which increase their yield per unit area by generating genetic, physiological, and ecological changes in their host plants. We conducted an experiment as factorial in a completely randomized manner with three replications at the Ghasre Shirin greenhouse of Kermanshah province in order to evaluate the interaction of Piriformospora indica (inoculation-noninoculation) with manure (25% of the flowerpot volume-without using manure as a control) and NPK chemical fertilizer (10 g per flowerpot-without the use of fertilizer as a control), the quantitative and qualitative yield and absorption of elements in sunflower. The results showed that the interaction of P. indica, manure, and chemical fertilizer on the colonization percentage, seed oil percentage, nitrogen concentration, phosphorus concentration, and the 1000-seed weight was significant at 1% probability level, and on yield index, growth, plant height, and concentration of potassium element it was at 5% probability level. Bilateral effects of P. indica with chemical fertilizer and the manure treated with chemical fertilizer on the budding time were significant at the probability level of 1% and 5%, respectively. It seems that the coexistence between sunflower root and P. indica increases the growth of the root system of the plant; thereby it increases the height of plant because of the absorption of essential elements such as nitrogen, phosphorus, and potassium by the root, and increases the quantitative and qualitative yield of sunflower.
Collapse
Affiliation(s)
- Siamak Eliaspour
- Department of Agronomy and Plant BreedingFaculty of AgricultureUniversity of Mohaghegh ArdabiliArdebilIran
| | - Raouf Seyed Sharifi
- Department of Agronomy and Plant BreedingFaculty of AgricultureUniversity of Mohaghegh ArdabiliArdebilIran
| | - Ali Shirkhani
- Crops and Horticulture Research DepartmentKermanshah Agricultural Resources Research and Education Center (AREEO)KermanshahIran
| |
Collapse
|
12
|
Rahman A, Kawamura Y, Maeshima M, Rahman A, Uemura M. Plasma Membrane Aquaporin Members PIPs Act in Concert to Regulate Cold Acclimation and Freezing Tolerance Responses in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2020; 61:787-802. [PMID: 31999343 DOI: 10.1093/pcp/pcaa005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Aquaporins play a major role in plant water uptake at both optimal and environmentally stressed conditions. However, the functional specificity of aquaporins under cold remains obscure. To get a better insight to the role of aquaporins in cold acclimation and freezing tolerance, we took an integrated approach of physiology, transcript profiling and cell biology in Arabidopsis thaliana. Cold acclimation resulted in specific upregulation of PIP1;4 and PIP2;5 aquaporin (plasma membrane intrinsic proteins) expression, and immunoblotting analysis confirmed the increase in amount of PIP2;5 protein and total amount of PIPs during cold acclimation, suggesting that PIP2;5 plays a major role in tackling the cold milieu. Although single mutants of pip1;4 and pip2;5 or their double mutant showed no phenotypic changes in freezing tolerance, they were more sensitive in root elongation and cell survival response under freezing stress conditions compared with the wild type. Consistently, a single mutation in either PIP1;4 or PIP2;5 altered the expression of a number of aquaporins both at the transcriptional and translational levels. Collectively, our results suggest that aquaporin members including PIP1;4 and PIP2;5 function in concert to regulate cold acclimation and freezing tolerance responses.
Collapse
Affiliation(s)
- Arifa Rahman
- The United Graduate School of Agricultural Sciences, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
| | - Yukio Kawamura
- The United Graduate School of Agricultural Sciences, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
- Department of Plant Bioscience, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
| | - Masayoshi Maeshima
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Abidur Rahman
- The United Graduate School of Agricultural Sciences, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
- Department of Plant Bioscience, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
- Agri-Innovation Center, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
| | - Matsuo Uemura
- The United Graduate School of Agricultural Sciences, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
- Department of Plant Bioscience, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
| |
Collapse
|
13
|
Singh RK, Deshmukh R, Muthamilarasan M, Rani R, Prasad M. Versatile roles of aquaporin in physiological processes and stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:178-189. [PMID: 32078896 DOI: 10.1016/j.plaphy.2020.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 05/21/2023]
Abstract
Aquaporins are pore-forming transmembrane proteins that facilitate the movement of water and many other small neutral solutes across the cells and intracellular compartments. Plants exhibits high diversity in aquaporin isoforms and broadly classified into five different subfamilies on the basis of phylogenetic distribution and subcellular occurrence: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26-like proteins (NIPs), small basic intrinsic proteins (SIPs) and uncharacterized intrinsic proteins (XIPs). The gating mechanism of aquaporin channels is tightly regulated by post-translational modifications such as phosphorylation, methylation, acetylation, glycosylation, and deamination. Aquaporin expression and transport functions are also modulated by the various phytohormones-mediated signalling in plants. Combined physiology and transcriptome analysis revealed the role of aquaporins in regulating hydraulic conductance in roots and leaves. The present review mainly focused on aquaporin functional activity during solute transport, plant development, abiotic stress response, and plant-microbe symbiosis. Genetically modified plants overexpressing aquaporin-encoding genes display improved agronomic and abiotic stress tolerance.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, 140306, Chandigarh, India
| | | | - Rekha Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
14
|
Hwang HH, Wang CH, Huang HW, Chiang CP, Chi SF, Huang FC, Yen HE. Functional analysis of McSnRK1 (SNF1-related protein kinase 1) in regulating Na/K homeostasis in transgenic cultured cells and roots of halophyte Mesembryanthemum crystallinum. PLANT CELL REPORTS 2019; 38:915-926. [PMID: 31037366 DOI: 10.1007/s00299-019-02412-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/15/2019] [Indexed: 05/05/2023]
Abstract
Transgenic callus and roots of ice plant with altered SnRK1 function were established using Agrobacterium-mediated transformation. The role of McSnRK1 in controlling Na+ influx and Na/K ratio was demonstrated. SnRK1 kinases (SNF1-related protein kinase1) control metabolic adaptation during energy deprivation and regulate protective mechanisms against environmental stress. Yeast SNF1 activates a P-type ATPase, the Na+ exclusion pump, under glucose starvation. The involvement of plant SnRK1 in salt stress response is largely unknown. We previously identified a salt-induced McSnRK1 in the halophyte ice plant (Mesembryanthemum crystallinum). In the current study, the function of McSnRK1 in salt tolerance was analyzed in transgenic cultured cells and roots of ice plant. Ice plant callus constitutively expressed a high level of McSnRK1 and introducing the full-length McSnRK1 did not alter the Na/K ratio at 24 h after 200 mM NaCl treatment. However, interfering with McSnRK1 activity by introducing a truncate McSnRK1 to produce a dominant-negative form of McSnRK1 increased cellular Na+ accumulation and Na/K ratio. As a result, the growth of cultured cells diminished under salt treatment. Hydroponically grown ice plants with roots expressing full-length McSnRK1 had better growth and lowered Na/K ratio compared to the wild-type or vector-only plants. Roots expressing a truncate McSnRK1 had reduced growth and high Na/K ratio under 400 mM NaCl treatment. The changes in Na/K ratio in transgenic cells and whole plants demonstrated the function of SnRK1 in controlling Na+ flux and maintaining Na/K homeostasis under salinity. The Agrobacterium-mediated transformation system could be a versatile tool for functional analysis of genes involved in salt tolerance in the ice plant.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Hao Wang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Hsiao-Wei Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Chih-Pin Chiang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Shin-Fei Chi
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, 40227, Taiwan
| | - Hungchen E Yen
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan.
| |
Collapse
|
15
|
Yuan F, Guo J, Shabala S, Wang B. Reproductive Physiology of Halophytes: Current Standing. FRONTIERS IN PLANT SCIENCE 2019; 9:1954. [PMID: 30687356 PMCID: PMC6334627 DOI: 10.3389/fpls.2018.01954] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 05/19/2023]
Abstract
Background: Halophytes possess efficient salt-tolerance mechanisms and can complete their life cycles in naturally saline soils with NaCl contents exceeding 200 mM. While a significant progress have been made in recent decades elucidating underlying salt-tolerance mechanisms, these studies have been mostly confined to the vegetative growth stage. At the same time, the capacity to generate high-quality seeds and to survive early developmental stages under saline conditions, are both critically important for plants. Halophytes perform well in both regards, whereas non-halophytes cannot normally complete their life cycles under saline conditions. Scope: Research into the effects of salinity on plant reproductive biology has gained momentum in recent years. However, it remains unclear whether the reproductive biology of halophytes differs from that of non-halophytes, and whether their reproductive processes benefit, like their vegetative growth, from the presence of salt in the rhizosphere. Here, we summarize current knowledge of the mechanisms underlying the superior reproductive biology of halophytes, focusing on critical aspects including control of flowering time, changes in plant hormonal status and their impact on anther and pollen development and viability, plant carbohydrate status and seed formation, mechanisms behind the early germination of halophyte seeds, and the role of seed polymorphism. Conclusion: Salt has beneficial effects on halophyte reproductive growth that include late flowering, increased flower numbers and pollen vitality, and high seed yield. This improved performance is due to optimal nutrition during vegetative growth, alterations in plant hormonal status, and regulation of flowering genes. In addition, the seeds of halophytes harvested under saline conditions show higher salt tolerance than those obtained under non-saline condition, largely due to increased osmolyte accumulation, more optimal hormonal composition (e.g., high gibberellic acid and low abcisic acid content) and, in some species, seed dimorphism. In the near future, identifying key genes involved in halophyte reproductive physiology and using them to transform crops could be a promising approach to developing saline agriculture.
Collapse
Affiliation(s)
- Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, China
- College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
16
|
Wong DCJ, Zhang L, Merlin I, Castellarin SD, Gambetta GA. Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine. BMC Genomics 2018; 19:248. [PMID: 29642857 PMCID: PMC5896048 DOI: 10.1186/s12864-018-4638-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/29/2018] [Indexed: 12/05/2022] Open
Abstract
Background The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family’s tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. Results A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs. Conclusions Combining phylogenetic analyses, gene expression profiling, gene co-expression network analyses, and cis-regulatory element enrichment, this study provides a comprehensive overview of the structure and transcriptional regulation of the grapevine MIP family. The study highlights the duplication and sub-functionalization of the family, its strong coordinated expression with genes involved in growth and transport, and the putative classes of TFs responsible for its regulation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4638-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Darren Chern Jan Wong
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 0Z4, Canada
| | - Li Zhang
- Bordeaux Science Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F- 33140, Villenave d'Ornon, France
| | - Isabelle Merlin
- Bordeaux Science Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F- 33140, Villenave d'Ornon, France
| | - Simone D Castellarin
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 0Z4, Canada
| | - Gregory A Gambetta
- Bordeaux Science Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F- 33140, Villenave d'Ornon, France.
| |
Collapse
|
17
|
Kapilan R, Vaziri M, Zwiazek JJ. Regulation of aquaporins in plants under stress. Biol Res 2018; 51:4. [PMID: 29338771 PMCID: PMC5769316 DOI: 10.1186/s40659-018-0152-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/11/2018] [Indexed: 01/16/2023] Open
Abstract
Aquaporins (AQP) are channel proteins belonging to the Major Intrinsic Protein (MIP) superfamily that play an important role in plant water relations. The main role of aquaporins in plants is transport of water and other small neutral molecules across cellular biological membranes. AQPs have remarkable features to provide an efficient and often, specific water flow and enable them to transport water into and out of the cells along the water potential gradient. Plant AQPs are classified into five main subfamilies including the plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26 like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and X intrinsic proteins (XIPs). AQPs are localized in the cell membranes and are found in all living cells. However, most of the AQPs that have been described in plants are localized to the tonoplast and plasma membranes. Regulation of AQP activity and gene expression, are also considered as a part of the adaptation mechanisms to stress conditions and rely on complex processes and signaling pathways as well as complex transcriptional, translational and posttranscriptional factors. Gating of AQPs through different mechanisms, such as phosphorylation, tetramerization, pH, cations, reactive oxygen species, phytohormones and other chemical agents, may play a key role in plant responses to environmental stresses by maintaining the uptake and movement of water in the plant body.
Collapse
Affiliation(s)
| | - Maryam Vaziri
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Stanfield RC, Hacke UG, Laur J. Are phloem sieve tubes leaky conduits supported by numerous aquaporins? AMERICAN JOURNAL OF BOTANY 2017; 104:719-732. [PMID: 28526726 DOI: 10.3732/ajb.1600422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/20/2017] [Indexed: 05/04/2023]
Abstract
PREMISE OF THE STUDY Aquaporin membrane water channels have been previously identified in the phloem of angiosperms, but currently their cellular characterization is lacking, especially in tree species. Pinpointing the cellular location will help generate new hypotheses of how membrane water exchange facilitates sugar transport in plants. METHODS We studied histological sections of balsam poplar (Populus balsamifera L.) in leaf, petiole, and stem organs. Immuno-labeling techniques were used to characterize the distribution of PIP1 and PIP2 subfamilies of aquaporins along the phloem pathway. Confocal and super resolution microscopy (3D-SIM) was used to identify the localization of aquaporins at the cellular level. KEY RESULTS Sieve tubes of the leaf lamina, petiole, and stem were labeled with antibodies directed at PIP1s and PIP2s. While PIP2s were mostly observed in the plasma membrane, PIP1s showed both an internal membrane and plasma membrane labeling pattern. CONCLUSIONS The specificity and consistency of PIP2 labeling in sieve element plasma membranes points to high water exchange rates between sieve tubes and adjacent cells. The PIP1s may relocate between internal membranes and the plasma membrane to facilitate dynamic changes in membrane permeability of sieve elements in response to changing internal or environmental conditions. Aquaporin-mediated changes in membrane permeability of sieve tubes would also allow for some control of radial exchange of water between xylem and phloem.
Collapse
Affiliation(s)
- Ryan C Stanfield
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada; ORCID id: 0000-0002-7507-7550
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada; ORCID id: 0000-0002-7507-7550
| | - Joan Laur
- Centre de Recherche en Horticulture, Université Laval, Envirotron, Québec, QC G1V0A6, Canada
| |
Collapse
|
19
|
Barkla BJ, Vera-Estrella R, Raymond C. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins. BMC PLANT BIOLOGY 2016; 16:110. [PMID: 27160145 PMCID: PMC4862212 DOI: 10.1186/s12870-016-0797-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/02/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. RESULTS In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. CONCLUSIONS This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia.
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, México
| | - Carolyn Raymond
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
20
|
The Roles of Aquaporins in Plant Stress Responses. J Dev Biol 2016; 4:jdb4010009. [PMID: 29615577 PMCID: PMC5831814 DOI: 10.3390/jdb4010009] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/26/2022] Open
Abstract
Aquaporins are membrane channel proteins ubiquitously present in all kingdoms of life. Although aquaporins were originally discovered as water channels, their roles in the transport of small neutral solutes, gasses, and metal ions are now well established. Plants contain the largest number and greatest diversity of aquaporin homologs with diverse subcellular localization patterns, gating properties, and solute specificity. The roles of aquaporins in physiological functions throughout plant growth and development are well known. As an integral regulator of plant–water relations, they are presumed to play an important role in plant defense responses against biotic and abiotic stressors. This review highlights involvement of various aquaporin homologs in plant stress responses against a variety of environmental stresses that disturb plant cell osmotic balance and nutrient homeostasis.
Collapse
|
21
|
Chang W, Liu X, Zhu J, Fan W, Zhang Z. An aquaporin gene from halophyte Sesuvium portulacastrum, SpAQP1, increases salt tolerance in transgenic tobacco. PLANT CELL REPORTS 2016; 35:385-95. [PMID: 26581952 DOI: 10.1007/s00299-015-1891-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/29/2015] [Accepted: 10/27/2015] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE SpAQP1 was strongly induced by salt in an ABA-independent way, promoted seed germination and root growth in transgenic tobaccos and increased salt tolerance by increasing the activities of antioxidative enzymes. Aquaporin (AQP) plays crucial roles in the responses of plant to abiotic stresses such as drought, salt and cold. Compared to glycophytes, halophytes often have excellent salt and drought tolerances. To uncover the molecular mechanism of halophyte Sesuvium portulacastrum tolerance to salt, in this study, an AQP gene, SpAQP1, from S. portulacastrum was isolated and characterized. The amino acid sequence of SpAQP1 shared high homology with that of plant plasma membrane intrinsic proteins (PIPs) and contained the distinct molecular features of PIPs. In the phylogenic tree, SpAQP1 was evidently classified as the PIP2 subfamily. SpAQP1 is expressed in roots, stems and leaves, and was significantly induced by NaCl treatment and inhibited by abscisic acid (ABA) treatment. When heterologously expressed in yeast and tobacco, SpAQP1 enhanced the salt tolerance of yeast strains and tobacco plants and promoted seed germination and root growth under salt stress in transgenic plants. The activity of antioxidative enzymes including superoxide dismutase, peroxidase and catalase was increased in transgenic plants overexpressing SpAQP1. Taken together, our studies suggested that SpAQP1 functioned in the responses of S. portulacastrum to salt stress and could increase salt tolerance by enhancing the antioxidative activity of plants.
Collapse
Affiliation(s)
- Wenjun Chang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China.
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China.
| | - Xiwen Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China
| | - Jiahong Zhu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China
| | - Wei Fan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China
| | - Zhili Zhang
- Hainan Academy of Agricultural Sciences, 4 Xingdan Road, Haikou, 571100, People's Republic of China.
| |
Collapse
|
22
|
Song L, Nguyen N, Deshmukh RK, Patil GB, Prince SJ, Valliyodan B, Mutava R, Pike SM, Gassmann W, Nguyen HT. Soybean TIP Gene Family Analysis and Characterization of GmTIP1;5 and GmTIP2;5 Water Transport Activity. FRONTIERS IN PLANT SCIENCE 2016; 7:1564. [PMID: 27818669 PMCID: PMC5073556 DOI: 10.3389/fpls.2016.01564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/04/2016] [Indexed: 05/04/2023]
Abstract
Soybean, one of the most important crops worldwide, is severely affected by abiotic stress. Drought and flooding are the major abiotic stresses impacting soybean yield. In this regard, understanding water uptake by plants, its utilization and transport has great importance. In plants, water transport is mainly governed by channel forming aquaporin proteins (AQPs). Tonoplast intrinsic proteins (TIPs) belong to the plant-specific AQP subfamily and are known to have a role in abiotic stress tolerance. In this study, 23 soybean TIP genes were identified based on the latest soybean genome annotation. TIPs were characterized based on conserved structural features and phylogenetic distribution. Expression analysis of soybean TIP genes in various tissues and under abiotic stress conditions demonstrated tissue/stress-response specific differential expression. The natural variations for TIP genes were analyzed using whole genome re-sequencing data available for a set of 106 diverse soybean genotypes including wild types, landraces and elite lines. Results revealed 81 single-nucleotide polymorphisms (SNPs) and several large insertions/deletions in the coding region of TIPs. Among these, non-synonymous SNPs are most likely to have a greater impact on protein function and are candidates for molecular studies as well as for the development of functional markers to assist breeding. The solute transport function of two TIPs was further validated by expression in Xenopus laevis oocytes. GmTIP1;5 was shown to facilitate the rapid movement of water across the oocyte membrane, while GmTIP2;5 facilitated the movement of water and boric acid. The present study provides an initial insight into the possible roles of soybean TIP genes under abiotic stress conditions. Our results will facilitate elucidation of their precise functions during abiotic stress responses and plant development, and will provide potential breeding targets for modifying water movement in soybean.
Collapse
Affiliation(s)
- Li Song
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - Na Nguyen
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | | | - Gunvant B. Patil
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - Silvas J. Prince
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - Babu Valliyodan
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - Raymond Mutava
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - Sharon M. Pike
- Division of Plant Sciences and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Walter Gassmann
- Division of Plant Sciences and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Henry T. Nguyen
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
- *Correspondence: Henry T. Nguyen,
| |
Collapse
|
23
|
Shi J, Wang J, Li R, Li D, Xu F, Sun Q, Zhao B, Mao AJ, Guo YD. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:329-336. [PMID: 26351149 DOI: 10.1016/j.plaphy.2015.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/07/2015] [Accepted: 08/23/2015] [Indexed: 06/05/2023]
Abstract
Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber.
Collapse
Affiliation(s)
- Jin Shi
- College of Agriculture and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Jinfang Wang
- College of Agriculture and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Ren Li
- College of Agriculture and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Dianbo Li
- College of Agriculture and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Fengfeng Xu
- College of Agriculture and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Qianqian Sun
- College of Agriculture and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Bin Zhao
- College of Agriculture and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Ai-Jun Mao
- Beijing Key Lab of Vegetable Germplasm Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Key Lab of Biology & Genetic Improvement of Horticultural Crops (North China), MOA, China.
| | - Yang-Dong Guo
- College of Agriculture and Biotechnology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
24
|
Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L. Aquaporins in Plants. Physiol Rev 2015; 95:1321-58. [DOI: 10.1152/physrev.00008.2015] [Citation(s) in RCA: 486] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations, transport selectivity, and regulation properties. Plant aquaporins are localized in the plasma membrane, endoplasmic reticulum, vacuoles, plastids and, in some species, in membrane compartments interacting with symbiotic organisms. Plant aquaporins can transport various physiological substrates in addition to water. Of particular relevance for plants is the transport of dissolved gases such as carbon dioxide and ammonia or metalloids such as boron and silicon. Structure-function studies are developed to address the molecular and cellular mechanisms of plant aquaporin gating and subcellular trafficking. Phosphorylation plays a central role in these two processes. These mechanisms allow aquaporin regulation in response to signaling intermediates such as cytosolic pH and calcium, and reactive oxygen species. Combined genetic and physiological approaches are now integrating this knowledge, showing that aquaporins play key roles in hydraulic regulation in roots and leaves, during drought but also in response to stimuli as diverse as flooding, nutrient availability, temperature, or light. A general hydraulic control of plant tissue expansion by aquaporins is emerging, and their role in key developmental processes (seed germination, emergence of lateral roots) has been established. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant tolerance to stresses. In conclusion, research on aquaporins delineates ever expanding fields in plant integrative biology thereby establishing their crucial role in plants.
Collapse
Affiliation(s)
- Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Yann Boursiac
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Lionel Verdoucq
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| |
Collapse
|
25
|
Oh DH, Barkla BJ, Vera-Estrella R, Pantoja O, Lee SY, Bohnert HJ, Dassanayake M. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum. THE NEW PHYTOLOGIST 2015; 207:627-44. [PMID: 25944243 DOI: 10.1111/nph.13414] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/08/2015] [Indexed: 05/18/2023]
Abstract
Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms.
Collapse
Affiliation(s)
- Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, PO Box 157, Lismore, NSW, 2480, Australia
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, UNAM, A.P. 510-3, Colonia Miraval, Cuernavaca, MOR, 62250, México
| | - Omar Pantoja
- Instituto de Biotecnología, UNAM, A.P. 510-3, Colonia Miraval, Cuernavaca, MOR, 62250, México
| | - Sang-Yeol Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Hans J Bohnert
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
26
|
Heterologous Expression of Two Jatropha Aquaporins Imparts Drought and Salt Tolerance and Improves Seed Viability in Transgenic Arabidopsis thaliana. PLoS One 2015; 10:e0128866. [PMID: 26067295 PMCID: PMC4466373 DOI: 10.1371/journal.pone.0128866] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/02/2015] [Indexed: 11/19/2022] Open
Abstract
Drought and high salinity are environmental conditions that cause adverse effects on the growth and productivity of crops. Aquaporins are small integral membrane proteins that belong to the family of the major intrinsic proteins (MIPs), with members in animals, plants and microbes, where they facilitate the transport of water and/or small neutral solutes thereby affecting water balance. In this study we characterized two aquaporin genes namely, plasma membrane intrinsic protein (PIP2;7) and tonoplast intrinsic protein TIP1;3 from Jatropha curcas that are localised to the plasma membrane and vacuole respectively. Transgenic Arabidopsis thaliana lines over-expressing JcPIP2;7 and JcTIP1;3 under a constitutive promoter show improved germination under high salt and mannitol compared to control seeds. These transgenic plants also show increased root length under abiotic stress conditions compared to wild type Col-0 plants. Transgenic lines exposed to drought conditions by withholding water for 20 days, were able to withstand water stress and attained normal growth after re-watering unlike control plants which could not survive. Transgenic lines also had better seed yield than control under salt stress. Importantly, seed viability of transgenic plants grown under high salt concentration was 35%-45% compared to less than 5% for control seeds obtained from plants growing under salt stress. The effect of JcPIP2;7 and JcTIP1;3 on improving germination and seed viability in drought and salinity make these important candidates for genetic manipulation of plants for growth in saline soils.
Collapse
|
27
|
Laur J, Hacke UG. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa. PLoS One 2014; 9:e111751. [PMID: 25406088 PMCID: PMC4236056 DOI: 10.1371/journal.pone.0111751] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/07/2014] [Indexed: 01/18/2023] Open
Abstract
Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.
Collapse
Affiliation(s)
- Joan Laur
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| | - Uwe G. Hacke
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Ayadi M, Mieulet D, Fabre D, Verdeil JL, Vernet A, Guiderdoni E, Masmoudi K. Functional analysis of the durum wheat gene TdPIP2;1 and its promoter region in response to abiotic stress in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 79:98-108. [PMID: 24704987 DOI: 10.1016/j.plaphy.2014.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 02/22/2014] [Indexed: 06/03/2023]
Abstract
In a previous work, we demonstrated that expression of TdPIP2;1 in Xenopus oocytes resulted in an increase in Pf compared to water injected oocytes. Phenotypic analyses of transgenic tobacco plants expressing TdPIP2;1 generated a tolerance phenotype towards drought and salinity stresses. To elucidate its stress tolerance mechanism at the transcriptional level, we isolated and characterized the promoter region of the TdPIP2;1 gene. A 1060-bp genomic fragment upstream of the TdPIP2;1 translated sequence has been isolated, cloned, and designated as the proTdPIP2;1 promoter. Sequence analysis of proTdPIP2;1 revealed the presence of cis regulatory elements which could be required for abiotic stress responsiveness, for tissue-specific and vascular expression. The proTdPIP2;1 promoter was fused to the β-glucuronidase (gusA) gene and the resulting construct was transferred into rice (cv. Nipponbare). Histochemical analysis of proTdPIP2;1::Gus in rice plants revealed that the GUS activity was observed in leaves, stems and roots of stably transformed rice T3 plants. Histological sections prepared revealed accumulation of GUS products in phloem, xylem and in some cells adjacent to xylem. The transcripts were up-regulated by dehydration. Transgenic rice plants overexpressing proTdPIP2;1 in fusion with TdPIP2;1, showed enhanced drought tolerance, while wild type plants were more sensitive and exhibited symptoms of wilting and chlorosis. These findings suggest that expression of the TdPIP2;1 gene regulated by its own promoter achieves enhanced drought tolerance in rice.
Collapse
Affiliation(s)
- Malika Ayadi
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Route Sidi Mansour Km 6, B.P "1177", 3018 Sfax, Tunisia
| | | | - Denis Fabre
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | | | | | | | - Khaled Masmoudi
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Route Sidi Mansour Km 6, B.P "1177", 3018 Sfax, Tunisia; ICBA, P.O. Box 14660, Dubai, United Arab Emirates.
| |
Collapse
|
29
|
Pandey B, Sharma P, Pandey DM, Sharma I, Chatrath R. Identification of new aquaporin genes and single nucleotide polymorphism in bread wheat. Evol Bioinform Online 2013; 9:437-52. [PMID: 24250219 PMCID: PMC3825567 DOI: 10.4137/ebo.s12568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Major facilitators of water movement through plant cell membranes include aquaporin proteins. Wheat is among the largest and most important cereal crops worldwide; however, unlike other model plants such as rice, maize and Arabidopsis, little has been reported on wheat major intrinsic proteins (MIPs). This study presents a comprehensive computational identification of 349 new wheat expressed sequence tags (ESTs), encoding 13 wheat aquaporin genes. Identified aquaporins consist of 6 plasma membrane intrinsic proteins (PIP) and 1 TIP showing high sequence similarity with rice aquaporins. We also identified 4 NOD26-like intrinsic proteins (NIP) and 2 SIP members that showed more divergence. Further, expression analysis of the aquaporin genes using the available EST information in UniGene revealed their transcripts were differentially regulated in various stress- and tissue-specific libraries. Allele specific Polymerase chain reaction (PCR) primers based on single nucleotide polymorphism (SNP) were designed using PIP as the target gene and validated on a core set of Indian wheat genotypes. A 3D theoretical model of the wheat aquaporin protein was built by homology modeling and could prove to be useful in the further functional characterization of this protein. Collectively with expression and bioinformatics analysis, our results support the idea that the genes identified in this study signify an important genetic resource providing potential targets to modify the water use properties of wheat.
Collapse
Affiliation(s)
- B Pandey
- Biotechnology laboratory, Directorate of Wheat Research, Karnal, India. ; Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | | | | | | | | |
Collapse
|
30
|
Tan WK, Lin Q, Lim TM, Kumar P, Loh CS. Dynamic secretion changes in the salt glands of the mangrove tree species Avicennia officinalis in response to a changing saline environment. PLANT, CELL & ENVIRONMENT 2013; 36:1410-22. [PMID: 23336288 DOI: 10.1111/pce.12068] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 01/07/2013] [Indexed: 05/22/2023]
Abstract
The specialized salt glands on the epidermis of halophytic plants secrete excess salts from tissues by a mechanism that is poorly understood. We examined the salt glands as putative salt and water bi-regulatory units that can respond swiftly to altering environmental cues. The tropical mangrove tree species (Avicennia officinalis) is able to grow under fluctuating salinities (0.7-50.0 dS m(-1)) at intertidal zones, and its salt glands offer an excellent platform to investigate their dynamic responses under rapidly changing salinities. Utilizing a novel epidermal peel system, secretion profiles of hundreds of individual salt glands examined revealed that these glands could secrete when exposed to varying salinities. Notably, rhythmic fluctuations observed in secretion rates were reversibly inhibited by water channel (aquaporin) blocker, and two aquaporin genes (PIP and TIP) preferentially expressed in the salt gland cells were rapidly induced in response to increasing salt concentration. We propose that aquaporins are involved and contribute to the re-absorption of water during salt removal in Avicennia officinalis salt glands. This constitutes an adaptive feature that contributes to salt balance of trees growing in saline environments where freshwater availability is limited.
Collapse
Affiliation(s)
- Wee-Kee Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543.
| | | | | | | | | |
Collapse
|
31
|
Prado K, Maurel C. Regulation of leaf hydraulics: from molecular to whole plant levels. FRONTIERS IN PLANT SCIENCE 2013; 4:255. [PMID: 23874349 PMCID: PMC3711007 DOI: 10.3389/fpls.2013.00255] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/24/2013] [Indexed: 05/18/2023]
Abstract
The water status of plant leaves is dependent on both stomatal regulation and water supply from the vasculature to inner tissues. The present review addresses the multiple physiological and mechanistic facets of the latter process. Inner leaf tissues contribute to at least a third of the whole resistance to water flow within the plant. Physiological studies indicated that leaf hydraulic conductance (K leaf) is highly dependent on the anatomy, development and age of the leaf and can vary rapidly in response to physiological or environmental factors such as leaf hydration, light, temperature, or nutrient supply. Differences in venation pattern provide a basis for variations in K leaf during development and between species. On a short time (hour) scale, the hydraulic resistance of the vessels can be influenced by transpiration-induced cavitations, wall collapses, and changes in xylem sap composition. The extravascular compartment includes all living tissues (xylem parenchyma, bundle sheath, and mesophyll) that transport water from xylem vessels to substomatal chambers. Pharmacological inhibition and reverse genetics studies have shown that this compartment involves water channel proteins called aquaporins (AQPs) that facilitate water transport across cell membranes. In many plant species, AQPs are present in all leaf tissues with a preferential expression in the vascular bundles. The various mechanisms that allow adjustment of K leaf to specific environmental conditions include transcriptional regulation of AQPs and changes in their abundance, trafficking, and intrinsic activity. Finally, the hydraulics of inner leaf tissues can have a strong impact on the dynamic responses of leaf water potential and stomata, and as a consequence on plant carbon economy and leaf expansion growth. The manipulation of these functions could help optimize the entire plant performance and its adaptation to extreme conditions over short and long time scales.
Collapse
Affiliation(s)
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2Montpellier, France
| |
Collapse
|
32
|
Kawase M, Hanba YT, Katsuhara M. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. JOURNAL OF PLANT RESEARCH 2013; 126:517-27. [PMID: 23371744 PMCID: PMC3695330 DOI: 10.1007/s10265-013-0548-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 12/20/2012] [Indexed: 05/18/2023]
Abstract
We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.
Collapse
Affiliation(s)
- Miki Kawase
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585 Japan
| | - Yuko T. Hanba
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585 Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, Chuo, Kurashiki, Okayama 710-0046 Japan
| |
Collapse
|
33
|
Azad MAK, Morita K, Ohnishi JI, Kore-eda S. Isolation and characterization of a polyubiquitin gene and its promoter region from Mesembryanthemum crystallinum. Biosci Biotechnol Biochem 2013; 77:551-9. [PMID: 23470760 DOI: 10.1271/bbb.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcript levels of the polyubiquitin gene McUBI1 had been reported to be constant during Crassulacean acid metabolism (CAM) induction in the facultative CAM plant, Mesembryanthemum crystallinum. Here, we report the sequences of the full-length cDNA of McUBI1 and its promoter, and validation of the McUBI1 promoter as an internal control driving constitutive expression in transient assays using the dual-luciferase system to investigate the regulation of CAM-related gene expression. The McUBI1 promoter drove strong, constitutive expression during CAM induction. We compared the activities of this promoter with those of the cauliflower mosaic virus (CaMV) 35S promoter in detached C3- and CAM-performing M. crystallinum and tobacco leaves. We confirmed stable expression of the genes controlled by the McUBI1 promoter with far less variability than under the CaMV 35S promoter in M. crystallinum, whereas both promoters worked well in tobacco. We found the McUBI1 promoter more suitable than the CaMV 35S promoter as an internal control for transient expression assays in M. crystallinum.
Collapse
Affiliation(s)
- Muhammad Abul Kalam Azad
- Division of Life Sciences, Graduate School of Science and Engineering, Saitama University, Japan
| | | | | | | |
Collapse
|
34
|
Vera-Estrella R, Barkla BJ, Amezcua-Romero JC, Pantoja O. Day/night regulation of aquaporins during the CAM cycle in Mesembryanthemum crystallinum. PLANT, CELL & ENVIRONMENT 2012; 35:485-501. [PMID: 21895697 DOI: 10.1111/j.1365-3040.2011.02419.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mesembryanthemum crystallinum exhibits induction of Crassulacean acid metabolism (CAM) after a threshold stage of development, by exposure to long days with high light intensities or by water and salt stress. During the CAM cycle, fluctuations in carbon partitioning within the cell lead to transient drops in osmotic potential, which are likely stabilized/balanced by passive movement of water via aquaporins (AQPs). Protoplast swelling assays were used to detect changes in water permeability during the day/night cycle of CAM. To assess the role of AQPs during the same period, we followed transcript accumulation and protein abundance of four plasma membrane intrinsic proteins (PIPs) and one tonoplast intrinsic protein (TIP). CAM plants showed a persistent rhythm of specific AQP protein abundance changes throughout the day/night cycle, including changes in amount of McPIP2;1, McTIP1;2, McPIP1;4 and McPIP1;5, while the abundance of McPIP1;2 was unchanged. These protein changes did not appear to be coordinated with transcript levels for any of the AQPs analysed; however, they did occur in parrallel to alterations in water permeability, as well as variations in cell osmolarity, pinitol, glucose, fructose and phosphoenolpyruvate carboxylase (PEPc) levels measured throughout the day/night CAM cycle. Results suggest a role for AQPs in maintaining water balance during CAM and highlight the complexity of protein expression during the CAM cycle.
Collapse
Affiliation(s)
- Rosario Vera-Estrella
- Instituto de Biotecnología, UNAM, A.P. 510-3, Colonia Miraval, Cuernavaca, Morelos, México.
| | | | | | | |
Collapse
|
35
|
Fraysse LC, Wells B, McCann MC, Kjellbom P. Specific plasma membrane aquaporins of the PIP1 subfamily are expressed in sieve elements and guard cells. Biol Cell 2012; 97:519-34. [PMID: 15898953 DOI: 10.1042/bc20040122] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Transmembrane water flow is aided by water-specific channel proteins, aquaporins. Plant genomes code for approx. 35 expressed and functional aquaporin isoforms. Plant aquaporins fall into four different subfamilies of which the PIPs (plasma membrane intrinsic proteins) constitute the largest and evolutionarily most conserved subfamily with 13 members in Arabidopsis and maize. Furthermore, the PIPs can be divided into two phylogenetic groups, PIP1 and PIP2, of which the PIP1 isoforms are most tightly conserved, sharing >90% amino acid sequence identity. As the nomenclature implies, the majority of PIPs have been shown to be localized at the plasma membrane. Recently, two highly abundant plasma membrane aquaporins, SoPIP2;1 and SoPIP1;2, have been purified and structurally characterized. RESULTS We report the cloning of a cDNA encoding SoPIP1;2 and show that there are at least five additional sequences homologous with SoPIP2;1 and SoPIP1;2 in the spinach genome. To understand their role in planta, we have investigated the cellular localization of the aquaporin homologues SoPIP1;2 and SoPIP1;1. By Western- and Northern-blot analyses and by immunocytochemical detection at the light and electron microscopic levels, we show that SoPIP1;2 is highly expressed in phloem sieve elements of leaves, roots and petioles and that SoPIP1;1 is present in stomatal guard cells. CONCLUSIONS Localization of the two abundant aquaporin isoforms suggests roles for specific PIPs of the PIP1 subgroup in phloem loading, transport and unloading, and in stomatal movements.
Collapse
Affiliation(s)
- Laure C Fraysse
- Department of Plant Biochemistry, Lund University, P.O. Box 124, S-22100 Lund, Sweden
| | | | | | | |
Collapse
|
36
|
Délano-Frier JP, Avilés-Arnaut H, Casarrubias-Castillo K, Casique-Arroyo G, Castrillón-Arbeláez PA, Herrera-Estrella L, Massange-Sánchez J, Martínez-Gallardo NA, Parra-Cota FI, Vargas-Ortiz E, Estrada-Hernández MG. Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC Genomics 2011; 12:363. [PMID: 21752295 PMCID: PMC3146458 DOI: 10.1186/1471-2164-12-363] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/13/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth. RESULTS A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and black cottonwood (Populus trichocarpa). CONCLUSIONS This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture.
Collapse
Affiliation(s)
- John P Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Hamlet Avilés-Arnaut
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Kena Casarrubias-Castillo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Gabriela Casique-Arroyo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Paula A Castrillón-Arbeláez
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Génomica para la Biodiversidad, Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Julio Massange-Sánchez
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Norma A Martínez-Gallardo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Fannie I Parra-Cota
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Erandi Vargas-Ortiz
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - María G Estrada-Hernández
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
- Department of Entomology, College of Agricultural Sciences. Penn State University, University Park, PA 16802, USA
| |
Collapse
|
37
|
Nardini A, Lo Gullo MA, Salleo S. Refilling embolized xylem conduits: is it a matter of phloem unloading? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:604-11. [PMID: 21421408 DOI: 10.1016/j.plantsci.2010.12.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/17/2010] [Accepted: 12/29/2010] [Indexed: 05/18/2023]
Abstract
Long-distance water transport in plants relies on negative pressures established in continuous water columns in xylem conduits. Water under tension is in a metastable state and is prone to cavitation and embolism, which leads to loss of hydraulic conductance, reduced productivity and eventually plant death. Experimental evidence suggests that plants can repair embolized xylem by pushing water from living vessel-associated cells into the gas-filled conduit lumina. Most surprisingly, embolism refilling is known to occur even when the bulk of still functioning xylem is under tension, a finding that is in seemingly contradiction to basic principles of thermodynamics. This review summarizes our current understanding of xylem refilling processes and speculates that embolism repair under tension can be envisioned as a particular case of phloem unloading, as suggested by several events and components of embolism repair, typically involved in phloem unloading mechanisms. Far from being a challenge to irreversible thermodynamics, embolism refilling is emerging as a finely regulated vital process essential for plant functioning under different environmental stresses.
Collapse
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | | | | |
Collapse
|
38
|
Vera-Estrella R, Bohnert HJ. Physiological Roles for the PIP Family of Plant Aquaporins. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
Ache P, Bauer H, Kollist H, Al-Rasheid KAS, Lautner S, Hartung W, Hedrich R. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:1072-82. [PMID: 20345603 DOI: 10.1111/j.1365-313x.2010.04213.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Uptake of CO(2) by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard-cell anion release channel SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard-cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non-invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long-term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild-type plants responded to CO(2), light, humidity, ozone and abscisic acid (ABA) in a guard cell-specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild-type plants, leaves from well-watered ost1 plants exposed to a dry atmosphere wilted after light-induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root-shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.
Collapse
Affiliation(s)
- Peter Ache
- Universität Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Amezcua-Romero JC, Pantoja O, Vera-Estrella R. Ser123 is essential for the water channel activity of McPIP2;1 from Mesembryanthemum crystallinum. J Biol Chem 2010; 285:16739-47. [PMID: 20332086 DOI: 10.1074/jbc.m109.053850] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increased expression of McPIP2;1 (MipC), a root-specific aquaporin (AQP) from Mesembryanthemum crystallinum, under salt stress has suggested a role for this AQP in the salt tolerance of the plant. However, whether McPIP2;1 transports water or another solute and how its activity is regulated are so far unknown. Therefore, wild type (wt) or mutated McPIP2;1 protein was expressed in Xenopus laevis oocytes. Then, the osmotic water permeability (P(f)) of the oocytes membrane was assessed by hypotonic challenges. Selectivity of McPIP2;1 to water was determined by radiolabeled glycerol or urea uptake assays. Moreover, swelling and in vitro phosphorylation assays revealed that both water permeation and phosphorylation status of McPIP2;1 were significantly increased by the phosphorylation agonists okadaic acid (OA), phorbol myristate acetate (PMA), and 8-Br-cAMP, and markedly decreased by the inhibitory peptides PKI 14-22 and PKC 20-28, inhibitors of protein kinases A (PKA) and C (PKC), respectively. Substitution of Ser(123) or both, Ser(123) and Ser(282), abolished the water channel activity of McPIP2;1 while substitution of Ser(282) only partially inhibited it (51.9% inhibition). Despite lacking Ser(123) and/or Ser(282), the McPIP2;1 mutant forms were still phosphorylated in vitro, which suggests that phosphorylation may have a dual role on this AQP. Our results indicate that McPIP2;1 water permeability depends completely on Ser(123) and is positively regulated by PKA- and PKC-mediated phosphorylation. Regulation of the phosphorylation status of McPIP2;1 may contribute to control water transport through root cells when the plant is subjected to high salinity conditions.
Collapse
Affiliation(s)
- Julio C Amezcua-Romero
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | |
Collapse
|
41
|
Barkla BJ, Vera-Estrella R, Hernández-Coronado M, Pantoja O. Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance. THE PLANT CELL 2009; 21:4044-58. [PMID: 20028841 PMCID: PMC2814500 DOI: 10.1105/tpc.109.069211] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 05/18/2023]
Abstract
To examine the role of the tonoplast in plant salt tolerance and identify proteins involved in the regulation of transporters for vacuolar Na(+) sequestration, we exploited a targeted quantitative proteomics approach. Two-dimensional differential in-gel electrophoresis analysis of free flow zonal electrophoresis separated tonoplast fractions from control, and salt-treated Mesembryanthemum crystallinum plants revealed the membrane association of glycolytic enzymes aldolase and enolase, along with subunits of the vacuolar H(+)-ATPase V-ATPase. Protein blot analysis confirmed coordinated salt regulation of these proteins, and chaotrope treatment indicated a strong tonoplast association. Reciprocal coimmunoprecipitation studies revealed that the glycolytic enzymes interacted with the V-ATPase subunit B VHA-B, and aldolase was shown to stimulate V-ATPase activity in vitro by increasing the affinity for ATP. To investigate a physiological role for this association, the Arabidopsis thaliana cytoplasmic enolase mutant, los2, was characterized. These plants were salt sensitive, and there was a specific reduction in enolase abundance in the tonoplast from salt-treated plants. Moreover, tonoplast isolated from mutant plants showed an impaired ability for aldolase stimulation of V-ATPase hydrolytic activity. The association of glycolytic proteins with the tonoplast may not only channel ATP to the V-ATPase, but also directly upregulate H(+)-pump activity.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Miraval, Cuernavaca, Morelos, Mexico.
| | | | | | | |
Collapse
|
42
|
WU WZ, PENG XL, WANG D. Isolation of a Plasmalemma Aquaporin Encoding Gene StPIP1 from Solanum tuberosum L. and Its Expression in Transgenic Tobacco. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1671-2927(08)60326-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Shao HB, Chu LY, Shao HB, Chu LY, Shao MA, Zhao CX. Advances in functional regulation mechanisms of plant aquaporins: Their diversity, gene expression, localization, structure and roles in plant soil-water relations (Review). Mol Membr Biol 2009; 25:179-91. [DOI: 10.1080/09687680801914508] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Diédhiou CJ, Popova OV, Golldack D. Transcript profiling of the salt-tolerant Festuca rubra ssp. litoralis reveals a regulatory network controlling salt acclimatization. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:697-711. [PMID: 19106017 DOI: 10.1016/j.jplph.2008.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 08/20/2008] [Accepted: 09/17/2008] [Indexed: 05/08/2023]
Abstract
We report an analysis of salt-stress responses in the monocotyledonous halophyte Festuca rubra ssp. litoralis. Salt-dependent expression of transcripts encoding a PIP2;1 aquaporin, V-ATPase subunit B, and the Na+/H+ antiporter NHX was characterized. Transcription of FrPIP2;1, FrVHA-B, and FrNHX1 was induced in root tissue of F. rubra ssp. litoralis by salt treatment, and during salt-stress F. rubra ssp. litoralis accumulated sodium in leaves and roots. Cell specificity of FrPIP2;1, FrVHA-B, and FrNHX1 transcription was analyzed by in situ PCR in roots of F. rubra ssp. litoralis. Expression of the genes was localized to the root epidermis, cortex cells, endodermis, and the vascular tissue. In plants treated with 500 mM NaCl, transcripts were repressed in the epidermis and the outer cortex cells, whereas endodermis and vasculature showed strong signals. These data demonstrate that transcriptional regulation of the aquaporin PIP2;1, V-ATPase, and the Na+/H+ antiporter NHX is correlated with salt tolerance in F. rubra ssp. litoralis and suggests coordinated control of ion homeostasis and water status at high salinity in plants. Salt-induced transcript accumulation in F. rubra ssp. litoralis was further monitored by cDNA-arrays with expressed sequence tags derived from a cDNA subtraction library. The salt-regulated transcripts included those involved in the control of gene expression and signal transduction elements such as a serine/threonine protein kinase, an SNF1-related protein kinase, and a WRKY-type transcription factor. Other ESTs with salt-dependent regulation included transcripts encoding proteins that function in metabolism, general stress responses, and defense and transport proteins.
Collapse
Affiliation(s)
- Calliste J Diédhiou
- Department of Physiology and Biochemistry of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
| | | | | |
Collapse
|
45
|
Heinen RB, Ye Q, Chaumont F. Role of aquaporins in leaf physiology. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2971-85. [PMID: 19542196 DOI: 10.1093/jxb/erp171] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Playing a key role in plant growth and development, leaves need to be continuously supplied with water and carbon dioxide to fulfil their photosynthetic function. On its way through the leaf from the xylem to the stomata, water can either move through cell walls or pass from cell to cell to cross the different tissues. Although both pathways are probably used to some degree, evidence is accumulating that living cells contribute substantially to the overall leaf hydraulic conductance (K(leaf)). Transcellular water flow is facilitated and regulated by water channels in the membranes, named aquaporins (AQPs). This review addresses how AQP expression and activity effectively regulate the leaf water balance in normal conditions and modify the cell membrane water permeability in response to different environmental factors, such as irradiance, temperature, and water supply. The role of AQPs in leaf growth and movement, and in CO(2) transport is also discussed.
Collapse
Affiliation(s)
- Robert B Heinen
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 5-15, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
46
|
Popova OV, Yang O, Dietz KJ, Golldack D. Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation. Gene 2008; 423:142-8. [PMID: 18703123 DOI: 10.1016/j.gene.2008.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 11/16/2022]
Abstract
Salt stress is an environmental factor that severely impairs plant growth and productivity. Salinity-induced transcript accumulation was monitored in the salt-sensitive Arabidopsis thaliana and the related salt-tolerant Lobularia maritima using cDNA-arrays with expressed sequence tags derived from a cDNA subtraction library of salt-stressed L. maritima. The expression profiles revealed differences of the steady state transcript regulation in A. thaliana and L. maritima in response to salt stress. The differentially expressed transcripts include those involved in the control of gene expression as a transcription factor II homologue as well as signal transduction elements such as a serine/threonine protein kinase, a SNF1-related protein kinase AKIN10 homologue, and protein phosphatase 2C. Other ESTs with differential regulation patterns included transcripts encoding proteins with function in general stress responses and defense and included a peroxidase, dehydrins, enzymes of lipid and nitrogen metabolism, and functionally unclassified proteins. In a more detailed analysis the basic leucine zipper transcription factor AtbZIP24 showed differential transcript abundance in A. thaliana and L. maritima in response to salt stress. Transgenic AtbZIP24-RNAi lines showed improved growth and development under salt stress that was correlated with changed Cl(-) accumulation. The data indicate that AtbZIP24 functions as a transcriptional repressor in salt-stressed A. thaliana that negatively regulates growth and development under salinity in context of controlling Cl(-) homeostasis. Monitoring the differential and tissue specific global regulation of gene expression during adaptation to salinity in salt-sensitive and halotolerant plants is a promising and powerful approach to identify novel elements of plant salt stress adaptation.
Collapse
Affiliation(s)
- Olga V Popova
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
47
|
Martínez-Ballesta MC, Cabañero F, Olmos E, Periago PM, Maurel C, Carvajal M. Two different effects of calcium on aquaporins in salinity-stressed pepper plants. PLANTA 2008; 228:15-25. [PMID: 18317798 DOI: 10.1007/s00425-008-0714-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/13/2008] [Indexed: 05/23/2023]
Abstract
Two different effects of calcium were studied, respectively, in plasma membrane vesicles and in protoplasts isolated from roots of control pepper plants (Capsicum annuum L cv. California) or of plants treated with 50 mM NaCl, 10 mM CaCl(2) or 10 mM CaCl(2) + 50 mM NaCl. Under saline conditions, osmotic water permeability (P ( f )) values decreased in protoplasts and plasma membrane vesicles, and the same reduction was observed in the PIP1 aquaporin abundance, indicating inhibitory effects of NaCl on aquaporin functionality and protein abundance. The cytosolic Ca(2+) concentration, [Ca(2+)](cyt), was reduced by salinity, as observed by confocal microscope analysis. Two different actions of Ca(2+) were observed. On the one hand, increase in free cytosolic calcium concentrations associated with stress perception may lead to aquaporin closure. On the other hand, when critical requirements of Ca(2+) were reduced (by salinity), and extra-calcium would lead to an upregulation of aquaporins, indicating that a positive role of calcium at whole plant level combined with an inhibitory mechanism at aquaporin level may work in the regulation of pepper root water transport under salt stress. However, a link between these observations and other cell signalling in relation to water channel gating remains to be established.
Collapse
Affiliation(s)
- M Carmen Martínez-Ballesta
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Apdo. Correos 164, 30100, Espinardo, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Prak S, Hem S, Boudet J, Viennois G, Sommerer N, Rossignol M, Maurel C, Santoni V. Multiple Phosphorylations in the C-terminal Tail of Plant Plasma Membrane Aquaporins. Mol Cell Proteomics 2008; 7:1019-30. [DOI: 10.1074/mcp.m700566-mcp200] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
49
|
Diédhiou CJ, Popova OV, Dietz KJ, Golldack D. The SUI-homologous translation initiation factor eIF-1 is involved in regulation of ion homeostasis in rice. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:298-309. [PMID: 18426477 DOI: 10.1111/j.1438-8677.2008.00037.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Halophytes survive high salinity by using complex adaptive mechanisms. In a search for novel molecular mechanisms involved in salt acclimation, transcript analyses revealed increased expression of a SUI-homologous translation initiation factor eIF-1 in the salt-tolerant grass species Festuca rubra ssp. littoralis but not in rice. Upon analysis of the cell specificity of eIF-1 transcription by in situ polymerase chain reaction (PCR), predominant signals were detected in rice leaf mesophyll. To further examine the role of eIF-1 in salt tolerance, transgenic rice plants were generated that over-express this factor under the control of the CaMV-35S promoter. The eIF-1 over-expressing lines showed improved growth under salt stress that was correlated with maintenance of photosynthetic activity and reduced Na(+) and Cl(-) accumulation in leaves. The transgenic rice lines also activated expression of the vacuolar H(+)-ATPase. In addition, an oxidoreductase that belongs to the aldo/keto reductase family was identified as a gene with modified expression in the eIF-1 over-expressing lines, compared with wild-type rice. Our data suggest that eIF-1 has a central function in salt-stress adaptation in rice by regulating ion accumulation and the intracellular redox status.
Collapse
Affiliation(s)
- C J Diédhiou
- Department of Physiology and Biochemistry of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | | | | | | |
Collapse
|
50
|
Zhao CX, Shao HB, Chu LY. Aquaporin structure–function relationships: Water flow through plant living cells. Colloids Surf B Biointerfaces 2008; 62:163-72. [DOI: 10.1016/j.colsurfb.2007.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/08/2007] [Accepted: 10/28/2007] [Indexed: 11/25/2022]
|